Lecture 11
Recall: a basis for IR" is a set of n vectors which are linearly independent and span IR".
Discussion: Theorem 2, Lecture 8. 11 v1,, v. form a basis of R", and v E R", then there exists
a unique set of scales has, he only depending on v such that v= havet + he ve.
This means that we can use any basis to give our "coordinates in":
Example 1: The vectors (1) and (-1) form a basis (since they are $l.i.$)
(alle a vector $v = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$. Then $v = \lambda \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ for some unique (λ, μ) .
This is a system of equations: $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$
Since $\binom{1}{1}$, $\binom{-1}{1}$ form a basis, this has a unique solution: $\binom{\lambda}{1} = \binom{1-1}{1} - \binom{3}{-2}$
The inverse of $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ turns out to be $\begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix}$. So in this case $\begin{pmatrix} 1 \\ \mu \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix}$. $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$
$= \begin{pmatrix} 1/2 \\ -5/2 \end{pmatrix}.$
$\frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \frac{-5}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$
(1) (1)
So in the bosis $(), (), the vector (-2) has coordinates (-s_{1/2}).$
Definition 1: Let as be an (ordered) basis $v_2,, v_n$ of R [*] , and let v ElK. Write $v = c_1v_2 + + c_nv_n$
(hen the B -coordinate vector of v is $L \vee J_B = \begin{pmatrix} c \\ c \end{pmatrix}$
Theorem 1: Let B be a basis v_1, \dots, v_n of \mathbb{R}^n , and let $v \in \mathbb{R}^n$. Then $[v]_{\mathcal{B}} = (v_1, \dots, v_n) \cdot v_n$
Definition 2 We will write C for the canonical basis $e_1 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$, \dots , $e_n = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$.
Remark: Clearly, if $v = \begin{pmatrix} a \\ a \end{pmatrix}$ then $v = \begin{pmatrix} a \\ a \end{pmatrix}$

Definition 3: The matrix $(y_1 - y_n)^{-1}$ changes coordinates from C to B, and so we will denote it Se-	•B•
Remark: why is it $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and not $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$?	
The matrix $\begin{pmatrix} 1 & & & \\ 1 & & & \\ \end{pmatrix}$ sends $\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ to v_{2} , so it goes the other way.	· · · ·
	· · ·
Definition 4: The matrix $(v_1 - v_n)$ changes coordinates from B to C , and so we will denote it S_B .	-→C
Example 2 Let $v_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ form a basis B .	
• Suppose $[v]_{R} = \begin{pmatrix} 1 \\ - \end{pmatrix}$ What is $[v]_{p}$?	
$[x]_{n} = \sum_{n=1}^{\infty} \left[x]_{n} = (1^{-1}) [x]_{n} = (3^{-1})_{n} [x]_{n}$	
$D \neq I$	· · ·
$ \begin{array}{c} \cdot \\ \cdot $	
• Suppose $v = {\binom{1}{2}} = [v]_{c}$ What is $[v]_{B}$?	
$ \left[v \right]_{\mathcal{B}} = S_{\mathcal{C} \to \mathcal{B}} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} 1/3 & -1/3 \\ 2/3 & 1/3 \end{pmatrix} \left(\begin{pmatrix} 4 \\ 2 \end{pmatrix} \right) = \left(\begin{pmatrix} -1/3 \\ 4/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} 1/3 & -1/3 \\ 2/3 & 1/3 \end{pmatrix} \left(\begin{pmatrix} 4 \\ 2 \end{pmatrix} \right) = \left(\begin{pmatrix} -1/3 \\ 4/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 & 1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[v \right]_{\mathcal{C}} = \left(\begin{pmatrix} -1/3 & 1/3 \\ 2/3 & 1/3 \end{pmatrix} \right)^{-1} \left[(1/3 & 1/3 \right)^{-1}$	· · ·
Picture: $\mathcal{N} \to \mathcal{N}_{\mathcal{N}}(1)$	
$\left(\begin{array}{c} \cdot \\ \cdot $	
Observation: Same and Same inverse to each other.	

Discussion: Suppose we'd like to change bases from a basis
$$B_1$$
 to a basis S_2 .
Then all we have to do a: $[V_{34}, \rightarrow S_{2-1-1}[V_{34}, \rightarrow S_{2-n-2}, S_{2-n-1}[V_{34}, \dots]]$
Definition 5: The change of basis motion from a basis B_2 to and/or basis B_3 is S_{2-n2} .
Example 3: Let $B_2 = \binom{d}{2}, \binom{d}{2}$ and $B_3 = \binom{d-2}{2}$. Then:
 $S_{2-n-2} = \binom{d-4}{2}, S_{2-n-2}, S_{2-n-2} = \binom{d-2}{2}, \frac{d}{2}, \frac{d}{2}, S_{2-n-2} = \binom{d-4}{2}, S_{2-n-2} = \binom{$

