
Weil cohomology theories

This is an old note on Weil cohomology theories written for a graduate student seminar in the Fall of 2007
organized by Johan de Jong. It later became a chapter of the Stacks project. We strongly urge the reader
to read this online at

https://stacks.math.columbia.edu/tag/0FFG

instead of reading the old material below. In particular, we do not vouch for the correctness of what follows.

Fix an algebraically closed field C. All varieties will be varieties over C. See the end of this note for some
remarks on what to change to get a Weil cohomology theory over a nonalgebraically closed field.

A Weil cohomology theory H∗ with coefficients in the characteristic zero field K is given by the following set
of data (notation explained below):

(D1) For every nonsingular projective algebraic variety X a graded commutative algebra H∗(X) over
K. The grading is indexed by integers: H∗(X) = ⊕n∈ZHn(X) is a direct sum decomposition of
K-vector spaces. The multiplication H∗(X) × H∗(X) → H∗(X), (α, β) 7→ α ∪ β is called the
cup product. It is K-bilinear. Graded commutative means that α ∪ β = (−1)deg(α) deg(β)β ∪ α for
homogenous elements.

(D2) For every morphism of nonsingular projective varieties f : X → Y a pullback map f∗ : H∗(Y ) →
H∗(X) which is a K-algebra map preserving the grading.

(D3) A 1-dimensional K-vector space K(1), which gives rise to Tate twists as follows. For a K-vector
space V we define V (n) = V ⊗KK(1)⊗n. If n is negative then V (n) = V ⊗KHom(K(1)⊗−n,K). We
will use obvious notation, e.g., given K-vector spaces U , V and W and a linear map U ⊗K V →W
we obtain a linear map U(a)⊗K V (b)→W (a+ b) for an pair a, b ∈ Z.

(D4) For every nonsingular projective variety X a trace map Tr : H2 dimX(X)(dimX)→ K.
(D5) For every nonsingular projective variety and every closed subvariety Z ⊂ X of codimension c there

is given a cohomology class cl(Z) ∈ H2c(X)(c).
These data should satisfy the axioms (W1)–(W10) below.

Remarks. (a) The reason to introduce Tate twists is that there is no reasonable way to canonically identify
H2 dimX(X) with K in certain cases (especially when doing cohomology/motives over non algebraically
closed fields).
(b) There are lots of relations among these data, and in fact you could express everything in terms of the
data (D1)–(D4), or everything in terms of the data (D1)–(D3) & (D5). In other words, the Trace map
determines the cohomology classes, and vice versa.
(c) Another equivalent piece of data could be a chern class map c1 : Pic(X)→ H2(X)(1). See below.

(W1) Each Hi(X) is a finite dimensional K-vector space.

(W2) If Hi(X) 6= (0) then i ∈ [0, 2 dim(X)].

(W3) Given morphisms f : X → Y and g : Y → Z of nonsingular projective varieties we have (g ◦ f)∗ =
f∗ ◦ g∗ as maps H∗(Z)→ H∗(X). In other words H∗ is a contravariant functor.

(W4) Künneth. Given nonsingular projective varieties X, Y we have maps pr∗X : H∗(X) → H∗(X × Y )
and pr∗Y : H∗(Y )→ H∗(X×Y ). Because of the existence of the cup product we get a morphism of K-vector
spaces

H∗(X)⊗K H∗(Y ) −→ H∗(X × Y ), α⊗ β 7→ pr∗X(α) ∪ pr∗Y (β).

Axiom (W4) says that this map is an isomorphism of vector spaces.

(W5) Poincaré duality. For every nonsingular projective variety X the trace map is an isomorphism and
for every 0 ≤ j ≤ 2 dimX the cupproduct

Hj(X)×H2 dimX−j(X)(dimX) −→ H2 dimX(X)(dimX)− Tr→ K

induces a perfect duality between Hj(X) and H2 dimX−j(X)(dimX).
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(W6) Compatibility of Trace maps and products. Given nonsingular projective varieties X, Y we
require that the trace map TrX×Y : H2 dimX+2dimY (X × Y )(dimX + dimY )→ K satisfies

TrX×Y (pr∗X(α) ∪ pr∗Y (β)) = TrX(α)TrY (β)

for α ∈ H2 dimX(X)(dimX) and β ∈ H2 dimY (Y )(dimY ).

(W7) Exterior products and cohomology classes. Given nonsingular projective varieties X, Y and
closed subvarieties Z ⊂ X, W ⊂ Y we have cl(Z ×W ) = pr∗X(cl(Z)) ∪ pr∗Y (cl(W )).

