Linear Algebra HW Week 5

1. Let S be the subspace of \mathbb{R}^{3} spanned by the vectors $\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$. Describe:
(a) The basis of S obtained by the Gram-Schmidt algorithm on $\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$.
(b) The $Q R$ factorization of $\left(\begin{array}{cc}3 & 1 \\ 1 & -1 \\ 1 & 1\end{array}\right)$.
(c) The matrix of proj_{S}.
(d) The vectors $v^{\|}$and v^{\perp} given that $v=\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)$.
2. Compute the QR factorization of the matrix $A=\left(\begin{array}{ccc}1 & -1 & 0 \\ -2 & 3 & 1 \\ -2 & 1 & -2\end{array}\right)$. Use it to solve the system $A x=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ quickly.
3. Determine whether the following matrices are orthogonally diagonalizable and find their orthogonal diagonalizations if possible.
(a) $A=\left(\begin{array}{ccc}4 & \sqrt{6} & \sqrt{2} \\ \sqrt{6} & 3 & -\sqrt{3} \\ \sqrt{2} & -\sqrt{3} & 5\end{array}\right)$
(b) $A=\left(\begin{array}{ccc}4 & 0 & \sqrt{2} \\ \sqrt{6} & 3 & -\sqrt{3} \\ \sqrt{2} & -\sqrt{3} & 5\end{array}\right)$
4. (20 points) Fix a unit vector $u \in \mathbb{R}^{n}$. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the transformation such that $T(v)=v-2(v \cdot u) u$ for all $v \in \mathbb{R}^{n}$.
(a) Prove that T is a linear transformation.
(b) Prove that T is orthogonal (Hint: show that it preserves the dot product, in the sense from the lectures).
(c) Take your favorite unit vector in \mathbb{R}^{3} and describe the linear transformation T geometrically in your case.
5. Determine if the following statements are true or false. If they are true, provide a proof. If they are false, provide a counterexample.
(a) If Q_{1} and Q_{2} are both orthogonal $n \times n$ matrices, then $Q_{1} Q_{2}$ is orthogonal.
(b) If A and B are both symmetric $n \times n$ matrices, then $A B$ is symmetric.
(c) If A is an invertible $n \times n$ matrix, then A^{T} is invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
(d) If A and B are square $n \times n$ matrices, and they are both symmetric, then $A+B$ is symmetric.
(e) (Harder) If A is an invertible symmetric $n \times n$ matrix, then A^{-1} is symmetric.
