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Preface

These notes arose from a one-semester course in the foundations of projective
geometry, given at Harvard in the fall term of 1966–1967.

We have approached the subject simultaneously from two different directions.
In the purely synthetic treatment, we start from axioms and build the abstract
theory from there. For example, we have included the synthetic proof of the
fundamental theorem for projectivities on a line, using Pappus’ Axiom. On the
other hand we have the real projective plane as a model, and use methods of
Euclidean geometry or analytic geometry to see what is true in that case. These
two approaches are carried along independently, until the first is specialized by
the introduction of more axioms, and the second is generalized by working over
an arbitrary field or division ring, to the point where they coincide in Chapter 7,
with the introduction of coordinates in an abstract projective plane.

Throughout the course there is special emphasis on the various groups of
transformations which arise in projective geometry. Thus the reader is intro-
duced to group theory in a practical context. We do not assume any previous
knowledge of algebra, but do recommend a reading assignment in abstract group
theory, such as [4].

There is a small list of problems at the end of the notes, which should be
taken in regular doses along with the text.

There is also a small bibliography, mentioning various works referred to in
the preparation of these notes. However, I am most indebted to Oscar Zariski,
who taught me the same course eleven years ago.

R. Hartshorne
March 1967
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1

Introduction: Affine Planes
and Projective Planes

Projective geometry is concerned with properties of incidence—properties
which are invariant under stretching, translation, or rotation of the plane. Thus
in the axiomatic development of the theory, the notions of distance and angle
will play no part.

However, one of the most important examples of the theory is the real pro-
jective plan, and there we will use all the techniques available (e.g. those of
Euclidean geometry and analytic geometry) to see what is true and what is not
true.

Affine geometry

Let us start with some of the most elementary facts of ordinary plane geo-
metry, which we will take as axioms for our synthetic development.

Definition. An affine plane is a set, whose elements are called points, and
a set of subsets, called lines, satisfying the following three axioms, A1–A3. We
will use the terminology ”P lies on l” or ”l passes through P” to mean the point
P is an element of the line l.

A1 Given two distinct points P and Q, there is one and only one line containing
both P and Q.

We say that two lines are parallel if they are equal or if they have no points
in common.

A2 Given a line l and a point P not on l, there is one and only one line m
which is parallel to l and which passes through P .

A3 There exist three non-collinear points. (A set of points P1, . . . , Pn is said to
be collinear if there exists a line l containing them all.)

Notation. P 6= Q P is not equal to Q.
P ∈ l P lies on l.
l ∩m the intersection of l and m.
l ‖ m l is parallel to m.
∀ for all.
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∃ there exists.
⇒ implies.
⇔ if and only if.

Example. The ordinary plane, known to us from Euclidean geometry, sat-
isfies the axioms A1–A3, and therefore is an affine plane.

A convenient way of representing this plane is by introducing Cartesian co-
ordinates, as in analytic geometry. Thus a point P is represented as a pair (x, y)
of real numbers. (We write x, y ∈ R .)

y

x

Y

X

P=(x,y)

O

Proposition 1.1 Parallelism is an equivalence relation.

Definition. A relation ∼ is an equivalence relation if it has the following
three properties:

1. Reflexive: a ∼ a
2. Symmetric: a ∼ b⇒ b ∼ a
3. Transitive: a ∼ b and b ∼ c⇒ a ∼ c.

Proof of Proposition. We must check the three properties:

1. Any line is parallel to itself, by definition.
2. l ‖ m⇒ m ‖ l by definition.
3. If l ‖ m, and m ‖ n, we wish to prove l ‖ n.

If l = n, there is nothing to prove. If l 6= n, and there is a point P ∈ l ∩ n, then
l, n are both ‖ m and pass through P , which is impossible by axiom A2. We
conclude that l ∩ n = ∅ (the empty set), and so l ‖ n.

Proposition 1.2 Two distinct lines have at most one point in common.

For if l, m both pass through two distinct points P , Q, then by axiom A1,
l = m.

Example. An affine plane has at least four points. There is an affine plane
with four points.

Indeed, by A3 there are three non-collinear points. Call them P , Q, R. By
A2 there is a line l through P , parallel to the line QR joining Q, and R, which
exists by A1. Similarly, there is a line m ‖ PQ, passing through R.

Now l is not parallel to m (l ∦ m). For if it were, then we would have

PQ ‖ m ‖ l ‖ QR
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and hence PQ ‖ QR by Proposition 1.1. This is impossible, however, because
PQ 6= QR, and both contain Q.

Hence l must meet m in some point S.

m BA = 0.35 cm

Arrows take length 0.35cm

S

AB

RQ

P
Since S lies on m, which is parallel to PQ,
and different from PQ, S does not lie on
PQ, so S 6= P , and S 6= Q. Similarly S 6= R.
Thus S is indeed a fourth point. This proves
the first assertion.

Now consider the lines PR and QS. It
may happen that they meet (for example in
the real projective plane they will (proof?)). On the other hand, it is consistent
with the axioms to assume that they do not meet.

In that case we have an affine plane consisting of four points P , Q, R, S and
six lines PQ, PR, PS, QR, QS, RS, and one can verify easily that the axioms
A1–A3 are satisfied. This is the smallest affine plane.

Definition. A pencil of lines is either a) the set of all lines passing through
some point P , or b) the set of all lines parallel to some line l. In the second case
we speak of a pencil of parallel lines.

Definition. A one-to-one correspondence between two sets X and Y is
a mapping T : X → Y (i.e. a rule T , which associates to each element x of the
set X an element T (x) = y ∈ Y ) such that x1 6= x2 ⇒ Tx1 6= Tx2, and ∀y ∈ Y ,
∃x ∈ X such that T (x) = y.

Ideal points and the projective plane

We will now complete the affine plane by adding certain ”points at infinity”
and thus arrive at the notion of the projective plane.

Let A be an affine plane. For each line l ∈ A, we will denote by [l] the pencil
of lines parallel to l, and we will call [l] an ideal point, or point at infinity,
in the direction of l. We write P ∗ = [l].

We define the completion S of A as follows. The points of S are the points
of A, plus all the ideal points of A. A line in S is either

a) An ordinary line l of A, plus the ideal point P ∗ = [l] of l, or
b) the ”line at infinity”, consisting of all the ideal points of A.

We will see shortly that S is a projective plane, in the sense of the following
definition.

Definition. A projective plane S is a set, whose elements are called
points, and a set of subsets, called lines, satisfying the following four axioms.

P1 Two distinct points P , Q of S lie on one and only one line.

P2 Any two lines meet in at least one point.

P3 There exist three non-collinear points.

P4 Every line contains at least three points.

Proposition 1.3 The completion S of an affine plane A, as described above,
is a projective plane.

Proof. We must verify the four axioms P1–P4 of the definition.
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P1. Let P,Q ∈ S. 1) If P,Q are ordinary points of A, then P and Q lie on
only one line of A. They do not lie on the line at infinity of S, hence they lie on
only one line of S.

2) If P is an ordinary point, and Q = [l] is an ideal point, we can find by A2
a line m such taht P ∈ m and m ‖ l, i.e. m ∈ [l], so that Q lies on the extension
of m to S. This is clearly the only line of S containing P and Q.

3) If P,Q are both ideal points, then they both lie on the line of S containing
them.

P2. Let l,m be lines. 1) If they are both ordinary lines, and l ∦ m, then they
meet in a point of A. If l ‖ m, then the ideal point P ∗ = [l] = [m] lies on both l
and m in S.

2) If l is an ordinary line, and m is the line at infinity, then P ∗ = [l] lies on
both l and m.

P3. Follows immediately from A3. One must check only that if P,Q,R are
non-collinear in A, then they are also non-collinear in S. Indeed, the only new
line is the line at infinity, which contains none of them.

P4. Indeed, by Problem 1, it follows that each line of A contains at least two
points. Hence, in S it has also its point at infinity, so has at least three points.

Examples. 1. By completing the real affine plane of Euclidean geometry,
we obtain the real projective plane.

2. By completing the affine plane of 4 points, we obtain a projective plane
with 7 points.

3. Another example of a projective plane can be constructed as follows: let
R3 be ordinary Euclidean 3-space, and let O be a point of R3. Let L be the set
of lines through O.

We define a point of L to be a line through O in R3. We define a line of L
to be the collection of lines through O which all lie in some plane through O.

Then L satisfies the axioms P1–P4 (left to the reader), and so it is a projective
plane.

Homogeneous coordinates in the real projective
plane

We can give an analytic def-

l

P=(x 1,x 2,x 3)

X 1

X 2

X 3inition of the real projective plane
as follows. We consider the ex-
ample given above of lines in R3.
A point of S is a line through O.
We will represent the point P of
S corresponding to the line l by
choosing any point (x1, x2, x3) on
l different from the point (0, 0, 0).
The numbers x1, x2, x3 are ho-
mogeneous coordinates of P . Any
other point of l has the coordi-
nates (λx1, λx2, λx3), where λ ∈ R, λ 6= 0. Thus S is the colleciton of triples
(x1, x2, x3) of real numbers, not all zero, and two triples (x1, x2, x3) and (x′1, x

′
2, x

′
3)
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represent the same point ⇔ ∃λ ∈ R such that

x′i = λxi for i = 1, 2, 3.

Since the equation of a plane in R3 passing through O is of the form

a1x1 + a2x2 + a3x3 = 0 ai not all 0,

we see that this is also the equation of a line in S, in terms of the homogeneous
coordinates.

Definition. Two projective planes S and S′ are isomorphic if there exists a
one-to-one transformation T : S → S′ which takes collinear points into collinear
points.

Proposition 1.4 The projective plane S defined by homogeneous coordinates
which are real numbers, as above, is isomorphic to the projective plane obtained
by completing the ordinary affine plane of Euclidean geometry.

Proof. On the one hand, we have S, whose points are given by homogeneous
coordinates (x1, x2, x3), xi ∈ R, not all zero. On the other hand, we have the
Euclidean plane A, with Cartesian coordinates x, y. Let us call its completion
S′. Thus the points of S′ are the points (x, y) of A (with x, y ∈ R), plus the
ideal points. Now a pencil of parallel lines is uniuely determined by its slope m,
which may be any real number or∞. Thus the ideal points are described by the
coordinate m.

Now we will define a mapping T : S → S′ which will exhibit the isomorphism
of S and S′. Let (x1, x2, x3) = P be a point of S.

1) If x3 6= 0, we define T (P ) to be the point of A with coordinates x =
x1/x3, y = x2/x3. Note that this is uniquely determined, because if we replace
(x1, x2, x3) by (λx1, λx2, λx3), then x and y do not change. Note also that every
point of A can be obtained in this way. Indeed, the point with coordinates (x, y)
is the image of the point of S with homogeneous coordinates (x, y, 1).

2) If x3 = 0, then we define T (P ) to be the ideal point of S′ with slope
m = x2/x1. Note that this makes sense, because x1 and x2 cannot both be zero.
Again replacing (x1, x2, 0) by (λx1, λx2, 0) does not change m. Also each value
of m occurs: if m 6=∞, we take T (1,m, 0), and if m =∞, we take T (0, 1, 0).

Thus T is a one-to-one mapping of S into S′. We must check that T takes
collinear points into collinear points. A line l in S is given by an equation

a1x1 + a2x2 + a3x3 = 0.

1) Suppose that a1 and a2 are not both zero. Then for those points with
x3 = 0, namely the point given by x1 = λa2, x2 = −λa1, T of this point is the
ideal point given by the slope m = −a1/a2, which indeed is on a line in S′ with
the finite points.

2) If a1 = a2 = 0, l has the equation x3 = 0. Any point of S with x3 = 0
goes to an ideal point of S′, and these form a line.

Remark. From now on, we will not distinguish between the two isomorphic
planes of Proposition 1.4, and will call them (or it) the real projective plane.
It will be the most important example of the axiomatic theory we are going to
develop, and we will often check results of the axiomatic theory in this plane
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by way of example. Similarly, theorems in the real projective plane can give
motivation for results in the axiomatic theory. However, to establish a theorem
in our theory, we must derive it from the axioms and from previous theorems. If
we find that it is true in the real projective plane, that is evidence in favor of
the theorem, but it does not constitute a proof in our set-up.

Note also that if we remove any line from the real projective plane, we obtain
the Euclidean plane.
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2

Desargues’ Theorem

One of the first main results of projective geometry is ”Desargues’ Theorem”,
which states the following:

R

Q

P

O

A'

B'
C'

A

B

C

P5 (Desargues’ Theorem) Let two triangles ABC and A′B′C ′ be such
that the lines joining corresponding vertices, namely AA′, BB′, and CC ′, pass
through a point O. (We say that the two triangles are perspective from O.)
Then the three pairs of corresponding sides intersect in three points

P = AB ·A′B′

R = BC ·B′C ′

Q = AC ·A′C ′,
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which lie in a straight line.

