Lecture 11
Recall: a basis for \mathbb{R}^{n} is a ot of n vectors which are linearly indepment and span \mathbb{R}^{n} Discussion: Theorem 2, Lecture 8: If v_{1}, \ldots, v_{n} form a basis of \mathbb{R}^{n}, and $v \in \mathbb{R}^{n}$, then there exists a unique set of success $\lambda_{1}, \ldots, \lambda_{n}$ only depending on v such that $v=\lambda_{1} v_{2}+\ldots+\lambda_{n} v_{n}$. This means that we can use any basis to give our "coordinates in":
Example 1: The vectors $\binom{1}{1}$ and $\binom{-1}{1}$ form a basis (since they are l_{i}.)

Take a vector $v=\binom{3}{-2}$. Then $v=\lambda\binom{1}{1}+\mu\binom{-1}{1}$ for some unique (λ, μ) This is a system of equations: $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \cdot\binom{\lambda}{\mu}=\binom{3}{-2}$
Since $\binom{1}{1},\binom{-1}{1}$ form a basis, this has a unique solution: $\binom{1}{\mu}=\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right)^{-1} \cdot\binom{3}{-2}$
The inverse of $\left(\begin{array}{ll}1 & -1 \\ 1 & 1\end{array}\right)$ turns at to be $\left(\begin{array}{cc}1 / 2 & 1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right)$ So in this case $\binom{\lambda}{\mu}=\left(\begin{array}{cc}1 / 2 & 1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right)=\binom{3}{-2}$
Let's heck this:

$$
=\binom{1 / 2}{-1 / 2} .
$$

$$
\frac{1}{2}\binom{1}{1}+\frac{-5}{2}\binom{-1}{i}=\binom{3}{-2}
$$

So "in the basis" $\binom{1}{1},\binom{-1}{1}$, the vector $\binom{3}{-2}$ has "coordinates" $\binom{1 / 2}{-5 / 2}$.
Definition 1: Let \mathbb{B} be an (ordered) basis v_{1}, \ldots, v_{n} of $\mathbb{R}^{n \prime}$, and let $v \in \mathbb{R}^{n}$: Write $v=c_{1} v_{1}+\ldots+c_{n} v_{n}$.
Then the B-coordinate vector of v is $[v]_{B}=\left(\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right)$
Theorem 1: Let B be a basis v_{1}, \ldots, v_{n} of \mathbb{R}^{n}, and let $v \in \mathbb{R}^{n}$. Then $[v]_{B}=\left(\begin{array}{ll}1 & 1 \\ v_{1} & \ldots \\ 1 & v_{n}\end{array}\right)^{-1} v$
Definition 2: We will write e for the canonical basis $e_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), e_{2}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right), \ldots, e_{n}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
Remark: Clearly, if $v=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$ then $[v]_{c}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$

Definition 3: The matrix $\left(\begin{array}{ll}1 & 1 \\ y_{1} & \cdots \\ 1 & v_{n}\end{array}\right)^{-1}$ changes coordinates from e to B, and so we will dense it $S_{C \rightarrow B}$
Remark: why is it $\left(\begin{array}{lll}1 & 1 \\ y_{1} & \ldots & v_{n} \\ 1 & 1\end{array}\right)^{-1}$ and not $\left(\begin{array}{ll}1 & 1 \\ v_{1} & \ldots \\ 1 & v_{1}\end{array}\right)$?

Definition 4: The matrix $\left(\begin{array}{ll}1 & 1 \\ v_{1} & \cdots \\ 1 & v_{n}\end{array}\right)$ changes coordinates from B to C, and so we will dense it $S_{B} \rightarrow C$
Example 2: Let $v_{1}=\binom{1}{-2}, v_{2}=\binom{1}{1}$ form a basis B.

- Suppose $[v]_{s}=\binom{1}{2}$ What is $[v]_{e}$?

$$
[v]_{C}=S_{B \rightarrow C}[v]_{\beta}=\left(\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right)[v]_{B}=\binom{3}{0}=[v]_{C} .
$$

Picture:

(-2)

- Suppose $v=\binom{1}{2}\left(=[v]_{e}\right)$ What is $[v]_{B}$?

$$
[v]_{B}=S_{C \rightarrow B}[v]_{C}=\left(\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right)^{-1}[v]_{C}=\left(\begin{array}{c}
1 / 3 \\
2 / 3 \\
-1 / 3
\end{array}\right)\binom{1}{2}=\binom{-1 / 3}{4 / 3}
$$

Picture

$\binom{1}{-2}$

Observation: $S_{B \rightarrow e}$ and $S_{C \rightarrow B}$ are inverse to each other

Discussion: Suppose wed like to change bases from a basis B_{1} to a basis B_{2}.

$$
\text { Then all we have to do is: }[v]_{B_{1}} \longmapsto S_{B_{2} \rightarrow C}[v]_{B_{2}} \mapsto S_{C \rightarrow B_{2}} S_{B_{1} \rightarrow C}[v]_{B_{1}}
$$

Definition 5 T The change of basis matrix from a basis B_{1} to another boss B_{2} is $S_{C \rightarrow B_{1}} \cdot S_{B_{1} \rightarrow C}$ It is dented $S_{B_{1} \rightarrow B}$.
Example 3: Let $B_{1}=\binom{1}{0},\binom{1}{1}$ and $B_{2}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)$. Then:

$$
\begin{aligned}
& S_{B_{1} \rightarrow C}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad S_{e \rightarrow B_{2}}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right)^{-1}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1 / 2
\end{array}\right), \\
& S_{B_{1} \rightarrow B_{2}}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1 / 2
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & -1 \\
0 & 1 / 2
\end{array}\right)
\end{aligned}
$$