(W8) Cohomology classes and pushforward. Suppose that f : X → Y is a morphism of nonsingular
projective varieties, and let Z ⊂ X be a closed subvariety. Recall that f∗[Z] = m[f(Z)] where m is the
degree of the morphism of varieties Z → f(Z). Axiom (w7) says that

TrX(cl(Z) ∪ f∗α) = m TrY (cl(f(Z)) ∪ α)

for every α ∈ H2 dimZ(Y )(dimZ). We will see later that this means the pushforward of the cohomology
class is the cohomology class of the pushforward.

(W9) Cohomology classes and pullback. Suppose that f : X → Y is a morphism of nonsingular
projective varieties, and let Z ⊂ Y be a closed subvariety. Assume that dim f−1(Z) = dimZ+dimX−dimY .
Write the cycle associated to f−1(Z) as follows [f−1(Z)]k =

∑
niZi where k = dimZ + dimX − dimY , see

note on intersection theory. Axiom (W8) says

f∗cl(Z) =
∑

nicl(Zi).

In other words, the cohomology class of the pullback cycle is the pullback of the cohomology class of the
cycle.

(W10) Cohomology class of a point. Let x = Spec(C) be the one point variety. Then Trx(cl(x)) = 1.

Here is a sequence of exercises to explain additional features of a Weil cohomology theory. You can also just
take these features to be additonal axioms if you like.

Exercise 1. Show that H0(X) is one dimensional and isomorphic to K as a K-algebra. Show that the
element 1 ∈ H0(X) is a unit in H∗(X).

Hint: Poncaré duality shows that it is one dimensional. Choose a generator u ∈ H2 dimX(X)(dimX) with
Tr(u) = 1. Choose θ ∈ H0(X) nonzero. Then θ ∪ u 6= 0 by Poincaré duality. Hence θ ∪ uX = cu for some
nonzero c ∈ K. Show that (1/c)θ is a unit for the algebra H∗(X).

Exercise 2. Show that for any morphism of nonsingular projective varieties f : X → Y the map f∗ :
H0(X)→ H0(Y ) satisfies f∗(1) = 1.

Hint: Use that (id, f) : X → X × Y composed with the projection X × Y → X is the identity morphism on
X and use the Künneth formula.

Exercise 3. Show for the one point vartiety x that cl(x) = 1. (It is probably better to take this as given
and not argue it directly.)

Hint: By normalization we have to show that cl(x) ∪ cl(x) = cl(x). Axiom (W7) says that cl(x × x) =
pr∗1(cl(x)) ∪ pr∗2(cl(x)) in H0(x × x). By axiom (W9) we deduce cl(x × x) = cl(x × x) ∪ cl(x × x). Finally
pullback to x via axiom (W9) by the isomorphism x→ x× x.

Exercise 4. Let X be a nonsingular projective variety. Show that cl(X) = 1.

Hint: Note that cl(X) = cX for some cX ∈ K. Pullback to a point and use the previous exercise.

Given a Weil cohomology theory as above we can define pushforward on cohomology. Namely, if f : X → Y
is a morphism of nonsingular varieties, then we have f∗ : H∗(Y ) → H∗(X) and hence we get a dual map
(f∗)t : Hom(H∗(Y ),K)→ Hom(H∗(X),K). Using Poincaré duality we obtain

f∗ : H∗(X) −→ H∗−2r(Y )(−r)
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with r = dimX − dimY . More precisely, we have the following formal definition.

Definition. Let f : X → Y be a morphism of nonsingular varieties. Set r = dimX − dimY . For
α ∈ Hj(X) we define the pushforward of α the be the unique element f∗(α) of Hj−2r(Y )(−r) characterized
by the property that

TrY (f∗(α) ∪ β) = TrX(α ∪ f∗(β))

for all β ∈ H2 dimX−j(Y )(dimX).

Exercise 5. Projection formula. Show, using the axioms above, that f∗(α ∪ f∗β) = f∗(α) ∪ β. Here
f : X → Y is as above, α ∈ H∗(X) and β ∈ H∗(Y ).

Exercise 6. Covariance. Suppose that f : X → Y and g : Y → Z are morphisms of nonsingular projective
varieties. Show that g∗ ◦ f∗ = (g ◦ f)∗.

Exercise 7. Trace and degree. Let f : X → Y be a morphism of nonsingular projective varieties of the
same dimension d. Define the degree deg(f) of f to be 0 if f is not dominant and the degree of the field
extension [C(X) : C(Y )] if f is dominant. Show that for any α ∈ H2d(Y )(d) we have

TrX(f∗α) = deg(f)TrY (α).

