Lecture 1
Systems of linear equations
Example 1: let's solve the following system of equations:

$$
\begin{aligned}
x+3 y=5 \\
2 x-y=3
\end{aligned}\left|\xrightarrow{\mathbb{I} \rightarrow \mathbb{I}-2 \cdot I} \quad \begin{array}{ll}
x+3 y & =5 \\
-7 y & =-7
\end{array}\right|
$$

Why linear?
$x+3 y=5$ is the equation for a line

$$
\begin{aligned}
& x=0 \Rightarrow y=\frac{5}{3} \\
& y=0 \Rightarrow y=5
\end{aligned}
$$

Same for $2 x-y=3$:

Then the solution of the system is precisely the intersection of the two fines:

This "algorithm" also works for sirens with more variables and more equations:
Example 2

$$
\begin{aligned}
& \begin{array}{l|r}
x+2 y+3 z=39 \\
x+3 y+2 z=34 \\
3 x+2 y+z=26
\end{array} \left\lvert\, \xrightarrow{I \rightarrow \mathbb{I}} \quad \begin{array}{rr}
& x+2 y+3 z=39 \\
& y-z=-5 \\
& 3 x+2 y+z=26
\end{array}\right. \\
& \text { III } \rightarrow \text { III-3•I } \\
& x+2 y+3 z=39 \\
& y-z=-5 \\
& -4 y-8 z=-91 \\
& x+2 y+3 z=39 \\
& \xrightarrow{\text { III } \rightarrow \text { II }+4 \cdot I I} \\
& y-z=-5 \\
& -12 z=-111 \\
& x \quad+5 z=49 \\
& \xrightarrow{I I I-2 \cdot I} \\
& y-z=-5 \\
& -12 z=-111
\end{aligned}
$$

$$
\Rightarrow(x, y, z)=(2.75,4.25,9.25)
$$

is the unique solution to the sydem

Remark 1: geometrically, an equation like $x+2 y+2 z=2$ is the equation of a plane in \mathbb{R}^{3} "Usually", two planes intersect in a line, and three planes intersect in a point (ce below) In example 2, the three equations determine three planes which intersect in the point $(2.75,4.25,9.25)$

$$
\begin{aligned}
& x+5 z=49 \\
& \xrightarrow{\text { II } \rightarrow \frac{1}{-12} \text { III }} \\
& y-z=-5 \\
& z=9.25 \\
& \mathbb{I} \rightarrow \mathbb{I}+\mathbb{I} \\
& x \quad+5 z=49 \\
& y=4.25 \\
& z=9.25 \\
& \text { I } \rightarrow \text { I-5I. } \\
& x \quad=2.75 \\
& y=4.25 \\
& z=9.25
\end{aligned}
$$

Remark 2: Sometimes the system doosn't have a unique solution, or even any solutions at all
Example 3: (No solutions)

$$
\begin{aligned}
x-2 y=2 \\
-2 x+4 y=0
\end{aligned} \left\lvert\, \xrightarrow{\mathbb{I} \rightarrow \mathbb{I}+2 I} \quad \begin{aligned}
& x-2 y=3 \\
& \\
& \text { Impossible! No solutions }
\end{aligned}\right.
$$

Geometrically:

The lines are parallel

Example 4 : (Infinitely many solutions)

$$
\begin{aligned}
& x+y+z=1 \\
& \xrightarrow{\text { II } \rightarrow \text { II }+\mathbb{I}} \quad-2 y+z=-2 \\
& 0=0 \\
& \left.\begin{aligned}
\text { II }{ }_{-2}^{1} I
\end{aligned} \begin{aligned}
x+y+z & =1 \\
y-\frac{1}{2} z & =1 \\
0 & =0
\end{aligned} \right\rvert\, \\
& x+\frac{3}{2} z=0 \\
& I \rightarrow I-I I \\
& y-\frac{1}{2} z=1 \\
& 0=0
\end{aligned}
$$

Can't progress further. Any value for z will give a valid solution.

Therefore, we say that z is a free variable, because it may take any real value The variables x, y are determined (in this care) by the value of z. The set of solutions is

$$
\left\{\left.\left(-\frac{3}{2} t, 1+\frac{1}{2} t, t\right) \right\rvert\, t \in \mathbb{R}\right\} \quad \text { [Geometrically: Are planes intersating in a line] }
$$

Theorem 1: A system of linear equations either has

- 1 solution
- No solutions
- Infinitely many solutions

Remark 3: Notice that we have been performing operations on systems of equations as if the entries were on a table. Moreover, we dons really need to write " x ", " y " " " z " over and over.

Definition 1. An m-by- n matrix is a table of real numbers with m rows and n columns:

$$
m=3\binom{n=4}{\left(\begin{array}{cccc}
2 & -3 & 4 & 2.5 \\
1.1 & 0 & -1 & 2 \\
-3 & 1 & 0 & 1
\end{array}\right)}
$$

Definition 2. An augmented matrix is a matrix with an extra column and a divider:

$$
\left(\begin{array}{cccc|c}
2 & -3 & 4 & 2.5 & 1 \\
1.1 & 0 & -1 & 2 & -2 \\
-3 & 1 & 0 & 1 & 3
\end{array}\right)
$$

To each augmented matrix corresponds a unique system of linear equations and vice-versa:

$$
\left(\begin{array}{cccc|c}
2 & -3 & 4 & 2.5 & 1 \\
11 & 0 & -1 & 2 & -2 \\
-3 & 1 & 0 & 1 & 3
\end{array}\right) \quad \leftrightarrow \quad \begin{aligned}
& 2 x-3 y+4 z+2.5 w=1 \\
& 11 x+0 y \\
& -1 z+2 w=-2 \\
& -3 x+1 y+0 z+1 w=3
\end{aligned}
$$

Then, as before, we can solve the system by performing row operations to the augmented matrix:

- Add a multiple of a row to another row
- Multiply a row by a nonzero number
- Swap two rows

Example 1 revisited:

$$
\begin{aligned}
& x+3 y=5 \\
& 2 x-y=3
\end{aligned} \longrightarrow\left(\begin{array}{rr|r}
1 & 3 & 5 \\
2 & -1 & 3
\end{array}\right)
$$

In all of our examples, we detained an augmented matrix of the form

$$
\left(\begin{array}{ccccccccccc|c}
1 & * & 0 & * & * & * & 0 & * & * & 0 & * & * \\
0 & 0 & 1 & * & * & * & 0 & * & * & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & * & * & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * & *
\end{array}\right)
$$

Such matrices are said to be in row-reduced echelon form (RREF). More formally

Reduced row-echelon form
A matrix is said to be in reduced row-echelon form (rref) if it satisfies all of the following conditions:
a. If a row has nonzero entries, then the first nonzero entry is a 1 , called the leading 1 (or pivot) in this row.
b. If a column contains a leading 1 , then all the other entries in that column are 0 .
c. If a row contains a leading 1 , then each row above it contains a leading 1 further to the left.
Condition c implies that rows of 0 's, if any, appear at the bottom of the matrix.

Theorem 2: Any matrix can be put into RREF by elementary row operations.
Definition: The process of turning a matrix into RREF by performing row operations s called Gaussian elimination.

In-class exercise session:

1. Write down the augmented matrix associated to the following system of linear equations:

$$
\begin{aligned}
& x+y=5 \\
& x+z=7 \\
& y+z=8
\end{aligned}
$$

2. Perform Gaussian diminution on the matrix you obtained in 1 in order to solve the system. Check that your solon satisfies the system of equations.