Discussion: this explains how to change bases of individual vectors. The next step is how to change bass of linear transformations.
Important question you should be asking yourself: why change basis in the first place?
Answer: some bases are better than others!
Example 4: Consider the linear transformation with matrix $A=\left(\begin{array}{cc}5 / 2 & -1 / 2 \\ -1 / 2 & 5 / 2\end{array}\right)$. This is hard to wrap my head grand:

However consider what it does to the basis $B=\binom{1}{1},\binom{1}{-1}$) $T\binom{1}{1}=\binom{2}{2}, T\binom{1}{-1}=\binom{3}{-3}$ It scales them! In this alternative basis:

Much easier to think about! Easier to compute with!

Crucial observation of today's lecture:

$$
A=\underbrace{S_{B \rightarrow e}}_{\begin{array}{c}
\text { pt the cords } \\
\text { back to normal ones }
\end{array}} \underbrace{S_{\text {change cords to }} B \text {-coords }}_{\begin{array}{l}
\text { apply } \\
\begin{array}{l}
\text { (easier ! in that basis }
\end{array}
\end{array}\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]} S_{e \rightarrow 3}
$$

In torn, the (easier) matrix. $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ can be obtained as

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]=S_{B \rightarrow C} \cdot A \cdot S_{C \rightarrow B}^{-1}=S_{C \rightarrow B} \cdot A \cdot S_{B \rightarrow e}
$$

This motivates:
Definition 5: Let B be a basis of \mathbb{R}^{n}, and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation with matrix A. Then the matrix of T with respect to B (or B-matrix of T) is $S_{C \rightarrow B} \cdot A \cdot S_{B \rightarrow C}$ Remark: writing $S=(\underbrace{\left(\begin{array}{ll}1 & 1 \\ 1\end{array}\right)}_{\text {bass } B} \begin{array}{l}1\end{array})$, the matrix of T wot B is $S^{-i} A S$.

More motivation:
Example 5: You're in a real life situation where you need to apply the same T many tines, say 100 times. In other words you have a matrix A, for instance $A=\left(\begin{array}{c}5 / 2-1 / 2 \\ -1 / 2 \\ 1 / 2\end{array}\right)$, and you need to figure out A^{100}.

You notice it's taking forever, so you decide to be smart about it, and notice that

$$
A=\frac{\left(\begin{array}{ll}
1 & 1 \\
1 & -1
\end{array}\right)}{S}\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \frac{\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)^{-1}}{S^{-1}}
$$

You realize $\quad\left(S A S^{-1}\right)^{100}=S A S^{-1} S A S^{-1} \cdots S^{-1} S S^{-1}$

$$
=S A^{100} S^{-1}
$$

$$
=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
2^{100} & 0 \\
0 & 3^{100}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)^{-1} \quad \text { and you're dore alter }
$$ 3 matrix multiplications!

Discussion: depending on the basis you chose, a linear transformation can be represented by very different looking matrices. However, they will all be retted by change of basis matrices
Definition 6 let A and B be square $n \times n$ matrices. Then B is similar to A || there exists an invertible matrix S such that $B=S^{-1} A S$. We denote it $B \sim A$ Equivalently, B is similar to A ill B represents the same linear trampormation as A, with respect to a different basis.
Theorem 2: The following wold:

1) Any square matrix A is similar to itself. $\quad(A \sim A)$
2) If A is similar to B, then B is similar to $A .(A \sim B \Rightarrow B \sim A)$
3) If A is similar to B, and B is similar to C, then A is similar to $C \quad(A \sim B, B \sim C \Rightarrow A \sim C)$

Proof 1) Taking $S=I_{n}, A=S^{-1} A S=I_{n}^{-1} A I_{n}=A$
2) If A is similar to B, there exists an invertible matrix S_{0} such that $A=S_{0}^{-1} B S_{0}$. But then $B=S_{0} A S_{0}^{-1}$, so A splices to take $S=S_{0}^{-1}: B=S^{-1} A S$.
3) $1 n$-class exercise.

Recall that a matrix is diagonal 1 ts of the prim $\left[\begin{array}{ll}a_{1} & 0 \\ 0 & 0\end{array}\right]$
Definition 7: A matrix is diagnondiable il it is similar to a diagonal matrix.
Questions for next time when/how can we diagonalize a matrix?

In -chaos exercises:
1 Let $A=\left(\begin{array}{cc}-\frac{11}{2} & \frac{3}{2} \\ -18 & 5\end{array}\right)$ Your given that $A\binom{1}{3}=-\binom{1}{3}$ and $A\binom{-1}{-4}=\frac{1}{2}\binom{-1}{-4}$
Comate A^{100}, rounding to 3 decimal places.
2. Prove that $A \sim B$ and $B \sim C$ imply $A \sim C$.

1. Let $A=\left(\begin{array}{ccc}0 & 1 / 2 & -1 / 2 \\ -4 & 3 \\ -3 & 3 / 2 & -4 / 2\end{array}\right)$ Notice that $A\left(\begin{array}{l}\frac{1}{2} \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{c}1 \\ 2 \\ 1 \\ 0\end{array}\right), A\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right), A\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=-\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$

Comate A^{100}, rounding to 3 decimal places.