Another way to phrase this is: f∗(1) = deg(f) · 1. Show that, by the projection formula, this implies
f∗f
∗α = deg(f)α for every α ∈ H∗(Y ).

Hint: This is just a reformulation of a special case of (W8).

Exercise 8. Characterization of cohomology classes. Show that cohomology classes are characterized
in the following manner. Let X be a nonsingular projective algebraic variety. Let Z ⊂ X be a closed
subvariety of codimension c. Let ϕ : Z ′ → Z be a nonsingular alteration. (See Publ. Math. I.H.E.S. 83.)
Show that cl(Z) is the unique element in H2c(X)(c) such that

(1/ deg(ϕ))TrZ′(ϕ∗(α)) = TrX(cl(Z) ∪ α)

for all α ∈ H2 dimZ(X)(dimZ). In other words, using the pushforward ϕ∗ we have cl(Z) = (1/ deg(ϕ))ϕ∗(1).

Remark. In case the ground field C is the complex numbers and H∗ is de Rham cohomology and ωZ is a
differential form representing cl(Z) this is the familiar equation

∫
Z
f∗α =

∫
X
ωZ ∧ α for closed forms α.

Remark. This exercise proves (D5) is determined by the other pieces of data (D1)–(D4).

Exercise 9. Show that (1/ deg(ϕ))ϕ∗ϕ
∗(α) = cl(Z) ∪ α using notation as in Exercise 8 above.

Exercise 10. Cohomology class of a point. Prove with the definitions above that for any nonsingular
variety X and any closed point x ∈ X the cohomology class of the point cl(x) ∈ H2 dimX(X)(dimX) is the
unique element such that TrX(cl(x)) = 1.

Exercise 11. Cohomology class of a graph. Let f : X → Y be a morphism of nonsingular projective
varieties. Let Γf ⊂ X × Y denote the graph of f . This is a nonsingular closed subvariety. Its class cl(Γf ) is
an element of

H2 dimY (X × Y )(dimY ) =
⊕

Hj(X)⊗H2 dimY−j(Y )(dimY )

=
⊕

Hj(X)⊗Hom(Hj(Y ),K)

=
⊕

Hom(Hj(Y ), Hj(X))

where we used Künneth and Poincaré duality. Using these identifications, show that cl(Γf ) corresponds to
the element

∑
j f
∗,j , where f∗,j is the element of Hom(Hj(Y ), Hj(X)) corresponding to the restriction of

f∗ to Hj(Y ). So the cohomology class of the graph is the action of f on cohomology.

Hint: Use the characterization in Exercise 8 of the cohomology class of Γf using the obvious isomorphism
ϕ : X → Γf .
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Exercise 12. Cohomology classes and intersection products. Let X be a nonsingular projective
variety. Suppose that V and W are subvarieties of X of codimension c and c′ that intersect properly. Write
V ·W =

∑
ni[Zi] as in the note on intersection theory. Show that

cl(V ) ∪ cl(W ) =
∑

nicl(Zi)

in H2c+2c′(X)(c+ c′).

Hint: Use that ∆∗([V ×W ]) =
∑
ni[Zi] in this case, see note on intersection theory. Use axiom (W9).

Definition. Cohomology classes of cycles. Given a Weil cohomology theory we define the cycle class
map as follows. For any codimension c cycle α =

∑
ni[Zi] on the nonsingular projective variety X we set

cl(α) =
∑
nicl(Zi) in H2c(X)(c). We call cl(α) the cohomology class of the cycle α.

Definition. Algebraic equivalence, τ-equivalence and homological equivalence and numerical
equivalence of cycles. Let X be a nonsingular projective variety. Let T be a nonsingular curve (curve =
variety of dimension 1). Let γ be a (k + 1)-cycle on X × T . Consider a pair of closed points t, t′ ∈ T such
that γ and X × t intersect properly, and γ and X × t′ intersect properly. Any cycle of the form

prX,∗(γ ·X × t− γ ·X × t′)

is said to be algebraically equivalent to zero. Two k-cycles α and β are said to be algebraically equivalent
if their difference is algebraically equivalent to zero. Two k-cycles α and β are said to be τ -equivalent if
N(α − β) is algebraically equivalent to zero for some integer N > 1. Two k-cycles α and β are said to
be homologically equivalent (wrt H∗) if cl(α − β) = 0. Two k-cycles α and β are said to be numerically
equivalent if deg(α ·γ) = deg(β ·γ) for every cycle γ of codimension k that intersects α and β properly. (The
degree of of a zero cycle δ =

∑
nixi is just deg(δ) =

∑
ni.)