Now it is not quite right for us to call this a ”theorem”, because it cannot
be proved from our axioms P1–P4. However, we will show that it is true in the
real projective plane (and, more generally, in any projective plane which can
be embedded in a three-dimensional projective space). Then we will take this
statement as a further axiom, P5, of our abstract projective geometry. We will
show by an example that P5 is not a consequence of P1–P4: namely, we will
exhibit a geometry which satisfies P1–P4 but not P5.

Definition. A projective 3-space is a set whose elements are called points,
together with certain subsets called lines and certain other subsets called planes,
which satisfies the following axioms:

S1 Two distinct points P,Q lie on one and only one line l.

S2 Three non-collinear points P,Q,R lie on a unique plane.

S3 A line meets a plane in at least one point.

S4 Two planes have at least a line in common.

S5 There exist four non-coplanar points, no three of which are collinear.

S6 Every line has at least three points.

Example. By a process analogous to that of completing an affine plane to a
projective plane, the ordinary Euclidean three-space can be completed to a pro-
jective three-space, which we call real projective three-space. Alternatively,
this same real projective three-space can be described by homogeneous coordi-
nates, as follows. A point is described by a quadruple (x1, x2, x3, x4) of real num-
bers, not all zero, where we agree that (x1, x2, x3, x4) and (λx1, λx2, λx3, λx4)
represent the same point, for any λ ∈ R, λ 6= 0. A plane is defined by a linear
equation

4∑
i=1

aixi = 0 ai ∈ R,

and a line is defined as the intersection of two distinct planes. The details of
verification of the axioms are left to the reader.

Now the remarkable fact is that, although P5 is not a consequence of P1–
P4 in the projective plane, it is a consequence of the seemingly equally simple
axioms for projective three-space.

Theorem 2.1 Desargues’ Theorem is true in projective three-space, where we
do not necessarily assume that all the points lie in a plane. In particular, Desar-
gues’ Theorem is true for any plane (which by Problem 8 is a projective plane)
which lies in a projective three-space.

Proof. Case 1. Let us assume that the plane Σ containing the points A,B,C is
different from the plane Σ′ containing the points A′, B′, C ′. The lines AB and
A′B′ both lie in the plane determined by O,A,B, and so they meet in a point
P . Similarly we see that AC and A′C ′ meet, and that BC and B′C ′ meet. Now
the points P,Q,R lie in the plane Σ, and also in the plane Σ′. Hence they lie in
the intersection Σ ∩ Σ′, which is a line (Problem 7c).

Case 2. Suppose that Σ = Σ′, so that the whole configuration lies in one
plane (call it Σ). Pick a point X which does not lie in Σ (this exists by axiom
S5). Draw lines joining X to all the points in the diagram. Choose D on XB,
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different from B, and let D′ = OD · XB′. (Why do they meet?) Then the
triangles ADC and A′D′C ′ are perspective from O, and do not lie in the same
plane. We conclude from Case 1 that the points

P ′ = AD ·A′D′

Q = AC ·A′C ′

R′ = DC ·D′C ′

lie in a line. But these points are projected for X into P,Q,R, on Σ, hence
P,Q,R are collinear.

Remark. The configuration of Desargues’ Theorem has a lot of symmetry. It
consists of 10 points and 10 lines. Each point lies on three lines, and each line
contains 3 points. Thus it may be given the symbol (103). Also, the role of the
various points is not fixed. Any one of the ten points can be taken as the center
of perspectivity of two triangles. In fact, the group of automorphisms of the
configuration is Σ5, the symmetric group on 5 letters. (Consider the action of
any automorphism on the space version of the configuration. It must permute
the five planes OAB,OBC,OAC,ABC,A′B′C ′.) See Problems 12, 13, 14 for
details.

We will now give an example of a non-Desarguesian projective plane, that
is, a plane satisfying P1, P2, P3, P4, but not P5. This will show that P5 is not
a logical consequence of P1–P4.

Definition. A configuration is a set, whose elements are called ”points”,
and a collection of subsets, called ”lines”, which satisfies the following axiom:

C1 Two distinct points lie on at most one line.

It follows that two distinct lines have at most one point in common.
Examples. Any affine plane or projective plane is a configuration. Any set

of ”points” and no lines is a configuration. The collection of 10 points and 10
lines which occurs in Desargues’ Theorem is a configuration.

Let π0 be a configuration. We will now define the free projective plane
generated by π0.

Let π1 be the new configuration defined as follows: The points of π1 are the
points of π0. The lines of π1 are the lines of π0, plus, for each pair of points
P1, P2 ∈ π0 not on a line, a new line {P1, P2}. Then π1 has the property

a) Every two distinct points lie on a line.

Construct π2 from π1 as follows. The points of π2 are the points of π1, plus,
for each pair of lines l1, l2 of π1 which do not meet, a new point l1 · l2. The lines
of π2 are the lines of π1, extended by their new points, e.g. the point l1 · l2 lies
on the extensions of the lines l1, l2. Then π2 has the property

b) Every pair of distinct lines meets in a point,

but π2 no longer has the property a).
We proceed in the same fashion. For n even, we construct πn+1 by adding

new lines, and for n odd, we construct πn+1 by adding new points.
Let Π =

⋃∞
n=0 πn, and define a line in Π to be a subset of L ⊆ Π such that

for all large enough n, L ∩ πn is a line of πn.
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Proposition 2.2 If π0 contains at least four points, no three of which lie on a
line, then Π is a projective plane.

Proof. Note that for n even, πn satisfies b), and for n odd πn satisfies a). Hence
Π satisfies both a) and b), i.e. it satisfies P1 and P2. If P,Q,R are three non-
collinear points of π0, then they are also non-collinear in Π. Thus P3 is also
satsified. Axiom P4 is left to the reader: show each line of Π has at least three
points.

Definition. A confined configuration is a configuration in which each
point is on at least three lines, and each line contains at least three points.

Example. The configuration of Desargues’ Theorem is confined.

Proposition 2.3 Any finite, confined configuration of Π is already contained
in π0.

Proof. For a point P ∈ Π we define its level as the smallest n ≥ 0 such that
P ∈ πn. For a line L ⊆ Π, we define its level to be the smallest n ≥ 0 such that
L ∩ πn is a line.

Now let Σ be a finite confined configuration in Π, and let n be the maximum
level of a point or line in Σ. Suppose it is a line l ⊆ Σ which has level n. (A
similar argument holds if a point has maximum level.) Then l∩πn is a line, and
l ∩ πn−1 is not a line. If n = 0, we are done, Σ ⊆ π0. Suppose n > 0. Then l
occurs as the line joining two points of πn−1 which did not lie on a line. But all
points of Σ have level ≤ n, so they are in πn, so l can contain at most two of
them, which is a contradiction.

Example (A non-Desarguesian projective plane). Let π0 be four points
and no lines. Let Π be the free projective plane generated by π0. Note, as a Corol-
lary of the previous proposition, that Π is infinite, and so every line contains
infinitely many points. Thus it is possible to choose O,A,B,C, no three col-
linear, A′ on OA, B′ on OB, C ′ on OC, such that they form 7 distinct points
and A′, B′, C ′ are not collinear. Then construct

P = AB ·A′B′

Q = AC ·A′C ′

R = BC ·B′C ′.

Check that all 10 points are distinct. If Desargues’ Theorem is true in Π,
then P,Q,R lie on a line, hence these 10 points and 10 lines form a confined
configuration, which must lie in π0, since π0 has only four points.
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3

Digression on Groups and
Automorphisms

Definition. A group is a set G, together with a binary operation, called
multiplication, written ab, such that

G1 (Associativity) For all a, b, c ∈ G, (ab)c = a(bc).

G2 There exists an element 1 ∈ G such that a · 1 = 1 · a = a for all a.

G3 For each a ∈ G, there exists an element a−1 ∈ G such that aa−1 = a−1a =
1.

The element 1 is called the identity, or unit, element. The element a−1 is
called the inverse of a.

Note that in general the product ab may be different from ba. However, we
say that the group G is abelian, or commutative, if

G4 For all a, b ∈ G, ab = ba.

Examples. 1. Let S be any set, and let G be the set of permutations of
the set S. A permutation is a 1–1 mapping of a set S onto S. If g1, g2 ∈ G
are two permutations, we define g1g2 ∈ G to be the permutation obtained by
performing first g2, then g1 (i.e. if x ∈ S,

(g1g2)(x) = g1(g2(x)).)

2. Let C be a configuration, and let G be the set of automorphisms of C, i.e.
the set of those permutations of C which send lines into lines. Again we define
the product g1g2 of two automorphisms g1, g2, by performing g2 first, and then
g1. This group is written AutC.

Definition. A homomorphism ϕ : G1 → G2 of one group to another is a
mapping of the set G1 to the set G2 such that

ϕ(ab) = ϕ(a)ϕ(b)

for each a, b ∈ G1.
An isomorphism of one group with another is a homomorphism which is

1–1 and onto.
Definition. Let G be a group. A subgroup of G is a non-empty subset

H ⊆ G, such that for any a, b ∈ H, ab ∈ H and a−1 ∈ H.
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Note that this condition implies 1 ∈ H.
Example. Let G = PermS, the group of permutations of a set S, let x ∈ S,

and let H = {g ∈ G | g(x) = x}. Then H is a subgroup of G.
Definition. Let G be a group, and H a subgroup of G. A left coset of H,

generated by g ∈ G, is
gH = {gh | h ∈ H}

.

Proposition 3.1 Let H be a subgroup of G, and let gH be a left coset. Then
there is a 1–1 correspondence between the elements of H and the elements of
gH. (In particular, if H is finite, they have the same number of elements.)

Proof. Map H → gH by h 7→ gh. By definition of gH, this map is onto. So
suppose h1, h2 ∈ H have the same image. Then

gh1 = gh2.

Multiplying on the left by g−1, we deduce h1 = h2.

Corollary 3.2 Let G be a finite group, and let H be a subgroup. Then

#(G) = #(H) · (number of left cosets of H).

Proof. Indeed, all the left cosets of H have the same number of elements as H,
by the proposition. If g ∈ G, then g ∈ gH, since g = g · 1, and 1 ∈ H. Thus G
is the union of the left cosets of H. Finally, note that two cosets gH and g′H
are either equal or disjoint. Indeed, suppose gH and g′H have an element in
common, namely x.

x = gh = g′h′.

Multiplying on the right by h−1, we have g = g′h′h−1 ∈ g′H. Hence for any
y ∈ gH, y = gh′′ = g′h′h−1h′′ ∈ g′H, so gH ⊆ g′H. By symmetry we have the
opposite inclusion, so they are equal.

The result follows immediately.

. . . grHg2Hg1HH

Example. Let S be a finite set, and let G be a subgroup of the group PermS
of permutations of S. Let x ∈ S, and let H be the subgroup of G leaving x fixed:

H = {g ∈ G | g(x) = x.

Let g ∈ G, and suppose g(x) = y. Then for any g′ ∈ gH, g′(x) = y. Indeed,
g′ = gh for some h ∈ H, so

g′(x) = gh(x) = g(x) = y.
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Conversely, let g′′ ∈ G be some element such that g′′(x) = y. Then

g−1g′′(x) = g−1(y) = x,

so
g−1g′′ ∈ H,

and
g′′ = g · g−1g′′ ∈ gH.

Thus
gH = {g′ ∈ G | g′(x) = y}.

It follows that the number of left cosets of H is equal to the number of points
in the orbit of x under G. The orbit of x is the set of points y ∈ S such that
y = g(x) for some g ∈ G. So we conclude

#(G) = #(H) ·#(orbitx).

Definition. A group G ⊆ PermS of permutations of a set S is transitive
if the orbit of some element is the whole of S. It follows that the orbit of every
element is all of S.

So in the above example, if G is transitive,

#(G) = #(H) ·#(S).

Corollary 3.3 Let S be a set with n elements, and let G = PermS. Then
#(G) = n!.

Proof. By induction on n. If n = 1, there is only the identity permutation, so
#(G) = 1. So let S have n+ 1 elements, and let x ∈ S. Let H be the subgroup
of permutations leaving x fixed. G is transitive, since one can permute x with
any other element of S. Hence

#(G) = #(H) ·#(S) = (n+ 1) ·#(H).

But H is just the group of permutations of the remaining n elements of S, so
#(H) = n! by the induction hypothesis. Hence

#(G) = (n+ 1)!.

Later in the course, we will have much to do with the group of automorphisms
of a projective plane, and certain of its subgroups. In particular, we will show
that the axiom P5 (Desargues’ Theorem) is equivalent to the statement that
the group of automorphisms is ”large enough”, in a sense which will be made
precise later. For the moment, we will content ourselves with calculating the
automorphisms of a few simple configurations.
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Automorphisms of the projective plane of seven
points

Call the plane π. Name its seven points A,B,C,D, P,Q,R (this suggests
how it could be obtained by completing the affine plane of four points). Then
its lines are as shown.

