Linear Algebra Final 8/5

1. (20 points) For each of the following matrices A, determine whether A is orthogonally diagonalizable, diagonalizable (over \mathbb{R}), or neither, justifying your answers. In the case that A is orthogonally diagonalizable, compute its orthogonal diagonalization. (If A is only diagonalizable, you do not need to diagonalize A.)

(a)
$$\begin{pmatrix} 4 & 4 \\ -1 & 5 \end{pmatrix}$$

(b) $\begin{pmatrix} 0 & 2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & -3 & 0 \end{pmatrix}$
(c) $\begin{pmatrix} -2 & -1 & 1 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix}$
(d) $\begin{pmatrix} -2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & -2 \end{pmatrix}$

2. (20 points) Let
$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : z = 2x + y \right\}.$$

- (a) Prove that S is a subspace of \mathbb{R}^3 , and that it has dimension 2.
- (b) Find the matrix of the linear transformation proj_S .
- (c) If $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, compute $v^{||}$ (the orthogonal projection of v onto S), and v^{\perp} , the corresponding perpendicular component.
- 3. (20 points) Find the values of *a* for which the matrix $A = \begin{pmatrix} 0 & -1 \\ 1 & a \end{pmatrix}$ has only one eigenvalue (of algebraic multiplicity 2). Prove that *A* is not diagonalizable in each such case.
- 4. (20 points) Find examples for each of the following. In each case, verify that your example satisfies the conditions given.
 - (a) An injective but not surjective linear transformation.
 - (b) A matrix which is not diagonalizable over \mathbb{C} .
 - (c) A matrix diagonalizable over \mathbb{C} but not over \mathbb{R} .

- (d) A matrix A with $\dim(\text{Ker}(A)) = 3$ and $\dim(\text{Im}(A)) = 4$.
- (e) A matrix with two eigenvalues λ and μ (with $\lambda \neq \mu$) such that the eigenspaces E_{λ} and E_{μ} are not orthogonal.
- 5. (20 points) Determine if the following statements are true or false. If they are true, provide a proof. If they are false, provide a counterexample.
 - (a) Every orthogonal matrix is orthogonally diagonalizable.
 - (b) Let A be an $n \times n$ matrix. Then the sum of the geometric multiplicities of the eigenvalues of A cannot be greater than n
 - (c) Let $S \subset \mathbb{R}^n$ be a subspace. Then any vector $v \in \mathbb{R}^n$ such that $v \in S$ and $v \in S^{\perp}$ must be the zero vector. (Recall that $S^{\perp} = \{v \in \mathbb{R}^n : v \cdot w = 0 \text{ for all } w \in S\}$.)
 - (d) If A is a matrix whose columns are orthogonal (but not necessarily unit vectors), then $A^T A$ is a diagonal matrix.
 - (e) If A is a 4×4 matrix with a single eigenvalue 1 with algebraic multiplicity $a_1 = 4$, then $(A I)^4 = 0$.
- 6. (Extra: 10 points) Let A be an $m \times n$ matrix (with real entries), and let $A = U\Sigma V^T$ be a Singular Value Decomposition for A. Write $D = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix}$, where D is a diagonal matrix with entries $\lambda_1, \ldots, \lambda_r$, all nonzero. Let the columns of U form the vectors u_1, \ldots, u_n .

Prove that u_1, \ldots, u_r form an orthonormal basis of Im(A), and u_{r+1}, \ldots, u_n form an orthonormal basis of $\text{Ker}(A^T)$. (You may use the following fact without proof: if X and Y are matrices and Y is invertible, then Im(XY) = Im(X)).