Linear Algebra Midterm

1. (20 points) Let
$$A = \begin{pmatrix} -1 & 2 & 0 \\ 2 & -1 & 1 \end{pmatrix}$$
 and let $B = \begin{pmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}$.

- (a) Find the rank of A and the rank of B.
- (b) Compute AB.
- (c) Find the rank of AB.
- (d) Indicate whether AB has an inverse, and compute it if it does.
- 2. (20 points) For each of the following linear transformations, write down the corresponding matrix, and find bases for its kernel and its image.

(a) The linear transformation
$$T : \mathbb{R}^3 \to \mathbb{R}^2$$
 given by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + 2y - 2z \\ -x - y + z \end{pmatrix}$

(b) The linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ such that T(v) = -v for all $v \in \mathbb{R}^2$.

(c) The linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ such that $T\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, T\begin{pmatrix} 0\\1\\0 \end{pmatrix} =$ $\begin{pmatrix} 1\\2\\0 \end{pmatrix} \text{ and } T \begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 1\\3\\1 \end{pmatrix}.$

(d) (1) (1)
(d) The composition of the transformations
$$T_1 : \mathbb{R}^3 \to \mathbb{R}^2$$
 and $T_2 : \mathbb{R}^2 \to \mathbb{R}^2$ where $T_1\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} x+y\\ y+z \end{pmatrix}$ and $T_2\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x+y\\ y \end{pmatrix}$.

3. (20 points) Let T_1, T_2 be two linear transformations from \mathbb{R}^n to \mathbb{R}^m , and let $c \in \mathbb{R}$

be a scalar. Let also $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$ be the matrix associated to T_1 and $B = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & & & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$ the matrix associated to T_2 .

- (a) Define $T_1 + T_2 : \mathbb{R}^n \to \mathbb{R}^m$ as $(T_1 + T_2)(v) = T_1(v) + T_2(v)$ for every $v \in \mathbb{R}^n$. Prove that $T_1 + T_2$ is a linear transformation.
- (b) Write down the matrix for $T_1 + T_2$ in terms of the entries of A and B.

- (c) Define $cT_1 : \mathbb{R}^n \to \mathbb{R}^m$ as $(cT_1)(v) = c \cdot T_1(v)$ for every $v \in \mathbb{R}^n$. Prove that cT_1 is a linear transformation.
- (d) Write down the matrix for cT_1 in terms of the entries of A.
- 4. (20 points) Give an example of a surjective linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$. Draw your linear transformation in the way we have done it in the course, identifying in your picture: where the basis vectors $\hat{\mathbf{i}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\hat{\mathbf{j}} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $\hat{\mathbf{k}} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ go, the

kernel and the image. Explain also how to obtain the image of the vector $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ in

terms of the drawing.

- 5. (20 points) Determine whether the following statements are true or false. Justify your answers: give a proof if they are true and give a counterexample if they are false.
 - (a) If A is an $n \times n$ matrix, but rank(A) < n, then the system Ax = b is always inconsistent.
 - (b) If $T_1 : \mathbb{R}^n \to \mathbb{R}^m$ and $T_2 : \mathbb{R}^m \to \mathbb{R}^p$ are injective linear transformations, then $T_2 \circ T_1$ is injective.
 - (c) If $T_1 : \mathbb{R}^n \to \mathbb{R}^m$ is an injective linear transformation and $T_2 : \mathbb{R}^m \to \mathbb{R}^p$ is a surjective linear transformation, then $T_2 \circ T_1$ is surjective.
 - (d) A linear transformation $T : \mathbb{R}^6 \to \mathbb{R}^4$ must have $\dim(\operatorname{Ker}(T)) \ge 2$.
 - (e) Let T_1 and T_2 be as in question 3. If dim $(\text{Im}(T_1)) > 0$ and dim $(\text{Im}(T_2)) > 0$ then dim $(\text{Im}(T_1 + T_2)) > 0$.
- 6. (Extra: 10 points) Let A be a $m \times n$ matrix corresponding to an injective linear transformation, and let B be a $p \times m$ matrix corresponding to a surjective linear transformation, satisfying that $BA = 0_{p \times n}$ (the RHS is the $p \times n$ matrix with zeros in every entry). Prove that $m \ge n + p$ and identify the condition for when equality holds.