Crucial observation of today's lecture
$A = S_{B \to e} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \cdot S_{e \to B}$
put the coords apply T in that basis change coords to B-coords back to normal ones (Pasier!)
In turn, the (easier) matrix $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ can be obtained as
$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = S_{B \to e} \cdot A \cdot S_{e \to B} = S_{e \to B} \cdot A \cdot S_{B \to e}$
This motivates:
Definition 5: Let B be a basis of R", and let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with matrix A.
Then the matrix of T with respect to B (or B-matrix of T) is $S_{e \rightarrow B} A S_{B \rightarrow e}$
Remark: writing $S = \begin{pmatrix} t & t \\ t & t \end{pmatrix}$, the matrix of T wrt B is S-'AS.
More motivation:
Example 5: You're in a real life situation where you need to apply the same T many times, say
100 times in other words you have a matrix A, for instance $A = \begin{pmatrix} s_2 & -t_2 \\ -t_2 & t_2 \end{pmatrix}$,
and you need to figure out Atos.
You notice it's taking forever, so you decide to be smart about it, and notice that
$A = \left(\underbrace{\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}}_{S} \right) \left(\underbrace{\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}}_{S} \right) \left(\underbrace{\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}}_{S} \right)^{-1} $
You realize $(SAS^{-1})^{\infty} = SAS^{-1}SAS^{-1}$
$= S A^{\mu\nu}S^{-1}$
$= \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2^{100} & 0 \\ 0 & 3^{100} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1}$ and you're done after 3 matrix multiplications]

Discussion: depending on the basis you choose, a linear transformation can be represented by very
different looking matrices. However, they will all be related by change of basis matrices.
Definition 6 let A and B be square nxn matrices. Then B is similar to A if there
exists on invertible matrix S such that $B = S^{-1}AS$. We denote it $B \sim A$
Equivalently, B is similar to A if B represents the same finear transformation as A,
with respect to a different basis.
Theorem 2: The following hold:
1) Any square matrix A is similar to itseff. (A~A)
2) If A is similar to B, then B is similar to A. $(A \sim B \Rightarrow B \sim A)$
3) [] A is similar to B, and B is similar to C, then A is similar to C. $(A \sim B, B \sim C \Rightarrow A \sim C)$
Proof: 1) Taking $S = I_n$, $A = S^-AS = I_n^-AI_n = A$.
2) If A is similar to B, there exists an invertible matrix So such that $A = S_0^+ B S_0$.
But then $B = SAS^{-1}$, so it suffices to take $S = S^{-1}B = S^{-1}AS$.
3) (n-closs exercise
Recall that a matrix is diagonal if it is of the form $\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$.
Definition 7: A matrix is diagonalizable if it is similar to a diagonal matrix.
Questions for next time: when/how can we diagonalize a matrix?
n-class exercises:
1 Let $A = \begin{pmatrix} -\frac{14}{2} & \frac{3}{2} \\ -48 & 5 \end{pmatrix}$ You're given that $A \begin{pmatrix} 1 \\ 3 \end{pmatrix} = -\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $A \begin{pmatrix} -1 \\ -4 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 \\ -4 \end{pmatrix}$.
Compute A^{200} , rounding to 3 decimal places.
2 Prove that $A \sim B$ and $B \sim C$ imply $A \sim C$.

•	•	۰ 1	 		A A	. 1	(0 -4 (-3	1/2 3 3/2	-1/ 23	$\left(\begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \end{array} \right)$	N N	otice		o.t			$\left \frac{1}{2} \right = 0$.	А А	(-1 0 1	.=	12	(- 0 1			↓ ↓ ↓))=	•	(•	•	•	•
•	•	•	C.	Simpli	ite	Å Å	ee v	ro	und	ing	to	3	deci	inal	pl	2(62	•	•	•			•	•	•	•		•	•		•	•	•	•	•	
•		•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•
•		٠	•	•	•	٠				•		•	•	•	•		•			•		•				٠					•			•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•		•	٠	•	÷	•	٠	•	٠	•	٠	•	•	*		•	•	•		٠		٠		٠	÷		•	0		•	٠	•		
•	•	•	•	•		•	•	•	•		•	•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
			٠		•	0	•	٠	•	٠	•	٠	•	•	*	•	•	٠	•	•	٠	٠	•	·	٠	0	•			·	٠	٠	•		
•	•	•	•	•		•	•	•	•		•	•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•			٠	•	÷	. •	٠	٠	٠	٠	٠	•	•	٠	•	٠	•	٠	•	٠	٠	٠	·	٠	0	•	•	0	·	•	٠	•	•	
•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
							•								•												•								
•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠			0	•	0	•	٠	٠	٠	٠		٠	•	•	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	0	٠	٠	0	٠	•			0	
•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠		٠		٠		٠		٠		٠	•	•	٠	٠	•	•	•	•	•	٠	٠	٠		·	٠	٠			٠	•	•	٠		٠	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠		٠		٠		٠		٠		٠	•	•	٠	•	•	•	•	•	•	•	٠	٠		•	٠	٠			۰	•	•	٠		•	
•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•			•	0	•	0	•	٠	٠	٠	٠		٠	•	•	•	٠				•	•	٠		٠	0	•	•	0		•	٠		0	
•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•			•	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	•		•			•	٠		•	0	•		0		•	٠		•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
				•		•	•							•	•											•					•				
•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
				٠	•	٠						٠	•	•	•			•			•	•				٠					•		•		
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
				•		•						٠		•	•											•									
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•