Proposition 3.4 G = Autπ is transitive.

Proof. We will write down some elements of G explicitly.

a = (AC)(BD)

for example. This notation means ”interchange A and C, and interchange B
and D”. More generally a symbol

(A1, A2, . . . , Ar)

means ”send A1 to A2, A2 to A3, . . . , Ar−1 to Ar, and Ar to A1”. Multiplication
of two such symbols is defined by performing the one on the right first, then the
next on the right, and so on.

b = (AB)(CD).

Thus we see already that A can be sent to B or C. We calculate

ab = (AC)(BD)(AB)(CD) = (AD)(BC)
ba = (AB)(CD)(AC)(BD) = (AD)(BC) = ab.

Thus we can also send A to D.
Another automorphism is

c = (BQ)(DR).

Since the orbit of A already contains B,C,D, we see that it also contains Q and
R. Finally,

d = (PA)(BQ)

shows that the orbit of A is all of π, so G is transitive.

Proposition 3.5 Let H ⊆ G be the subgroup of automorphisms of π leaving
P fixed. Then H is transitive on the set π − {P}.

Proof. Note that a, b, c above are all in H, so that the orbit of A under H is
{A,B,C,D,Q,R} = π − {P}.

Theorem 3.6 Given two sets A1, A2, A3 and A′1, A
′
2, A

′
3 of three non-collinear

points of π, there is one and only one automorphism of π which sends A1 to A′1,
A2 to A′2, and A3 to A′3. The number of elements in G = Autπ is 7 · 6 · 4 = 168.

Proof. We carry the above analysis one step farther as follows. Let K ⊆ H
be the subgroup leaving Q fixed. Therefore since elements of K leave P and
Q fixed, they also leave R fixed. K is transitive on the set {A,B,C,D}, since
a, b ∈ K. On the other hand, an element of K is uniquely determined by where
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it sends the point A, as one sees easily. Hence K is just the group consisting of
the four elements 1, a, b, ab. We conclude from the previous discussion that

#(G) = #(H) ·#(π)
#(H) = #(K) ·#(π − {P}),

whence
#(G) = 7 · 6 · 4 = 168.

The first statement of the theorem follows from the previous statements, but
it is a little tricky. We do it in three steps.

1) Since G is transitive, we can find g ∈ G such that

g(A1) = A′1.

2) Again since G is transitive, we can find g1 ∈ G such that

g1(P ) = A1.

Then
gg1(P ) = A′1.

We have supposed that A1 6= A2, and A′1 6= A′2. Thus

g−1
1 (A2) and (gg1)−1(A′2)

are distinct from P . But H is transitive on π − {P}, so there is an element
h ∈ H such that

h(g−1
1 (A2)) = (gg1)−1(A′2).

Once checks then that
g′ = gg1hg

−1
1

has the property

g′(A1) = A′1

g′(A2) = A′2.

3) Thus part 2) shows that any two distinct points can be sent into any
two distinct points. Changing the notation, we write g instead of g′, so we may
assume

g(A1) = A′1

g(A2) = A′2.

Choose g1 ∈ G such that

g1(P ) = A1

g1(Q) = A2,

by part 2). Then since A1, A2, A3 are non-collinear, and A′1, A
′
2, A

′
3 are non-

collinear, we deduce that P , Q, and each of the points

g−1
1 (A3), (gg1)−1(A′3)
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are non-collinear. In other words, these last two points are in the set {A,B,C,D}.
Thus there is an element k ∈ K such that

k(g−1
1 (A3)) = (gg1)−1(A′3).

One checks easily that
g′ = gg1kg

−1
1

is the required element of G:

g′(A1) = A′1

g′(A2) = A′2

g′(A3) = A′3.

For the uniqueness of this element, let us count the number of triples of non-
collinear points in π. The first can be chosen in 7 ways, the second in 6 ways,
and the last in 4 ways. Thus there are 168 such triples. Since the order of G is
168, there must be exactly one transformation of G sending a given triple into
another such triple.

Automorphisms of the affine plane of 9 points

IH

F
E

G

D

C

A B

A similar analysis of the affine plane of 9 points shows that the group of
automorphisms has order 9 · 8 · 6 = 432, and any three non-collinear points can
be taken into any three non-collinear points by a unique element of the group.
Note. In proof of Theorem 3.6, it would be sufficient to show that there is
a unique automorphism sending P,Q,A into a given triple A1, A2, A3 of non-
collinear points. For then one can do this for each of the triples A1, A2, A3, and
A′1, A

′
2, A

′
3, and compose the inverse of the first automorphism with the second.

The proof thus becomes much simpler.
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Automorphisms of the real projective plane

Here we study another important example of the automorphisms of a pro-
jective plane. Recall that the real projective plane is defined as follows: A point
is given by homogeneous coordinates (x1, x2, x3). That is, a triple of real num-
bers, not all zero, and with the convention that (x1, x2, x3) and (λx1, λx2, λx3)
represent the same point, for any λ 6= 0, λ ∈ R. A line is the set of points which
satisfy an equation of the form

a1x1 + a2x2 + a3x3 = 0,

ai ∈ R, not all zero.

Brief review of matrices

An n×n matrix of real numbers is a collection of n2 real numbers, indexed
by two indices, say i, j, each of which may take values from 1 to n. Hence
A = {a11, a12, . . . , a21, a22, . . . , an1, an2, . . . , ann}. The matrix is usually written
in a square: 

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 .

Here the first subscript determines the row, and the second subscript determines
the column.

The product of two matrices A = (aij) and B = (bij) (both of order n) is
defined to be

A ·B = C

where C = (cij) and

cij =
n∑

k=1

aikbkj .

(
ai1 · · · ain

)
·

 b1j

...
bnj

 =
(
cij

)
cij = ai1b1j + ai2b2j + · · ·+ ainbnj .

There is also a function determinant, from the set of n× n matrices to R,
which is characterized by the following two properties:

D1 If A,B are two matrices,

det(A ·B) = detA · detB.

D2 For each a ∈ R, let

Note incidentally that the identity matrix I = C(1) behaves as a multiplica-
tive identity. One can prove the following facts:

1. (A · B) · C = A · (B · C), i.e. multiplication of matrices is associative. (In
general it is not commutative.)
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2. A matrix A has a multiplicative inverse A−1 if and only if detA 6= 0.

Hence the set of n × n matrices A with detA 6= 0 forms a group under multi-
plication, denoted by GL(n,R).

3. Let A = (aij) be a matrix, and consider the set of simultaneous linear
equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + ·+ annxn = bn.

If detA 6= 0, then this set of equations has a solution. Conversely, if this
set of equations has a solution for all possible choices of b1, . . . , bn, then
detA 6= 0.

For proofs of these statements, refer to any book on algebra. We will take
them for granted, and use them without comment in the rest of the course. (One
can prove easily that 3 follows from 1 and 2. Because to say x1, . . . , xn are a
solution of that system of linear equations is the same as saying that

A ·


x1

x2

...
xn

 =


b1
b2
...
bn

 .)

Now let A = (aij) be a 3 × 3 matrix of real numbers, and let π be the real
projective plane, with homogeneous coordinates x1, x2, x3. We define a trans-
formation TA of π as follows: The point (x1, x2, x3) goes into the point

TA(x1, x2, x3) = (x′1, x
′
2, x

′
3)

where

x′1 = a11x1 + a12x2 + a13x3

x′2 = a21x1 + a22x2 + a23x3

x′3 = a31x1 + a32x2 + a33x3.

Proposition 3.7 If A is a 3 × 3 matrix of real numbers with detA 6= 0, then
TA is an automorphism of the real projective plane π.

Proof. We must observe several things.
1) If we replace (x1, x2, x3) by (λx1, λx2, λx3), then (x′1, x

′
2, x

′
3) is replaced

by (λx′1, λx
′
2, λx

′
3), so the mapping is well-defined. We must also check that

x′1, x
′
2, x

′
3 are not all zero. Indeed, in a matrix solution,

A ·

 x1

x2

x3

 =

 x′1
x′2
x′3

 .)
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where

 x1

x2

x3

 stands for the matrix

 x1 0 0
x2 0 0
x3 0 0

 .

But since detA 6= 0, A has an inverse A−1, and so multiplying on the left by
A−1, we have

(x) = A−1(x′)

(where (x) stands for the column vector

 x1

x2

x3

, etc.). So if the x′i are all zero,

the xi are also all zero, which is impossible. Thus TA is a well-defined map of π
into π.

2) The expression (x) = A−1(x′) shows that TA−1 is the inverse mapping to
TA, hence TA must be one-to-one and surjective.

3) Finally, we must check that TA takes lines into lines. Indeed, let

c1x1 + c2x2 + c3x3 = 0

be the equation of a line. We must find a new line, such that whenever (x1, x2, x3)
satisfies the equation (∗), its image (x′1, x

′
2, x

′
3) lies on the new line. Let A−1 =

(bij). Then we have
xi =

∑
j

bijxj

for each i. Thus if (x1, x2, x3) satisfies (∗), then (x′1, x
′
2, x

′
3) will satisfy the

equation
c1(

∑
j

b1jx
′
j) + c2(

∑
j

b2jx
′
j) + c3(

∑
j

b3jx
′
j) = 0

which is
(
∑

i

cibi1)x′1 + (
∑

i

cibi2)x′2 + (
∑

i

cibi3)x′3 = 0.

This is the equation of the required line. We have only to check that the three
coefficients

c′j =
∑

i

cibij ,

for = 1, 2, 3, are not all zero. But this argument is analogous to the argument
in 1) above: The equations (∗∗) represent the fact that

(c1, c2, c3) ·A−1 = (c′1, c
′
2, c

′
3)

where

(c1, c2, c3) =

 c1 c2 c3
0 0 0
0 0 0

 .

Multiplying by A on the right shows that the ci can be expressed in terms of
the c′i. Hence if the c′i were all zero, the ci would all be zero, which is impossible
since (∗) is a line.

Hence TA is an automorphism of π.
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Proposition 3.8 Let A and A′ be two 3 × 3 matrices with detA 6= 0 and
detA′ 6= 0. Then the automorphisms TA and TA′ of π are equal if and only if
there is a real number λ 6= 0 such that A′ = λA, i.e. a′ij = λaij for all i, j.

Proof. Clearly, if there is such a λ, TA = TA′ , because the x′i will just be changed
by λ.

Conversely, suppose TA = TA′ . We will then study the action of TA and TA′

on four specific points of π, namely (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1). Let
us call these points P1, P2, P3, and Q, respectively. Now

TA(P1) = A ·

 1
0
0

 =

 a11

a21

a31


and

TA′(P1) = A′ ·

 1
0
0

 =

 a′11
a′21
a′31

 .

Now these two sets of coordinates are supposed to represent the same points of
π, so there must exist a λ ∈ R, λ 6= 0, such that

a′11 = λ1a11

a′21 = λ1a21

a′31 = λ1a31.

Similarly, applying TA and TA′ to the points P2 and P3, we find the numbers
λ2 ∈ R and λ3 ∈ R, both 6= 0, such that

a′12 = λ2a12 a′13 = λ3a13

a′22 = λ2a22 a′23 = λ3a23

a′32 = λ2a32 a′33 = λ3a33.

Now apply TA to the point Q. We find

A ·

 1
1
1

 =

 a11 + a12 + a13

a21 + a22 + a23

a31 + a32 + a33

 .

Similarly for TA′ . Again, TA(Q) = TA′(Q), so there is a real number µ 6= 0 such
that TA′(Q) = µ · TA(Q). Now, using all our equations, we find

a11(λ1 − µ) + a12(λ2 − µ) + a13(λ3 − µ) = 0
a21(λ1 − µ) + a22(λ2 − µ) + a23(λ3 − µ) = 0
a31(λ1 − µ) + a32(λ2 − µ) + a33(λ3 − µ) = 0.

In other words, the point (λ1 − µ, λ2 − µ, λ3 − µ) is sent into (0, 0, 0). Hence
λ1 = λ2 = λ3 = µ. (We saw this before: a triple of numbers, not all zero, cannot
be sent into (0, 0, 0) by A. Hence λ1 − µ = 0, λ2 − µ = 0, and λ3 − µ = 0.)

So A′ = λA, where λ = λ1 = λ2 = λ3 = µ, and we are done.
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Definition. The projective general linear group of order 2 over R,
written PGL(2,R), is the group of all automorphisms of π of the form TA for
some 3× 3 matrix A with detA 6= 0.

Hence an element of PGL(2,R) is represented by a 3 × 3 matrix A = (aij)
of real numbers, with detA 6= 0, and two matrices A,A′ represent the same
element of the group if and only if there is a real number λ 6= 0 such that
A′ = λA.

Theorem 3.9 Let A,B,C,D and A′, B′, C ′, D′ be two sets of four points, no
three of which are collinear, in the real projective plane π. Then there is a unique
automorphism T ∈ PGL(2,R) such that T (A) = A′, T (B) = B′, T (C) = C ′,
and T (D) = D′.

