Mock midterm solutions:

1. (20 points) For the following matrices, determine if the corresponding linear transformation is injective, whether it is surjective, and whether it has an inverse. Justify your answers. In the case that it has an inverse, compute it.
(a) $\left(\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 0 \\ 2 & 1 & 1\end{array}\right)$
(b) $\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$
(c) $\left(\begin{array}{ccc}2 & 1 & -1 \\ 3 & 2 & 1\end{array}\right)$
(d) $\left(\begin{array}{cccc}1 & 2 & -1 & 0 \\ 0 & 2 & 2 & 4 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1\end{array}\right)$

Note: this question has several different possible solutions; I iced these to showicax different ways to answer them 1.a) Let T be the linear transformation associated to $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 2 & 1 & 0 \\ 2 & 1 & 1\end{array}\right)$

$$
\begin{aligned}
& \operatorname{Ker}(T)=\left\{\left(\begin{array}{l}
x_{1} \\
x_{3} \\
x_{3}
\end{array}\right): T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \operatorname{ker}(T)=\left\{\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\} \Rightarrow T \text { is infective. }
\end{aligned}
$$

The previous part shows also $\operatorname{rank}(T)=3=\operatorname{dim}\left(\mathbb{R}^{3}\right)$, so T is surjective.
Since T is injective and surjective, it is invertible.
Inverse

$$
\begin{aligned}
& \Rightarrow A^{-1}=\left(\begin{array}{ccc}
1 & -1 & 1 \\
-2 & 3 & -2 \\
0 & 1 & -1
\end{array}\right)
\end{aligned}
$$

b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be the linear transformation associated to $\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$

Then $T\left(\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right)=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)=T\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ so T is not injective:
Since $\operatorname{rank}(T) \leqslant 3<4=\operatorname{dim}\left(\mathbb{R}^{4}\right)$, T is not sorjective.
Since A is not square, I cannot have an inverse.
c) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear transformation associated to $\left(\begin{array}{ccc}2 & 1 & -1 \\ 3 & 2 & 1\end{array}\right)$. By \quad rank-nullity, $\quad 3=\operatorname{dim}(\operatorname{Kor}(T))+\operatorname{dim}(\operatorname{lm}(T))$.
Since $\operatorname{lm}(T) \subseteq \mathbb{R}^{2}, \quad \operatorname{dim}(\mid m(T)) \leq 2$. Thus $\operatorname{dim}(\operatorname{Ver}(T)) \geqslant 1$ so T is not injective.
Notice that $\binom{1}{2},\binom{-1}{1}$ are linearly independent of $\lambda\binom{1}{2}+\mu\binom{-1}{1}=\binom{0}{0}$
only solution is $\lambda=\mu=0$.
It follows that $\operatorname{dim}(\ln (T)) \geqslant 2$, hence since the codomain is \mathbb{R}^{2}, T is sorjective.
d) We find an inverse. This will show that T is infective and sorjective.

$$
\begin{aligned}
& \left(\begin{array}{cccc|cccc}
1 & 2 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 2 & 2 & 4 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \xrightarrow[\underset{\text { II }}{\mathbb{I} \rightarrow-\frac{1}{2} \mathbb{I}}]{\underset{I}{l}}\left(\begin{array}{cccc|cccc}
1 & 2 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow{I \rightarrow I-2 \cdot I}\left(\begin{array}{cccc|cccc}
1 & 0 & -3 & -4 & 1 & -1 & 0 & 0 \\
0 & 1 & 1 & 2 & 0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow[\text { II } \rightarrow \text { II-III }]{\text { I } \rightarrow \text { I }+3 \cdot \text { II }}\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & -1 & 1 & -1 & -3 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \xrightarrow[\text { II } \rightarrow \text { II- }]{\substack{\text { I I } \\
\text { I } \rightarrow \mathbb{I}-\mathbb{I}}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array} \left\lvert\, \begin{array}{cccc}
1 & -1 & -3 & 1 \\
0 & 1 & 2 & 1 \\
0 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right.\right)
\end{aligned}
$$

We obtained the identity matrix, so this is the inverse.
2. 2. (20 points) Find the values of $\lambda, \mu \in \mathbb{R}$ such that the matrices $A=\left(\begin{array}{cc}1 & \lambda \\ \lambda-1 & 1\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ commute. (Two matrices commute if $A B=B A$.)

$$
\begin{gathered}
A B=\left(\begin{array}{cc}
1 & 2+\lambda \\
\lambda-1 & 2 \lambda-2+1
\end{array}\right) \quad B A=\left(\begin{array}{cc}
1+2 \lambda-2 & \lambda+2 \\
\lambda-1 & 1
\end{array}\right) \\
A B=B A \Leftrightarrow 2 \lambda-2+1=1 \Leftrightarrow \lambda=1 .
\end{gathered}
$$