Exercise 13. Cohomology classes and τ-equivalence.
(i) Show that homological equivalence is coarser than τ -equivalence.

(ii) Show that homological equivalence is finer than numerical equivalence.

Hint: First reduce to showing α ∼alg 0⇒ α ∼hom 0. Next show that in the definition of algebraic equivalence
we may take T to be a nonsingular projective curve. Finally, express the class of γ using Künneth on X ×T
to conclude.

It is a long-standing-open conjecture (which is among the consequences of the “standard conjectures”) that
homological equivalence agrees with numerical equivalence. As we shall see later this is a fundamental open
problem in the theory of motives. Note that it is not even clear that homological equivalence is independent
of the choice of the Weil cohomology theory!

By the previous exercise we deduce in particular that we get cycle class maps

cl : A∗(X) −→ H2∗(X)(∗)

where A∗(X) are the Chow groups modulo rational equivalence as defined in the note on intersection theory.
Because of the moving lemma modulo rational equivalence we conclude (Exercise 12) that this is a ring map.

Exercise 14. Injectivity of dominant pullback. Suppose that f : X → Y is a dominant morphism of
nonsingular projective varieties. Show that f∗ : H∗(Y )→ H∗(X) is injective.

Hint: By Bertini’s theorem and functoriality we may replace X by a nonsingular subvariety X ′ ⊂ X such
that X ′ → X is generically finite. After this apply the Exercise on trace and degree.

Exercise 15. Euler characteristic. Let ∆ ⊂ X ×X be the diagonal of a nonsingular projective variety
X. Show that

TrX×X(cl(∆) ∪ cl(∆)) =

2 dimX∑
i=0

(−1)i dimK H
i(X) := χ(X).
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Since cl(∆) ∪ cl(∆) = cl(∆ ·∆) by the above and since Tr(cl(point)) = 1 we obtain

χ(X) = deg(∆ ·∆).

Exercise 16. Cohomology of P1. Show that H1(P) = (0).

Hint: Compute the selfintersection of ∆ ⊂ P1 ×P1!

Exercise 17. Cohomology of Pn. Show that the odd cohomology of Pn is zero and that⊕
H2i(Pn)(i) = K[h]/(hn+1)

with Tr(hn) = 1.

Hint: First, note that the result is true for P1. Consider the morphism

P1 × . . .×P1 −→ Pn,

which maps (x1, . . . , xn) to (x1 + . . .+xn, . . . , x1x2 . . . xn). It is the map that identifies Pn with the quotient
(P1 × . . .×P1)/Sn. By the previous results we deduce that

H∗(Pn) ⊂ (H∗(P1 × . . .×P1))Sn .

This implies the vanishing of the odd cohomology groups. Let h ∈ H2(Pn)(1) be the cohomology class of a
hyperplane. Show that the pullback of h to each P1 is the cohomology class of a point. Show this h satisfies
Tr(hn) = 1 and show that the K-algebra generated by h in the cohomology of P1 × . . . ×P1 exhausts the
Sn invariant classes.

Exercise 18. Linear maps and Segre maps.
(i) Show that a linear map Pn → Pm pulls the class h back to h.

(ii) Show that the Segre map
Pn ×Pm −→ Pnm+n+m

pulls h back to 1⊗ h+ h⊗ 1.

Geometrically, this says that the cohomology class of a hyperplane section in Pnm+n+m pulls back to the
sum of the classes of the hyperplane sections of Pn and Pm.

Exercise 19. Chern classes of invertible sheaves. Show that the following procedure gives a well-
defined functorial homomorphism

c1 : Pic(X) −→ H2(X)(1).

Take an invertible sheaf L on X. If L has a nonzero section s, so L ∼= O(D) with D = div(s), then set
c1(L) = cl(D). In general, write L = O(D1 − D2) with Di effective and set c1(L) = cl(D1) − cl(D2)
Functoriality means f∗c1(L) = c1(f∗L).

Exercise 20. Take your favorite smooth projective variety and try to “compute” its Weil cohomology. For
example: Grassmanians, elliptic curves, K3-surfaces, etc.

Exercise 21. Chern classes. Show there is a theory of chern classes that assigns to every locally free
sheaf E of OX -modules an element

c(E) ∈ H2∗(X)

called the total chern class with the following properties
(i) If the rank of E is 1 then c(E) ∈ H∗(X) equals 1 + c1(E), where c1 is as above.