Proof. Let P1, P2, P3, Q be the four points (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1)
considered above. Then it will be sufficient to prove the theorem in the case
A,B,C,D = P1, P2, P3, Q. Indeed, suppose we can send the quadruple P1, P2, P3, Q
into any other. Let ϕ send it to A,B,C,D, and let ψ send it to A′, B′, C ′, D′.
Then ψϕ−1 sends A,B,C,D into A′, B′, C ′, D′.

LetA,B,C,D have homogeneous coordinates (a1, a2, a3), (b1, b2, b3), (c1, c2, c3),
and (d1, d2, d3), respectively. Then we must find a matrix (tij), with determinant
6= 0, and real numbers λ, µ, ν, ρ such that

T (P1) = A, i.e. λai = ti1,
T (P2) = B, i.e. µbi = ti2,
T (P3) = C, i.e. νci = ti3,
T (P4) = D, i.e. ρdi = ti1 + ti2 + ti3, i = 1, 2, 3.

Clearly it will be sufficient to take ρ = 1, and find λ, µ, ν 6= 0 such that

λa1 + µb1 + νc1 = d1

λa2 + µb2 + νc2 = d2

λa3 + µb3 + νc3 = d3.

Lemma 3.10 Let A, B, C be three points in π, with coordinates (a1, b1, c1),
(a2, b2, c2), (a3, b3, c3), respectively. Then A,B,C are collinear if and only if

det

 a1 a2 a3

b1 b2 b3
c1 c2 c3

 = 0.

Proof of lemma. The points A,B,C are collinear if and only if there is a line,
with equation say

h1x1 + h2x2 + h3x3 = 0,

hi not all zero, such that this equation is satisfied by the coordinates of A,B,C.
We have seen that the determinant of a matrix (aij) is 6= 0 if and only if for
each set of numbers (bi), the corresponding set of linear equations (#3 on p.
19) has a unique solution. It follows that det(aij) = 0 if and only if for bi = 0,
the set of equations has a non-trivial solution, i.e. not all zero. Now our hi are
solutions of such a set of equations. Therefore they exist ⇔ the determinant
above is zero.
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Proof of theorem, continued. In our case, A,B,C are non-collinear, hence by
the lemma,

det

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 = 0 (see note below).

Hence we can solve the equations above for λ, µ, ν. Now I claim λ, µ, ν are all
6= 0. Indeed, suppose, say, λ = 0. Then our equations say that

µb1 + νc1 − 1d1 = 0
µb2 + νc2 − 1d2 = 0
µb3 + νc3 − 1d3 = 0,

and hence

det

 b1 c1 c1
b2 c2 d2

b3 c3 d3

 = 0,

which is impossible by the lemma, since B,C,D are not collinear.
Note. We must use the fact that the determinant of the transpose of a matrix
is equal to the determinant of the matrix itself. We define the transpose of a
matrix A = (aij) to be AT = (aji). It is obtained by reflecting the entries of the
matrix in the main diagonal. One can see easily that

(A ·B)T = BT ·AT .

Now consider the function from the set of matrices to the real numbers given
by

A 7→ det(AT ).

Then this function satisfies the two conditions D1, D2 on p. 17, therefore it is
the same as the determinant function. Hence

det(A) = det(AT ).

So we have found λ, µ, ν all 6= 0 which satisfy the equations above. We define
tij by the equations

λai = ti1

µbi = ti2

νci = ti3.

Then (tij) is a matrix, with determinant 6= 0 (again by the lemma, since A, B,
C are non-collinear!), so T , given by the matrix (tij), is an element of PGL(2,R)
which sends P1, P2, P3, Q to A, B, C, D.

For the uniqueness, suppose that T and T ′ are two elements of PGL(2,R)
which accomplish our task. Then by the proof of Proposition 3.8, the matrices
(tij) and (t′ij) defining T , T ′ differ by a scalar multiple, and hence give the same
element of PGL(2,R).

Our next main theorem will be that PGL(2,R), which we know to be a
subgroup of Autπ, the group of automorphisms of the real projective plane, is
actually equal to it:

PGL(2,R) = Autπ.
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The statement and proof of this theorem will follow after some preliminary
results.

Definition. A field is a set F , together with two operations +, ·, which
have the following properties.

F1 a+ b = b+ a ∀a, b ∈ F .

F2 (a+ b) + c = a+ (b+ c) ∀a, b, c ∈ F .

F3 ∃0 ∈ F such that a+ 0 = 0 + a = a ∀a ∈ F .

F4 ∀a ∈ F,∃ − a ∈ F such that a+ (−a) = 0.

In other words, F is an abelian group under addition.

F5 ab = ba ∀a, b ∈ F .

F6 a(bc) = (ab)c ∀a, b, c ∈ F .

F7 ∃1 ∈ F such that a · 1 = a ∀a ∈ F .

F8 ∀a 6= 0, a ∈ F,∃a−1 such that a · a−1 = 1.

F9 a(b+ c) = ab+ ac ∀a, b, c ∈ F .

So the non-zero elements form a group under multiplication. (It is normal to
assume also 0 6= 1.)

Definition. If F is a field, an automorphism of F is a 1–1 mapping σ of
F onto F , written a 7→ aσ, such that

(a+ b)σ = aσ + bσ

(ab)σ = aσbσ

for all a, b ∈ F . (It follows that 0σ = 0, 1σ = 1.)

Proposition 3.11 Let ϕ be any automorphism of the real projective plane
which leaves fixed the points P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (0, 0, 1), and
Q = (1, 1, 1). (Note we do not assume that ϕ can be given by a matrix.) Then
there is an automorphism σ of the field of real numbers, such that

ϕ(x1, x2, x3) = (xσ
1 , x

σ
2 , x

σ
3 )

for each point (x1, x2, x3) of π.

Q=(1,1,1)

P 3=(0,0,1)P 2=(0,1,0)

P 1=(1,0,0)
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Proof. We note that ϕ must leave the line x3 = 0 fixed since it contains P2 and
P1. We will take this line as the line at infinity, and consider the affine plane
x3 6= 0. A = π − {x3 = 0}.

Our automorphism ϕ then sends A into itself, and so is an automorphism of
the affine plane. We will use affine coordinates

x = x1/x3

y = x2/x3

Since ϕ leaves fixed P1 and P2, it will send horzontal lines into horizontal lines,
vertical lines into vertical lines. Besides that, it leaves fixed P3 = (0, 0) and
Q = (1, 1), hence it leaves fixed the X-axis and the Y -axis.

Let (a, 0) be a point on the X-axis. Then ϕ(a, 0) is also on the X-axis, so
it can be written as (aσ, 0) for a suitable element aσ ∈ R. Thus we define a
mapping

σ : R→ R,

and we see immediately that 0σ = 0 and 1σ = 1.
The line x = y is sent into itself, because P3 and Q are fixed. Vertical lines

go into vertical lines. Hence the point

(a, a) = (line x = y) ∩ (line x = a)

is sent into
(aσ, aσ) = (line x = y) ∩ (line x = aσ).

Similarly, horizontal lines go into horizontal lines, and the Y -axis goes into itself,
so we deduce that

ϕ(0, a) = (0, aσ).

Finally, if (a, b) is any point, we deduce by drawing the lines x = a and y = b
that

ϕ(a, b) = (aσ, bσ).

Hence the action of ϕ on the affine plane is completely expressed by the
mapping σ : R→ R which we have constructed.

By the way, since ϕ is an automorphism of A, it must send the X-axis onto
itself in a 1–1 manner, so σ is one-to-one and onto.

Now we will show that σ is an automorphism of R. Let a, b ∈ R, and consider
the points (a, 0), (b, 0) on the X-axis. We can construct the point (a + b, 0)
geometrically as follows:

1. Draw the line y = 1.

2. Draw x = a.

3. Get (a, 1) by intersection of 1, 2.

4. Draw the line joining (0, 1) and (b, 0).

5. Draw the line parallel to 4 through (a, 1).

6. Intersect 5 with the X-axis.
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Now ϕ sends the line y = 1 into itself, it sends x = a into x = aσ, and it sends
(b, 0) into (bσ, 0). It preserves joins and intersections, and parallelism. Hence ϕ
also sends (a+ b, 0) into (aσ + bσ, 0). Therefore

(a+ b)σ = aσ + bσ.

By another construction, we can obtain the point (ab, 0) geometrically from
the points (a, 0) and (b, 0).

1. Draw x = a.

2. Intersect with x = y to obtain (a, a).

3. Join (1, 1) to (b, 0).

4. Draw a line parallel to 3 through (a, a).

5. Intersect 4 with the X-axis.

Since ϕ leaves (1, 1) fixed, we see similarly by this construction that

(ab)σ = aσbσ.

Hence σ is an automorphism of the field of real numbers.
Now we return to the projective plane π, and study the effect of ϕ on a point

with homogeneous coordinates (x1, x2, x3).
Case 1. If x3 = 0, we write this point as the intersection of the line x3 = 0

(which is left fixed by ϕ) and the line joining (0, 0, 1) with (x1, x2, 1). Now
this latter point is in A, and has affine coordinates (x1, x2). Hence ϕ of it
is (x1

σ, x2
σ), whose homogeneous coordinates are (x1

σ, x2
σ, 1). Therefore, by

intersecting the transformed lines, we find

ϕ(x1, x2, 0) = (x1
σ, x2

σ, 0).

Case 2. x3 6= 0. Then the point (x1, x2, x3) is in A, and has affine coordinates

x = x1/x3

y = x2/x3.

So ϕ(x, y) = (xσ, yσ) = (x1
σ/x3

σ, x2
σ/x3

σ). This last equation because σ
is an automorphism, so takes quotients into quotients. Therefore ϕ(x, y) has
homogeneous coordinates (x1

σ, x2
σ, x3

σ) and we are done.

Proposition 3.12 The only automorphism of the field of real numbers is the
identity automorphism.

Proof. Let σ be an automorphism of the real numbers. We proceed in several
steps.

1) 1σ = 1. (a+b)σ = aσ +bσ. Hence, by induction, we can prove that nσ = n
for any positive integer n.

2) n+ (−n) = 0, so nσ + (−n)σ = 0, so (−n)σ = −n. Hence σ leaves all the
integers fixed.

3) If b 6= 0, (a/b)σ = aσ/bσ. Hence σ leaves all the rational numbers fixed.
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4) If x ∈ R, then x > 0 if and only if there is an a 6= 0 such that x = a2.
Then xσ = (aσ)2, so x > 0 ⇒ xσ > 0. Conversely, if xσ > 0, xσ = b2, so
x = (xσ)σ−1 = (bσ−1)2, because the inverse of σ is also an automorphism.
Hence x > 0⇔ xσ > 0. Therefore also x < y ⇔ xσ < yσ.

5) Let {an} be a sequence of real numbers, and let a be a real number. Then
the sequence {an} converges to a ⇔ {an

σ} converges to aσ. Indeed, this says
∀ε > 0, ∃N such that n > N ⇒| an − a |< ε. Using the previous results, this is
equivalent to | an

σ − aσ |< εσ. Furthermore, it is sufficient to consider rational
ε > 0 in the definition, and εσ = ε if ε is a rational number. So the two conditions
are equivalent.

6) If a ∈ R is any real number, we can find a sequence of rational numbers
qn ∈ Q, which converges to a. Then qn

σ = qn, qnσ converges to aσ, and so
a = aσ, by the uniqueness of the limit.

Thus σ is the identity.

Theorem 3.13 PGL(2,R) = Autπ.

Proof. It is sufficient to show that any ϕ ∈ Autπ is already in PGL(2,R). Let
ϕ ∈ Autπ. Let ϕ(P1) = A, ϕ(P2) = B, ϕ(P3) = C, ϕ(Q) = D. Choose a
T ∈ PGL(2,R) such that T (P1) = A, T (P2) = B, T (P3) = C, T (Q) = D
(possible by Theorem 3.9). Then T−1ϕ is an automorphism of π which leaves
P1, P2, P3, Q fixed. Hence by Proposition 3.11 it can be written

(x1, x2, x3)→ (x1
σ, x2

σ, x3
σ)

for some automorphism σ of R. But by the last proposition σ is the identity, so
T−1ϕ is the identity, so ϕ = T ∈ PGL(2,R).

Note that specific properties of the real numbers entered only into Propo-
sition 3.11. The rest of the argument would have been valid over an arbitrary
field. In fact, we will study this more general situation in Chapter 6.

26



4

Elementary Synthetic
Projective Geometry

We will now study the properties of a projective plane which we can deduce
from the axioms P1–P4 (and occasionally P5, P6, P7 to be defined).