3. 3. Let S_{1} and S_{2} be subspaces of \mathbb{R}^{n}, and let

$$
S_{1} \cap S_{2}=\left\{v \in \mathbb{R}^{n}: v \in S_{1} \text { and } v \in S_{2}\right\}
$$

Prove or disprove: $S_{1} \cap S_{2}$ is a subspace of \mathbb{R}^{n}. Let

$$
S_{1} \cup S_{2}=\left\{v \in \mathbb{R}^{n}: v \in S_{1} \text { or } v \in S_{2}\right\}
$$

Prove or disprove: $S_{1} \cup S_{2}$ is a linear subspace of \mathbb{R}^{n}.
$S_{1} \cap S_{2}$ is a subspace of \mathbb{R}^{n} : take $v_{1}, v_{2} \in S_{1} \cap S_{2}$. Then $v_{1}+v_{2} \in S_{1}$ since $v_{1}, v_{2} \in S_{1}$ and S_{1} is a subspace of \mathbb{R}^{1}. Similorly, $v_{1}+v_{2} \in S_{2}$. Therefore $v_{1}+v_{2} \in S_{1} \cap S_{2}$ Next, take $v \in S_{1} \cap S_{2}$ and $\lambda \in \mathbb{R}$. Then $\lambda v \in S_{1}$ since $v \in S_{1}$ and S_{1} is a subspace. Similarly, $\lambda_{v} \in S_{2}$. Therepre $\lambda_{v} \in S_{1} \cap S_{2}$. We conduce that $S_{1} \cap S_{2}$ is a subspace. $S_{1} \cup S_{2}$ is not a subspace of \mathbb{R}^{n} : let $\left.S_{1}=\operatorname{Span}\left(\binom{1}{0}\right) \subseteq \mathbb{R}^{2}, S_{2}=\operatorname{Span}\left(\left.\right|_{1} ^{0}\right)\right) \subseteq \mathbb{R}^{2}$: Then $\binom{1}{1}=\binom{1}{0}+\binom{0}{1}$ is not in $S_{1} \cup S_{2}$, despite the fact that $\binom{1}{0}$ and $\binom{0}{1}$ are in $S_{1} \cup S_{2}$. It follows that $S_{1} \cup S_{2}$ is not a subspace of \mathbb{R}^{n}.
4. (20 points) Give an example of an injective linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. Draw your linear transformation in the way we have done it in the course, identifying in your picture: where the basis vectors go, the kernel and the image of the transformation. Explain also how to obtain the image of the vector $\binom{1}{-1}$ in terms of your drawing.
Consider $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ y $\downarrow \ln (T)$ (the xy-plare) Picture:

(a) A linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ may have rank 4.
(b) A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ of rank 3 must be injective.
(c) If $A B$ is the identity matrix, then A and B must be square matrices.
(d) If S and T are subspaces of \mathbb{R}^{n} and S is contained in T, then $\operatorname{dim}(S) \leq \operatorname{dim}(T)$.
(e) If $x_{0} \in \mathbb{R}^{n}$ is a solution of the equation $A x=b$ where A is an $m \times n$ matrix, and $x_{1} \in \mathbb{R}^{n}$ is in the kernel of A, then $x_{0}+x_{1}$ is another solution to the equation $A x=b$.
(a) Fabre: $\operatorname{rank}(T) \leq \operatorname{dim}($ codomein $)=3<4$.
(b) True: by rank $-n u l i t y, 3=\operatorname{dim}(\operatorname{tar}(T))+\operatorname{dim}(\operatorname{lm}(T))$

So $\operatorname{dim}(\operatorname{Kar}(T))=0$ and so $\operatorname{Ker}(T)=\{0\}$, so $T{ }^{3}$ is infective.
(c) False Counterexample: $\quad\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(d) True: $\operatorname{dim}(S)=$ maximum number of $l_{\text {i }}$ vectors in S
\leqslant maximum number of li. vectors in T sine $S \in T$

$$
=\operatorname{dim}(T)
$$

(e) True: Let T be the linear transformation assoc to T. Then, $A\left(x_{0}+x_{1}\right)=T\left(x_{0}+x_{1}\right)$

$$
\begin{aligned}
& =T\left(x_{0}\right)+\underbrace{T\left(x_{1}\right)}_{0 \text { sine }} \\
& T_{\text {l }} \in \operatorname{Ker}(T) \\
& =T\left(x_{0}\right) \\
& =A x_{0} \\
& =b \\
& b_{\text {by assumption }}
\end{aligned}
$$

6. I omit the details, but here is a sketch:

Let $E_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right), E_{2}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$. Since $D E_{1}=E_{1} D$, veg get $a=b$

$$
D E_{2}=E_{2} D \text {, we get } b=c . \quad\left\{\begin{array}{l}
\text { Therefore } a=b=c \\
\text { as desired. }
\end{array}\right.
$$