(ii) Chern classes are functorial with respect to pullbacks.
(iii) For any short exact sequence

0→ E1 → E2 → E3 → 0

we have c(E2) = c(E1) ∪ c(E3).
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In fact, these properties characterize a unique such map. It takes some work to show such a map exists, but
it is not too bad. However, a better approach is to define intersection theoretic chern classes c(E) ∈ A∗(X)
and obtain the cohomological from them by means of the cycle class map. It turns out that this process
can also be reversed. In other words, one can define a Weil cohomology theory in terms of data (D1)–(D4)
together with a suitable theory of chern classes and show that this leads to a Weil cohomology theory as
above.

Weil cohomology theories over non-algebraically closed fields

Let k be a nonalgebraically closed field and let k ⊂ C be an algebraic closure. A variety over k is an integral
scheme separated and of finite type over k. Note that, with this definition, if X is a variety over k then the
base change

XC := X ×Spec(k) Spec(C)

is not necessarily a variety over C. Namely, XC may be nonreduced and/or reducible. However, if X is
smooth and projective over k then XC is a finite disjoint union of projective nonsingular varieties over C.
An important example of a smooth projective variety over k to keep in mind is X = Spec(k′) where k ⊂ k′

is a finite separable field extension.

A Weil cohomology theory H∗ for smooth projective varieties over k with coefficients in the characteristic
zero field K is given by the following set of data (notation explained below):

(D1) For every smooth projective algebraic variety X over k a graded commutative algebra H∗(X) over
K. The grading is indexed by integers: H∗(X) = ⊕n∈ZHn(X) is a direct sum decomposition of
K-vector spaces. The multiplication H∗(X) × H∗(X) → H∗(X), (α, β) 7→ α ∪ β is called the
cup product. It is K-bilinear. Graded commutative means that α ∪ β = (−1)deg(α) deg(β)β ∪ α for
homogenous elements.

(D2) For every morphism f : X → Y of smooth projective varieties over k a pullback map f∗ : H∗(Y )→
H∗(X) which is a K-algebra map preserving the grading.

(D3) A 1-dimensional K-vector space K(1), which gives rise to Tate twists as follows. For a K-vector
space V we define V (n) = V ⊗KK(1)⊗n. If n is negative then V (n) = V ⊗KHom(K(1)⊗−n,K). We
will use obvious notation, e.g., given K-vector spaces U , V and W and a linear map U ⊗K V →W
we obtain a linear map U(a)⊗K V (b)→W (a+ b) for an pair a, b ∈ Z.

(D4) For every smooth projective variety X over k a trace map Tr : H2 dimX(X)(dimX)→ K.
(D5) For every smooth projective variety X over k and every closed subvariety Z ⊂ X of codimension c

there is given a cohomology class cl(Z) ∈ H2c(X)(c).
These data should satisfy axioms (W1)–(W10) mentioned above, with the exception that in (W5) we no
longer require the trace map to be an isomorphism. In the Künneth formula, pay attention that X×Y need
no longer be a smooth variety, but it is a disjoint union of smooth varities and its cohomology is defined to
be the direct sum of the cohomologies of its irreducible components. Of course, in axiom (W10) we replace
Spec(C) by Spec(k).

Using these axioms you can then show H∗(Spec(k)) = H0(Spec(k)) = K as an algebra with Tr equal to
the identity. In general, for X = Spec(k′) with k ⊂ k′ finite separable you can show that H∗(Spec(k′)) =
H0(Spec(k′)) is a finite separable extension of K. However, for a given coefficient field K and ground field
k there can exists Weil cohomology theories H∗ and H ′∗ such that H0(Spec(k′)) and H ′0(Spec(k′)) are
nonisomorphic as K-algebras. Here is an example.

Example. Suppose that k = Qp = K. There are two Weil cohomology theories over k with coefficients in
K given by

(i) p-adic Étale cohomology H∗et(X) := H∗et(X ×Speck Spec(C),Qp)
(ii) Algebraic de Rham cohomology H∗dR(X) := H∗(X,Ω∗X/k)

Let X = Spec(Qp[
√
p]), then as algebras we have H0

et(X) = Qp ×Qp and H0
dR(X) = Qp[

√
p].

On the other hand, if the field K is separably closed, then there is no choice for the restriction of the Weil
cohomology theory H∗ to the 0-dimensional smooth k-varieties. And indeed, in this perhaps less interesting
case, you can prove

H∗(X) = H∗C(X ×Spec(k) C)
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as a functor on all smooth k-varieties for some Weil cohomology theory H∗C for nonsingular projective
varieties over C (one that can be built out of H∗ using “descent”).
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