Proposition 4.1 Let π be a projective plane. Let π* be the set of lines in π,
and define a line* in π* to be a pencil of lines in π. (A pencil of lines is the set
of all lines passing through some fixed point.) Then π* is a projective plane,
called the dual projective plane of π. Furthermore, if π satisfies P5, so does
π*.

Proof. We must verify the axioms P1–P4 for π*, and we will call them P1*–P4*
to distinguish them from P1–P4. Also P5⇒P5*.

P 1* If P*, Q* are two distinct points* of π*, then there is a unique line* of
π* containing P* and Q*. If we translate this statement into π, it says, if l, m
are two distinct lines of π, then there is a unique pencil of lines containing l, m,
i.e. l, m have a unique point in common. This follows from P1 and P2.

P 2* If l* andm* are two lines* in π*, they have at least one point* in common.
In π, this says that two pencils of lines have at least one line in common, which
follows from P1.

P 3* There are three non-collinear points* in π*. This says there are three
non-concurrent lines in π. (We say three or more lines are concurrent if they
all pass through some point, i.e. if they are contained in a pencil of lines.) By
P3 there are three non-collinear points A, B, C. Then one sees easily that the
lines AB, AC, BC are not concurrent.

P 4* Every line* in π* has at least three points*. This says that every pencil
in π has at least three lines. Let the pencil be centered at P , and let l be some
line not passing through P . Then by P4, l has at least three points A, B, C.
Hence the pencil of lines through P has at least three lines a = PA, b = PB,
c = PC.

Now we will assume P5, Desargues’ Axiom, and we wish to prove

P 5* Let O*, A*, B*, C*, A′*, B′*, C ′* be seven distinct points* of π*, such
that O*, A*, A′*; O*, B*, B′*; O*, C*, C ′* are collinear, and A*, B*, C*; A′*,
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B′*, C ′* are not collinear. Then the points*

P* = A*B* ·A′*B′*
Q* = A*C* ·A′*C ′*
R* = B*C* ·B′*C ′*

are collinear.

Translated into π, this says the following:
Let o, a, b, c, a′, b′, c′ be seven lines, such that o, a, a′; o, b, b′; o, c, c′ are

concurrent, and such that a, b, c; a′, b′, c′ are not concurrent. Then the lines

p = (a · b) ∪ (a′ · b′)
p = (a · c) ∪ (a′ · c′)
p = (b · c) ∪ (b′ · c′)

(where ∪ denotes the line joining two points, and · denotes the intersection of
two lines) are concurrent.

To prove this statement, we will label the points of the diagram in such a
way as to be able to apply P5. So let

O = o · a · a′

A = o · b · b′

A′ = o · c · c′

B = a · b
B′ = a · c
C = a′ · b′

C ′ = a′ · c′.

Then O, A, B, C, A′, B′, C ′ satisfy the hypotheses of P5, so we conclude
that

P = AB ·A′B′ = b · c
Q = AC ·A′C ′ = b′ · c′

R = BC ·B′C ′ = p · q

are collinear. But PQ = r, so this says that p, q, r are concurrent.

Corollary 4.2 (Principle of Duality) Let S be any statement about a projec-
tive plane π, which can be proved from the axioms P1–P4 (respectively P1–P5).
Then the ”dual” statement S*, obtained from S by interchanging the words

point ←→ line
lies on ←→ passes through
collinear ←→ concurrent
intersection←→ join etc.

can also be proved from the axioms P1–P4 (respectively P1–P5).
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Proof. Indeed, S* is just the statement of S applied to the dual projective plane
π*, hence it follows from P1*–P4* (respectively P1*–P5*). But these in turn
follow from P1–P4 (respectively P1–P5), as we have just shown.

Remarks. 1. There is a natural map π → π**, obtained by sending a point P of
π into the pencil of lines through P , which is a point of π**. One can see easily
that this is an isomorphism of the projective plane π with the projective plane
π**.

2. However, the plane π* need not be isomorphic to the plane π. I believe
one of the non-Desarguesian finite projective planes of order 9 (10 points on a
line) will give an example of this.

Definition. A complete quadrangle is the configuration of seven points
and six lines obtained by taking four points A, B, C, D, no three of which are
collinear, drawing all six lines connecting them, and then taking the intersections
of opposite sides:

P = AB · CD
Q = AC ·BD
R = AD ·BC.

The points P , Q, R are called diagonal points of the complete quadrangle.
It may happen that the diagonal points P , Q, R of a complete quadrangle

are collinear (as for example in the projective plane of seven points). However,
this never happens in the real projective plane (as we will see below), and in
general it is to be regarded as a pathological phenomenon, hence we will make
an axiom saying this should not happen.

P7 (Fano’s axiom) The diagonal points of a complete quadrangle are never
collinear.

Proposition 4.3 The real projecitve plane satisfies P7.

Proof. Let A, B, C, D be the vertices of a complete quadrangle. Then no three
of them are collinear, so we can find an automorphism T of the real projective
plane π which carries A, B, C, D into the points (0, 0, 1), (1, 0, 0), (0, 1, 0),
(1, 1, 1) respectively (by Theorem 3.9).

Hence it will be sufficient to show that the diagonal points of this complete
quadrangle are not collinear. They are (1, 0, 1), (1, 1, 0), (0, 1, 1). To see if they
are collinear, we apply Lemma 3.10, and calculate the determinant

det

 1 0 1
1 1 0
0 1 1

 = 2.

Since 2 6= 0, we conclude that the points are not collinear.

Proposition 4.4 P7 in a projective plane π implies P7* in π*, hence the prin-
ciple of duality also applies in regard to consequences of P7.

Proof. P7*, translated into the language of π, says the following: The diagonal
lines of a complete quadrilateral are never concurrent. This statement requires
some explanation:
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Definition. A complete quadrilateral is the configuration of seven lines
and six points obtained by taking four lines a, b, c, d, no three of which are
concurrent, their six points of intersection, and the three lines

p = (a · b) ∪ (c · d)
q = (a · c) ∪ (b · d)
r = (a · d) ∪ (b · c)

joining opposite pairs of points. These lines p, q, r are called the diagonal lines
of the complete quadrilateral.

To prove P7*, let a, b, c, d be a complete quadrilateral, and suppose that
the three diagonal lines p, q, r were concurrent. Then this would show that the
diagonal points of the complete quadrangle ABCD, where

A = b · d
B = c · d
C = a · b
D = a · c,

were collinear, which contradicts P7 B. Hence P7* is true.

Remark. The astute reader will have noticed that the definition of a complete
quadrilateral is the ”dual” of the definition of a complete quadrangle. In general,
I expect from now on that the reader construct for himself the duals of all
definitions, theorems, and proofs.

Harmonic points

Definition. An ordered quadruple of distinct points A, B, C, D on a line
is called a harmonic quadruple if there is a complete quadrangle X, Y , Z,
W wuch that A and B are diagonal points of the complete quadrangle (say

A = XY · ZW
B = XZ · YW )

and C, D lie on the remaining two sides of the quadrangle (say C ∈ XW and
D ∈ Y Z).

In symbols, we write H(AB,CD) if A, B, C, D form a harmonic quadruple.
Note that if ABCD is a harmonic quadruple, then the fact that A, B, C, D

are distinct implies that the diagonal points of a defining quadrangle XY ZW
are not collinear. In fact, the notion of 4 harmonic points does not make much
sense unless Fano’s Axiom P7 is satisfied. Hence we will always assume this
when we speak of harmonic points.

Proposition 4.5 H(AB,CD)⇔ H(BA,CD)⇔ H(AB,DC)⇔ H(BA,DC).

Proof. This follows immediately from the definition, since A and B play sym-
metrical roles, and C and D play symmetrical roles. In fact, one could permute
X, Y , Z, W to make the notation coincide with the definitions of H(BA,CD),
etc.
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Proposition 4.6 Let A, B, C be three distinct points on a line. Then (assuming
P7), there is a point D such that H(AB,CD). Furthermore (assuming P5), this
point D is unique. D is called the fourth harmonic point of A, B, C, or the
harmonic conjugate of C with respect to A and B.

Proof. Draw two lines l, m through A, different from the line ABC. Draw a line
n through C, different from ABC. Then join B to l · n, and join B to m · n.
Call these lines r, s respectively. Then join r ·m and s · l to form a line t. Let t
intersect ABC at D. Then by P7 we see that D is distinct from A, B, C. Hence
by construction we have H(AB,CD).

Now we assume P5, and will prove the uniqueness of the fourth harmonic
point. Given A, B, C construct D as above. Suppose D′ is another point such
that H(AB,CD′). Then, by definition, there is a complete quadrangle XY ZW
such that

A = XY · ZW
B = XZ · YW
C ∈ XW
D′ ∈ Y Z.

Call l′ = AX,m′ = AZ, and n′ = CX. Then we see that the above construction,
applied to l′, m′, n′, will give D′.

Thus it is sufficient to show that our construction of D is independent of the
choice of l, m, n. We do this in three steps, by showing that if we vary one of l,
m, n, the point D remains the same.

Step 1. If we replace l by a line l′, we get the same D.
Let D be defined by l, m, n as above, and label the resulting complete

quadrangle XY ZW . Let l′ be another line through A, distinct from m, and label
the quadrangle obtained from l′, m, n X ′Y ′Z ′W ′. (Note the point W = m · n
belongs to both quadrangles.) We must show that the line Y ′Z ′ passes through
D, i.e. that (Y ′Z ′) · (ABC) = D. Indeed, observe that the two triangles XY Z
and X ′Y ′Z ′ are perspective from W . Two pairs of corresponding sides meet in
A and B respectively:

A = XY ·X ′Y ′

B = XZ ·X ′Z ′.

Hence, by P5, the third pair of corresponding sides, namely Y Z and Y ′Z ′, must
meet on AB, which is what we wanted to prove.

Step 2. If we replace m by m′, we get the same D. The proof in this case is
identical with that of Step 1, interchanging the roles of l and m.

Step 3. If we replace n by n′, we get the same D.
The proof in this case is more difficult, since all four points of the correspond-

ing complete quadrangle change. So let XY ZW be the quadrangle formed by
l, m, n, which defines D. Let X ′Y ′Z ′W ′ be the quadrangle formed by l, m, n′.
We must show that Y ′Z ′ also meets ABC at D.

Consider the triangles XYW and W ′Z ′X ′ (in that order). Corresponding
sides meet in A, B, C, respectively, which are collinear, hence by P5* the two
triangles must be perspective from some point O. In other words, the lines

XW ′, Y Z ′, and WX ′
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all meet in a point O.
Similarly, by considering the triangles ZWX and Y ′X ′W ′ (in that order),

and applying P5* once more, we deduce that the lines

ZY ′, WX ′, and XW ′

are concurrent. Since two of these lines are among the three above, and XW ′ 6=
X ′W , we conclude that their point of intersection is also O.

In other words, the quadranglesXY ZW andW ′Z ′Y ′X ′ are perspective from
O, in that order. In particular, the triangles XY Z and W ′Z ′Y ′ are perspective
from O. Two pairs of corresponding sides meet in A and B, respectively. Hence
the third pair of sides, Y Z and Z ′Y ′, must meet on the line AB, i.e. D ∈
Z ′Y ′.

Proposition 4.7 Let AB,CD be four harmonic points. Then (assuming P5)
also CD,AB are four harmonic points.

Combining with Proposition 4.5, we find therefore

H(AB,CD)⇔ H(BA,CD)⇔ H(AB,DC)⇔ H(BA,DC)
m

H(CD,AB)⇔ H(DC,AB)⇔ H(CD,BA)⇔ H(DC,BA).

Proof. (See diagram on ????.) We assume H(AB,CD), and let XY ZW be a
complete quadrangle as in the definition of harmonic quadruple.

Draw DX and CZ, and let them meet in U . Let XW ·Y Z = T . Then XTUZ
is a complete quadrangle with C, D as two of its diagonal points; B lies on XZ,
so it will be sufficient to prove that TU passes through A. For then we will have
H(CD,AB).

Consider the two triangles XUZ and Y TW . Their corresponding sides meet
in D, B, C respectively, which are collinear. Hence, by P5*, the lines joining
corresponding vertices, namely

XY , TU , WZ,

are concurrent, which is what we wanted to prove.

Examples. 1. In the projective plane of thirteen points, there are four points
of any line. These four points always forma a harmonic quadruple, in any order.

To prove this, it will be sufficient to show that P7 holds in this plane. For then
there will always be a fourth harmonic point to any three points, and it must
be the fourth point on the line. We will prove this later: The plane of 13 points
is the projective plane over the field of three elements, which is of characteristic
3. But P7 holds in the projective plane over any field of characteristic 6= 2.

2. In the real Euclidean plane, four points AB,CD form a harmonic quadru-
ple if and only if the product of distances

AC

BC
· BD
AD

= −1.

(See Problem 20.)
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Perspectivities and projectivities

Definition. A perspectivity is a mapping of one line l into another line l′

(both considered as sets of points), which can be obtained in the following way:
Let O be a point not on either l or l′. For each point A ∈ l, draw OA, and let
OA meet l′ in A′. Then map A 7→ A′. This is a perspectivity. In symbols we
write

lO[ l
′,

which says ”l is mapped into l′ by a perspectivity with center at O”, or

ABC . . . O
[A

′B′C ′ . . .,

which says ”the points A, B, C (of the line l) are mapped via a perspectivity
with center O into the points A′, B′, C ′ (of the line l′), respectively”.

Note that a perspectivity is always one-to-one and onto, and that its inverse
is also a perspectivity. Note also that if X = l · l′, then X (as a point of l) is
sent into itself, X (as a point of l′).

One can easily see that a composition of two or more perspectivities need
not be a perspectivity. For example, in the diagram above, we have

lO[ l
′O

[ l
′′

and

ABCY O
[A

′B′C ′Y ′O[A
′′B′′C ′′Y ′′.

Now if the composed map from l to l′′ were a perspectivity, it would have to
send l · l′′ = Y into itself. However, Y goes into Y ′′, which is different from Y .
Therefore we make the following

Definition. A projectivity is a mapping of one line l into another l′ (which
may be equal to l), which can be expressed as a composition of perspectivities.
We write lZ l

′, and write ABC . . . ZA
′B′C ′ . . . if the projectivity that takes

points A,B,C, . . . into A′, B′, C ′, . . . respectively.
Note that a projectivity also is always one-to-one and onto.

Proposition 4.8 Let l be a line. Then the set of projectivities of l into itself
forms a group, which we will call PJ(l).

Proof. Notice that the composition of two projectivities is a projectivity, be-
cause the result of performing one chain of perspectivities followed by another
is still a chain of perspectivities. The identity map of l into itself is a projec-
tivity (in fact a perspectivity), and acts as the identity element in PJ(l). The
inverse of a projectivity is a projectivity, since we need only reverse the chain
of perspectivities.

Naturally, we would like to study this group, and in particular we would
like to know how many times transitive it is. We will see in the following two
propositions that it is three times transitive, but cannot be four times transitive.

Proposition 4.9 Let l be a line, and let A,B,C, and A′, B′, C ′ be two triples
of three distinct points each on l. Then there is a projectivity of l into itself
which sends A,B,C into A′, B′, C ′.
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Proof. Let l′ be a line different from l, and which does not pass through A or
A′. Let O be any point not on l, l′, and project A′, B′, C ′ from l to l′, giving
A′′, B′′, C ′′, so we have

A′B′C ′ [A
′′B′′C ′′,

and A /∈ l′, A′′ /∈ l. Now it is sufficient to construct a projectivity from l to l′,
taking ABC into A′′B′′C ′′. Drop double primes, and forget the original points
A′, B′, C ′ ∈ l. Thus we have the following problem:

Let l, l′ be two distinct lines, let A,B,C be three distinct points on l, and
let A′, B′, C ′ be three distinct points on l′; assume furthermore that A /∈ l′

and A′ /∈ l. To construct a projectivity from l to l′ which carries A,B,C into
A′, B′, C ′, respectively.

Draw AA′, AB′, AC ′, A′B, A′C, and let

AB′ ·A′B = B′′

AC ′ ·A′C = C ′′.

Draw l′′ joining B′′ and C ′′, and let it meet AA′ at A′′. Then

lA
′

[ l
′′A

[ l
′

sends

ABC A′

[ A
′′B′′C ′′A[A

′B′C ′.

Thus we have found the required projectivity as a composition of two per-
spectivities.

Proposition 4.10 A projectivity takes harmonic quadruples into harmonic
quadruples.

Proof. Since a projectivity is a composition of perspectivities, it will be suf-
ficient to show that a perspectivity takes harmonic quadruples into harmonic
quadruples.

So suppose lO[ l
′, and H(AB,CD), where A,B,C,D ∈ l. Let A′, B′, C ′, D′

be their images. Let l′′ = AB′. Then

lO[ l
′′O

[ l
′

is the same mapping, so it is sufficient to consider lO[ l
′′ and l′′O[ l

′ separately.
Here one has the advantage that the intersection of the two lines is one of the
four points considered. By relabeling, we may assume it is A in each case. So
we have the following problem:

Let lO[ l
′, and let A = l · l′, B, C,D be four points on l such that H(AB,CD).

Prove that H(AB′, C ′D′), where B′, C ′, D′ are the images of B,C,D.
Draw BC ′, and let it meet OA at X. Consider the complete quadrangle

OXB′C ′. Two of its diagonal points are A,B; C lies on the side OC ′. Hence
the intersection of XB′ with l must be the fourth harmonic point of ABC, i.e.
XB′ · l = D. (Here we use the unicity of the fourth harmonic point.)

Now consider the complete quadrangle OXBD. Two of its diagonal points
are A and B′; the other two sides meet l′ in C ′ and D′. Hence H(AB′, C ′D′).
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So we see that the group PJ(l) is three times transitive, but it cannot be
four times transitive, because it must take quadruples of harmonic points into
quadruples of harmonic points.
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5

Pappus’ Axiom, and the
Fundamental Theorem for
Projectivities on a Line

In this chapter we come to the ”Fundamental Theorem”, which states that
there is a unique projectivity sending three points into any other three points, i.e.
PJ(l) is exactly three times transitive. It turns out this theorem does not follow
from the axioms P1–P5 and P7, so we introduce P6, Pappus’ axiom. Then we can
prove the Fundamental Theorem, and, conversely, the Fundamental Theorem
implies P6. We will state the Fundamental Theorem and Pappus’ axiom, and
then give proofs afterwards.

FT: Fundamental Theorem (for projectivities on a line) Let l be a line.
Let A,B,C and A′, B′, C ′ be two triples of three distinct points on l. Then there
is one and only one projectivity of l into l such that ABC ZA

′B′C ′.

P6 (Pappus’ axiom) Let l and l′ be two distinct lines. Let A,B,C be three
distinct points on l, different from X = l · l′. Let A′, B′, C ′ be three distinct
points on l′, different from X. Define

P = AB′ ·A′B
Q = AC ′ ·A′C
R = BC ′ ·B′C.

Then P , Q, and R are collinear.

Proposition 5.1 P6 implies the dual of Pappus’ axiom, P6*, and so the prin-
ciple of duality extends. (Problem 21.)

Proposition 5.2 P6 is true in the real projective plane.

Proof. Let l, l′, A, B, C, A′, B′, C ′ be as in the statement, and construct P , Q,
R. We take l to be the line at infinity, and thus reduce to proving the following
statement in Euclidean geometry (see ????):

Let l′ be a line in the affine Euclidean plane. Let A′, B′, C ′ be three distinct
points on l′. Let A,B,C be three distinct directions, different from l′. Then
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draw lines through A′ in directions B, C, . . . and define P , Q, R as shown.
Prove that P,Q,R are collinear.

We will study various ratios: Cutting with lines in directions C, we find

TR

RC ′
=
A′B′

B′C ′
.

Cutting with lines of direction A, we have

A′B′

B′C ′
=
A′P

PS
.

Therefore

TR

RC ′
=
A′P

PS
, or

TR

A′P
=
RC ′

PS
=
TR+RC ′

A′P + PS
=
TC ′

A′S
.

But 4TQC ′ ∼ 4A′QS (similar triangles), so

TC ′

A′S
=

QT

A′Q
.

This proves that 4TQR ∼ 4A′QP . Hence

∠TRQ = ∠A′PQ,

so PQ,QR are parallel, hence equal, lines.

(See Problem ?? for another proof of this proposition.)

Proposition 5.3 FT implies P6 (in the presence of P1–P4, of course).

Proof. Let l, l′, A, B, C, A′, B′, C ′ be as in the statement of P6. We will assume
the Fundamental Theorem, and will prove that

P = AB′ ·A′B
Q = AC ′ ·A′C
R = BC ′ ·B′C (not shown in diagram)

are collinear.
Draw AB′, A′B, and P . Draw AC ′, A′C, and Q. Let l′′ be the line PQ,

and let l′′ meet AA′ in A′′. Then, as in Proposition 4.9, we can construct a
projectivity sending ABC to A′B′C ′, as follows:

lA
′

[ l
′′A

[ l
′.

Let Y = l · l′, and let Y ′ = l′ · l′′. Then these two perspectives act on points as
follows:

ABCY A′

[ A
′′PQY ′A[A

′B′C ′Y ′.

Now let B′C meet l′′ in R′, and let BR′ meet l′ in C ′′. We consider the chain
of perspectivities
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lB
′

[ l
′′B

[ l
′.

This takes

ABCY B′

[ PB
′′R′Y ′B[A

′B′C ′′Y ′.

So we have two projectivities from l to l′, each of which takes ABY into A′B′Y ′.
We conclude from the Fundamental Theorem that they are the same. (Note
that FT is stated for two triples of points on the same line, but it follows by
composing with any perspectivity that there is a unique projectivity sending
ABC ZA

′B′C ′ also if they lie on different lines.)
Therefore the images of C must be the same under both projectivities, i.e.

C ′ = C ′′. Therefore R′ = R, so P,Q,R are collinear.

Now we come to the proof of the Fundamental Theorem from P1–P6. We
must prove a number of subsidiary results first.

Lemma 5.4 Let lO[m
P
[ n, with l 6= n, and suppose either

a) l,m, n are concurrent, or
b) O,P and l · n are collinear.

Then l is perspective to n, i.e. there is a point Q such that the perspectivity
lQ[ n gives the same map as the projectivity lZn above.

Proof. (Problems 23, 24, and 25.)

Lemma 5.5 Let lO[m
P
[ n, with 1 6= n, and suppose that neither a) nor b) of

the previous lemma holds. Then there is a line m′, and points O′ ∈ n and P ′ ∈ l,
such that

lO
′

[ m
′ P ′

[ n

gives the same projectivity from l to n.

Proof. Let l, m, n, O, P be given. Let A,A′ be two points on l, and let

AA′O[BB
′ P
[CC

′.

Let OP meet n in O′. Since we assumed O, P , l · n = X are not collinear,
O′ 6= X, so O′ /∈ l. Draw O′A, O′A′, and let them meet PC, PC ′ in D, D′,
respectively.

Now corresponding sides of the triangles ABD and A′B′D′ meet in O, P , O′,
respectively, which are collinear, hence by P5* the lines joining corresponding
vertices are concurrent. Thus m1, the line joining D,D′, passes through the
point Y = l ·m.

Thus m1 is determined by D and Y , so as A′ varies, D′ varies along the line
m1. Thus our original projectivity is equal to the projectivity

lO
′

[ m1
P
[ n.

Performing the same argument again, we can move P to P ′ = OP · l, and
find a new line m′, so that

lO
′

[ m1
P
[ n

gives the original projectivity.
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Lemma 5.6 Let l and l′ be two distinct lines. Then any projectivity lZ l
′ can

be expressed as the composition of two perspectivities.

Proof. A projectivity was defined as a composition of an arbitrary chain of
perspectivities. Thus it will be sufficient to show, by induction, that a chain of
length n > 2 can be reduced to a chain of length n − 1. Looking at one end of
the chain, it will be sufficient to prove that a chain of 3 perspectivities can be
reduced to a composition of two perspectivities.

The argument of the previous lemma actually shows that the line m can be
moved so as to avoid any given point. Thus one can see easily (details left to
reader) that it is sufficient to prove the following: Let

lP[m
Q
[ n

R
[ o

be a chain of three perspectivities, with l 6= o. Then the resulting projectivity
lZo can be expressed as a product of at most two perspectivities.

First, if m = l or m = n or m = o or n = l or n = o, we are reduced trivially
to two perspectivities, using lemma 5.4a. So we may assume l, m, n, o are all
distinct. Second, using lemmas 5.4b and 5.5, we have either m[o, in which case
we are done, or n can be moved so that the centers of the perspectivities m[n
and n[o are on o, m respectively.

So we have

lP[m
Q
[ n

R
[ o

with l, m, n, o all distinct, Q ∈ o, and R ∈ m. Let X = l ·m, Z = n · o, and
draw h = XZ. We may assume that X /∈ o (indeed, we could have moved m,
by lemma 5.5 to make X /∈ o). Therefore Q ∈ XZ = h. Project mQ

[ h, and let
BB′ = HH ′.

Now, CDH and C ′D′H ′ are perspective from Z. Corresponding sides meet
in Q, R, hence by P5 the remaining corresponding sides meet in a point N on
QR. Thus N is determined by DH alone, and we see that as D′, H ′ vary, the
line D′H ′ always passes through N . In other words,

hN
[ o.

Similarly, the triangles ABH and A′B′H ′ are perspective from X, so, using
P5 again, we find that AH and A′H ′ meet in a point M ∈ PQ. Hence

lM[ h.

So we have the original projectivity represented as the composition of two per-
spectivities

lM[ h
N
[ o.

Theorem 5.7 P1–P6 imply the Fundamental Theorem.
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Proof. Given a line l, and two triples of distinct points A,B,C, A′, B′, C ′ on l,
we must show that there is a unique projectivity sending ABC into A′B′C ′.

Choose a line l′, not passing through any of the points (I leave a few special
cases to the reader), and project A′, B′, C ′ onto l′. Call them A′, B′, C ′ still. So
we have reduced to the problem

A,B,C in l
A′, B′, C ′ in l′ all different from l · l′.

It will be sufficient to show that there is a unique projectivity sendingABC ZA
′B′C ′.

We already know one such projectivity, from Proposition 4.9. Hence it will
be sufficient to show that any other such projectivity is equal to this one.

Case 1. Suppose the other projectivity is actually a perspectivity.
Let lO[ l

′ send ABC [A
′B′C ′. Consider

P = AB′ ·A′B
Q = AC ′ ·A′C

and let l′′ be the line joining P and Q.
I claim that l′′ passes through X. Indeed, we apply P5 to the two triangles

AB′C ′ and A′BC, which are perspective from O. Their corresponding sides
meet in P , Q, X respectively.

Hence l′′ is already determined by P and X. This shows that, as C varies,
the perspectivity

lO[ l
′

and the projectivity

lA
′

[ l
′′A

[ l
′

coincide.
Case 2. Suppose the other projectivity is not a perspectivity. Then by lemma

5.6, it can be expressed as the composition of (exactly) two perspectives, and by
lemma 5.4, we can assume that their centers lie on l′ and l, respectively. Thus
we have the following diagram:

Here lR
′

[ l
′′R

[ l
′, and ABC R′

[ A
′′B′′C ′′R[A

′B′C ′. By P6 applied to ABR and
A′B′R′, the point

P = AB′ ·A′B
lies on l′′. Similarly, by P6 applied to ACR and A′C ′R′,

Q = AC ′ ·A′C

lies on l′′. Thus l′′ is the line which was used in Proposition 4.9 to construct the
other projectivity

lA
′

[ l
′′A

[ l
′.

Now if D ∈ l is an arbitrary point, define D′′ = R′D · l′′ and D′ = RD′′ · l′.
Then consider P6 applied to ADR and A′D′R′. It says

AD′ ·A′D,A′′, D′′

are collinear, i.e. AD′ ·A′D ∈ l′′, which means that D goes into D′ also by the
projectivity of Proposition 4.9. Hence the two projectivities are equal.
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Proposition 5.8 P6 implies P5.

Proof. (See diagram on p. ????.) Let O, A, B, C, A′, B′, C ′ satisfy the hypothe-
ses of Desargues’ Theorem (P5), and construct P , Q, R. We will make three
applications of P6 to prove that P,Q,R are collinear.

Step 1. Extend A′C ′ to meet AB at S. Then we apply P6 to the lines(
O C C ′

B S A

)
and conclude that

T = OS ·BC
U = OA ·BC ′

Q

are collinear. (Note to apply P6 we should check that B, S, A are all distinct,
and O, C, C ′, B, S, A are all different from the intersection of the two lines.
But P6 is trivial if not.)

Step 2. We apply P6 a second time, to the two triples(
O B B′

C ′ A′ S

)
and conclude that

U

V = OS ·B′C ′

P

are collinear.
Step 3. We apply P6 a third time, to the two triples(

B C ′ U
V T S

)
and conclude that

R

P = BS · UV (by Step 2)
Q = C ′S · TU (by Step 1)

are collinear.

Corollary 5.9 [of Fundamental Theorem]A projectivity lZ l
′ with l 6= l′ is a

perspectivity ⇔ the intersection point X = l · l′ corresponds to itself.
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6

Projective Planes over
Division Rings

In this chapter we introduce the notion of a division ring, which is slightly
more general than a field, and the projective plane over a division ring. This will
give us many examples of projective planes, besides the ones we know already.
Then we will discuss various properties of the projective plane corresponding to
properties of the division ring. We will also study the group of automorphisms
of these projective planes.

Definition. A division ring (or skew field, or sfield, or non-commutative
field) is a set F , together with two operations + and ·, such that

R1 F is an abelian group under +,

R2 The non-zero elements of F form a group under · (not necessarily commu-
tative), and

R3 Multiplication is distributive over addition, on both sides, i.e. for all a, b, c ∈
F , we have

a(b+ c) = ab+ ac

(b+ c)a = ba+ ca.

Comparing with the definition of a field on p. ????, we see that a division
ring is a field ⇔ the commutative law for multiplication holds.

Example (to show that there are some division rings which are not
fields). We define the division ring of quaternions as follows. Let e, i, j, k be
four symbols. Define

F = {ae+ bi+ cj + dk | a, b, c, d ∈ R.

We make F into a division ring by adding place by place:

(ae+ bi+ cj + dk) + (a′e+ b′i+ c′j + d′k)
= (a+ a′)e+ (b+ b′)i+ (c+ c′)j + (d+ d′)k.

We define multiplication by
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a) using the distributive laws,
b) decreeing that the real numbers commute with everything else, and
c) multiplying e, i, j, k according to the following table:

e2 = e
i2 = j2 = k2 = −e
e · i = i · e = i
e · j = j · e = j
e · k = k · e = k
i · j = k j · i = −k
j · k = i k · j = −i
k · i = j i · k = −j.

Then one can check (rather laboriously) that F is a division ring. And of
course it is not a field, because multiplication is not commutative; e.g. ij 6= ji.

Definition. An automorphism of a division ring is a 1–1 mapping σ :
F → F of F onto F (which we will write a→ aσ) such that

(a+ b)σ = aσ + bσ

(ab)σ = aσbσ.

Definition. Let F be a division ring. The characteristic of F is the small-
est integer p ≥ 2 such that

1 + 1 + . . .+ 1︸ ︷︷ ︸
p times

= 0,

or, if there is no such integer, the characteristic of F is defined to be 0.

Proposition. The characteristic p of a division ring F is always a prime num-
ber.

Proof. Suppose p = m · n, m,n > 1. Then

(1 + 1 + . . .+ 1︸ ︷︷ ︸
m times

) · (1 + 1 + . . .+ 1︸ ︷︷ ︸
n times

) = 0.

Hence one of them is 0, which contradicts the choice of p.

Example. For any prime number p, there is a field Fp with p elements, and
having characteristic p. Indeed, let Fp be the set of p symbols F = {0, 1, 2, . . . , p−
1}. Define addition and multiplication in F by treating the symbols as integers,
and then reducing modulo p. (For example 2 · (p−1) = 2p−2 ≡ p−2 (mod p).)
Then F is a field, as one can check easily, and has characteristic p.

Definition. Let F be a division ring, and let F0 ⊆ F be the set of a ∈ F
such that ab = ba for all b ∈ F . Then F0 is a field, and it is called the center
of F .

To see that F0 is a field, we must check that it is closed under addition,
multiplication, taking of inverse, and that the commutative law of multiplication
holds. These are all easy. For example, say a, b ∈ F0. Then for any c ∈ F ,

(a+ b)c = ac+ bc = ca+ cb = c(a+ b),

so a+ b ∈ F0.
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Example. The center of the division ring of quaternions is the set of quater-
nions of the form

a · e+ 0 · i+ 0 · j + 0 · k,

for a ∈ R. Hence F0
∼= R.

Now we can define the projective plane over a division ring, mimicking the
analytic definition of the real projective plane (p. ????).

Definition. Let F be a division ring. We define the projective plane over
F , written P2

F , as follows. A point of the projective plane is an equivalence class
of triples

P = (x1, x2, x3)

where x1, x2, x3 ∈ F are not all zero, and where two triples are equivalent,

(x1, x2, x3) ∼ (x′1, x
′
2, x

′
3),

if and only if there is an element λ ∈ F , λ 6= 0, such that

x′i = xiλ for i = 1, 2, 3.

(Note that we multiply by λ on the right. It is important to keep this in mind,
since the multiplication may not be commutative.)

A line in P2
F is the set of all points satisfying a linear equation of the form

c1x1 + c2x2 + c3x3 = 0,

where c1, c2, c3 ∈ F and are not all zero. Note that we multiply here on the left,
so that this equation actually defines a set of equivalence classes of triples.

Now one can check that the axioms P1, P2, P3, P4 are satisfied, and so P2
F

is a projective plane.
Examples. 1. If F = F2 is the field of two elements (0, 1), then P2

F is the
projective plane of seven points.

2. More generally, if F = Fp for any prime number p, then P2
F is a projective

plane with p2 + p + 1 points. Indeed, any line has p + 1 points, so this follows
from Problem 5.

3. If F = R we get back the real projective plane.

Theorem 6.1 The plane P2
F over a division ring always satisfies Desargues’

axiom P5.

Proof. One defines projective 3-space P3
F by taking points to be equivalence

classes (x1, x2, x3, x4), xi ∈ F , not all zero, and where this is equivalent to
(x1λ, x2λ, x3λ, x4λ). Planes are defined by (left) linear equations, and lines as
intersections of distinct planes.

Then P2
F is embedded as the plane x4 = 0 in this projective 3-space, and so

P5 holds there by an earlier result (Theorem 2.1).

Now we will study the group Aut(P2
F ) of automorphisms of our projective

plane.
Definition. A matrix A = (aij) of elements of F is invertible if there is a

matrix A−1, such that AA−1 = A−1A = I, the identity matrix. (Note that in
general determinants do not make sense over a division ring. However, if we are
working over a field F , these are just the matrices with determinant 6= 0.)
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Proposition 6.2 Let A = (aij) be an invertible 3× 3 matrix of elements of F .
Then the equations

x′i =
3∑

j=1

aijxj i = 1, 2, 3

define an automorphism TA of P2
F .

Proof. Analogous to proof of Proposition 3.7 q.v.

Proposition 6.3 Let A, A′ be two invertible matrices. Then TA and TA′ have
the same effect on the four points P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (0, 0, 1),
Q = (1, 1, 1) ⇔ there is a λ ∈ F , λ 6= 0, such that A′ = Aλ.

Proof. Analogous to Proposition 3.8 q.v.

Proposition 6.4 Let λ ∈ F , λ 6= 0, and consider the matrix λI. Then TλI is
the identity transformation of P2

F ⇔ λ is in the center of F . Otherwise, TλI is
the automorphism given by

(x1, x2, x3)→ (x1
σ, x2

σ, x3
σ),

where σ is the automorphism of F given by

x→ λxλ−1.

(Such an automorphism is called an inner automorphism of F .)

Proof. In general, TλI takes (x1, x2, x3) to the point (λx1, λx2, λx3). This latter
point also has homogeneous coordinates (λxλ−1, λxλ−1, λxλ−1), which proves
the second assertion. But σ is the identity automorphism of F ⇔ λx = xλ for
all x, i.e. λ is in the center of F .

Corollary 6.5 Let A and A′ be invertible matrices. Then TA = TA′ ⇔ ∃λ ∈
center of F , λ 6= 0, such that A′ = Aλ.

Proof. ⇐ is clear. Conversely, if TA = TA′ , then by Proposition 6.3, A′ = Aλ =
A · (λI). So TA′ = TA · TλI , so TλI is the identity, so λ ∈ center of F .

Definition. We denote by PGL(2, F ) the group of automorphisms of P2
F of

the form TA for some invertible matrix A. (Thus PGL(2, F ) is the quotient of
the group GL(3, F ) of invertible matrices, by multiplication by scalars in the
center of F .)

Proposition 6.6 Let A,B,C,D and A′, B′, C ′, D′ be two quadruples of points,
no 3 collinear. Then there is an element T ∈ PGL(2, F ) such that T (A) = A′,
T (B) = B′, T (C) = C ′, T (D) = D′.

Proof. Analogous to Theorem 3.9 q.v.

Note that in general the transformation T is not unique. However, if F is
commutative, it will be unique, by Proposition 6.2 and Corollary ??, since F is
its own center.
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Proposition 6.7 Let ϕ be any automorphism of P2
F which leaves fixed the

four points P1, P2, P3, Q mentioned above. Then there is an automorphism
σ ∈ AutF , such that

ϕ(x1, x2, x3) = (x1
σ, x2

σ, x3
σ).

Proof. Analogous to Proposition ?? q.v. (Except that instead of using Euclidean
methods in the proof, one must show by analytic geometry over F that the
constructions for a+ b, ab work.)

Proposition 6.8 The mapping AutF → AutP2
F given by σ → the map ϕ

described in the previous Proposition is an isomorphism of AutF onto the sub-
group H of AutP2

F consisting of those automorphisms which leave P1, P2, P3,
Q fixed.

Proof. It is onto by the previous Proposition. To see that it is 1–1, apply σ
and σ′ ∈ AutF to (x, 1, 0). Then (xσ, 1, 0) is the same point as (xσ′ , 0, 1), so
xσ = xσ′ , and σ = σ′. Clearly it preserves the group law.

We can sum up all our information about AutP2
F in the diagram ????. The

two subgroups PGL(2, F ) andH generate AutP2
F , i.e. every element of the whole

group can be expressed as a product of elements in the two subgroups. (This
follows from Propositions 6.7 and 6.8.) The intersection K of the two subgroups
is isomorphic to the group of inner automorphisms of F (by Propositions 6.3
and 6.4).

Now we will see when the axioms P6 and P7 hold in a projective plane P2
F .

Theorem 6.9 Pappus’ axiom, P6, holds in the projective plane P2
F over a

division ring F ⇔ F is commutative.

Proof. First let us suppose that P6 holds. We take x3 = 0 to be the line at
infinity, and represent an element a ∈ F as the point (a, 0) on the x-axis. If
(a, 0), (b, 0) are two points, we can construct the product of a and b with the
diagram of page ????. However, this time we are working over the division ring F ,
not over the real numbers, so we must verify analytically that the construction
works.

By inspection, one finds that the equation of the line joining (1, 1) and (b, 0)
is

x+ (b− 1)y = b.

Hence the equation of the line parallel to this one, through (a, a), is

x+ (b− 1)y = ba,

so that the point we have constructed is (ba, 0).
To get the product in the other order, we reverse the process by drawing the

line through (1, 1) and (a, 0), and the line parallel to this through (b, b). Now
the affine version of P6 implies that we get the same point. Hence ab = ba, and
F is commutative.

Before proving the converse, we give a lemma.

Lemma 6.10 Let l, A,B,C and l′, A′, B′, C ′ be two sets, each consisting of a
line, and three non-collinear points, not on the line, in P2

F . Then there is an
automorphism ϕ of P2

F such that ϕ(l) = l′, ϕ(A) = A′, ϕ(B) = B′, ϕ(C) = C ′.
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Proof. Let X = l · AC and Y = l · BC, and define similarly X ′ = l′ · A′C ′,
Y ′ = l′ ·B′C ′. Then A, B, X, Y are four points, no three collinear, and similarly
for A′, B′, X ′, Y ′, so by Proposition 6.6 there is an automorphism ϕ of P2

F

sending A,B,X, Y into A′, B′, X ′, Y ′. Then clearly ϕ sends l into l′ and C into
C ′.

Proof of Theorem 6.9 continued. Now assume F is commutative, and let us
prove P6.

With the usual notation, let P = AB′ · A′B, R = BC ′ · B′C, and let l′′ be
the line PR. We may assume that X = l · l′ does not lie on l′′. (If it did, take a
different pair P,Q or Q,R. If all these three pairs lie on lines through X, then
P,Q,R are already collinear, and there is nothing to prove.) Let Y = AR · l′.
Then Y is not on l′′ and A,X, Y are non-collinear. Hence, by the lemma, we
can find an automorphism ϕ of P2

F taking l′′ to the line x3 = 0, and taking A,
X, Y to the points (1, 1), (0, 0), (1, 0), respectively.

Then we have the situation of the diagram on page ???? again, where we
wish to prove AC ′ ‖ A′C. But this follows from the commutativity of F .

Theorem 6.11 Fano’s axiom P7 holds in P2
F ⇔ the characteristic of F is 6= 2.

Proof. Using an automorphism of P2
F , we reduce to the question of whether the

points (1, 1, 0), (1, 0, 1), and (0, 1, 1) are collinear, as in the proof of Proposi-
tion 4.3. Since F may not be commutative, we will not use matrices, but will
give a direct proof. Suppose they are collinear. Then they all satisfy an equation

c1x1 + c2x2 + c3x3 = 0,

with the ci not all zero. Hence

c1 + c2 = 0
c1 + c3 = 0

c2 + c3 = 0.

Thus c1 = −c2, c1 = −c3, c2 = −c3, so 2c2 = 0. So either c2 = 0, in which case
c3 = 0, c1 = 0 B, or 2 = 0, in which case the characteristic of F is 2.

As a dessert, we are now in a position to show that among the axioms P5, P6,
P7, the only implication is P6⇒P5 (Proposition 5.8). We prove this by giving
examples of projective planes which have every possible combination of axioms
holding or not.

Explanations.

1. The projective plane of seven points has P5, P6, not P7.

2. The real projective plane P2
R has P5, P6, P7.

3. The free projective plane on 4 points has not P5, not P6, P7.

4. Let Q be the division ring of quaternions. Then P2
Q has P5, not P6, P7,

since charQ = 0.
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5. Let K be a non-commutative division ring of char. 2. (One can obtain one
of these as follows: Let k = {0, 1}, let k[t] be the ring of polynomials in t
with coefficients in k, let α be the endomorphism of k[t] defined by t 7→ t2,
let A = {

∑n
i=1 pi(t)Xi}, where X is an indeterminate, and make A into

a ring by defining Xp(t) = α(p(t))X. Then one can show that A can be
embedded in a division ring K, which is necessarily non-commutative.)
Then P2

K has P5, not P6, not P7.

6. Let π0 be a projective plane of 7 points, plus one extra point with no lines.
Then the free projective plane over π0 satisfies not P5, not P6, not P7.
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7

Introduction of Coordinates
in a Projective Plane

In this chapter we ask the question, when is a projective plane π isomorphic
to a projective plane of the form P2

F , for some division ring F? Or, alternatively,
given a projective plane π, can we find a division ring F , and assign homogeneous
coordinates (x1, x2, x3), xi ∈ F , to points of π, such that lines are given by linear
equations?

A necessary condition for this to be possible is that π should satisfy Desar-
gues’ axiom, P5, since we have seen that P2

F always satisfies P5 (Theorem ????).
And in fact we will see that Desargues’ axiom is sufficient.

We will begin with a simpler problem, namely the introduction of coordinates
in an affine plane A. A näıve approach to this problem would be the following:
Choose three non-collinear points in A, and call them (1, 0), (0, 0), (0, 1). Let l
be the line through (0, 0) and (1, 0). Now take F to be the set of points on l,
and define addition and multiplication in F to be the geometrical construction
given in the proof of Proposition 3.11 (pp. ????). Then one would have to verify
that F was a division ring, i.e. prove that addition was commutative and as-
sociative, that multiplication was associative and distributive, etc. The proofs
would involve some rather messy diagrams. Then finally one would coordinatize
the plane using these coordinates on l, and prove that lines were given by lin-
ear equations. In fact, this is the approach which is used in Seidenberg’s book,
Lectures in Projective Geometry, Chapter 3.

However, we will use a slightly more sophisticated method, on the principle
that if one uses more high-powered techniques, there will be less work to be
done. Hence we will first address ourselves to a study of certain automorphisms
of an affine plane.

Definition. Let A be an affine plane. A dilation is an automorphism ϕ of
A, such that for any two distinct points P , Q, PQ ‖ P ′Q′, where ϕ(P ) = P ′,
ϕ(Q) = Q′. In other words, ϕ takes lines into parallel lines. Or, if we think of
A as contained in a projective plane π = A∪ l∞, then ϕ is an automorphism of
π, which leaves the line at infinity, l∞, pointwise fixed.

Examples. In the real affine plane A2
R = {(x, y) | x, y ∈ R}, a stretching in
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the ratio k, given by equations {
x′ = kx
y′ = ky,

is a dilation. Indeed, let O be the point (0, 0). Then ϕ stretches points away
from O k-times, and if P , Q are any two points, clearly PQ ‖ P ′Q′ by similar
triangles.

Another example of a dilation of A2
R is given by a translation{

x′ = x+ a
y′ = y + b.

In this case, any point P is translated by the vector from O to (a, b), so PQ ‖
P ′Q′ again, for any P , Q.

Without asking for the moment whether there are any non-trivial dilations
in a given affine plane A, let us study some of their properties.

Proposition 7.1 Let A be an affine plane. Then the set of dilations, Dil(A),
forms a subgroup of the group of all automorphisms of A, AutA.

Proof. Indeed, we must see that the product of two dilations is a dilation, and
that the inverse of a dilation is a dilation. This follows immediately from the
fact that parallelism is an equivalence relation.

Proposition 7.2 A dilation which leaves two distinct points fixed is the iden-
tity.

Proof. Let ϕ be a dilation, let P , Q be fixed, and let R be any point not on PQ
Let ϕ(R) = R′. Then we have

PR ‖ PR′

and
QR ‖ QR′

since ϕ is a dilation. Hence R′ ∈ PR and R′ ∈ QR. But PR 6= QR since
R /∈ PQ. Hence PR ·QR = {R}, and so R = R′, i.e. R is also fixed. But R was
an arbitrary point not on PQ. Applying the same argument to P and R, we see
that every point of PQ is also fixed, so ϕ is the identity.

Corollary 7.3 A dilation is determined by the images of two points, i.e. any
two dilations ϕ, ψ, which behave the same way one two distinct points P , Q are
equal.

Proof. Indeed, ψ−1ϕ leaves P , Q fixed, so is the identity.

So we see that a dilation different from the identity can have at most one
fixed point. We have a special name for those dilations with no fixed points:

Definition. A translation is a dilation with no fixed points, or the identity.

Proposition 7.4 If ϕ is a translation, different from the identity, then for any
two points P , Q, we have PP ′ ‖ QQ′, where ϕ(P ) = P ′, ϕ(Q) = Q′.
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Proof. Suppose PP ′ ∦ QQ′. Then these two lines intersect in a point O. But the
fact that ϕ is a dilation implies that ϕ sends the line PP ′ into itself, and ϕ sends
QQ′ into itself. (For example, let R ∈ PP ′. Then PR ‖ P ′R′, but PR = PP ′,
so R ∈ PP ′.) Hence ϕ(O) = O, so O is a fixed point B.

Proposition 7.5 The translations of A form a subgroup Tran(A) of the group
of dilations of A. Furthermore, Tran(A) is a normal subgroup of Dil(A), i.e. for
any τ ∈ Tran(A) and σ ∈ Dil(A),

στσ−1 ∈ Tran(A).

Proof. First we must check that the product of two translations is a translation,
and the inverse of a translation is a translation. Let τ1, τ2 be translations. Then
τ1τ2 is a dilation. Suppose it has a fixed point P . Then τ2(P ) = P ′, τ1(P ′) = P .
If Q is any point not on PP ′, then let Q′ = τ2(Q). We have by the previous
proposition

PQ ‖ P ′Q′ and PP ′ ‖ QQ′.

Hence Q′ is determined as the intersection of the line l ‖ PQ through P ′ and
the line m ‖ PP ′ through Q.

For a similar reason, τ1(Q′) = Q. Hence Q is also fixed. Applying the same
reasoning to Q, we find every point is fixed, so τ1τ2 = id. Hence τ1τ2 is a trans-
lation. Clearly the inverse of a translation is a translation, so the translations
form a subgroup of Dil(A).

Now let τ ∈ Tran(A), σ ∈ Dil(A). Then στσ−1 is certainly a dilation. If
it has no fixed points, it is a translation, ok. If it has a fixed point P , then
στσ−1(P ) = P implies τσ−1(P ) = σ−1(P ), so τ has a fixed point. Hence τ = id,
and στσ−1 = id, ok.

Definition. In general, if G is a group, and H is a subgroup of G, we say
H is a normal subgroup of G if ∀h ∈ H and ∀g ∈ G,

ghg−1 ∈ H.

For example, in an abelian group, every subgroup is normal.
Now we come to the question of existence of translations and dilations, and

for this we will need Desargues’ axiom. In fact, we will find that these two
existence problems are equivalent to two affine forms of Desargues’ axiom. This
is one of those cases where an axiom about some configuration is equivalent to
a property of the geometry of the space. Here Desargues’ axiom is equivalent to
saying that our geometry has ”enough” automorphisms, in a sense which will
become clear from the theorem.

A5a (Small Desargues’ axiom) Let l, m, n be three parallel lines (distinct).
Let A,A′ ∈ l, B,B′ ∈ m, C,C ′ ∈ n, all distinct points. Assume AB ‖ A′B′ and
AC ‖ A′C ′. Then BC ‖ B′C ′.

Note that if our affine plane A is contained in a projective plane π, then A5a
follows from P5 in π. Indeed, l, m, n meet in a point O on the line at infinity
l∞. Our hypotheses state that

P = AB ·A′B′ ∈ l∞
Q = AC ·A′C ′ ∈ l∞.
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So P5 says that
R = BC ·B′C ′ ∈ l∞,

i.e. BC ‖ B′C ′.
Theorem 7.6 Let A be an affine plane. Then the following two statements are
equivalent:

1. The axiom A5a holds in A.

2. Given any two points P, P ′ ∈ A, there exists a unique translation τ such
that τ(P ) = P ′.

Proof. (i)⇒(ii) We assume A5a. If P = P ′, then the identity is a translation
taking P to P ′, and it is the only one, so there is nothing to prove. So suppose
P 6= P ′.

Now we will set out to construct a translation τ sending P to P ′.
Step 1. We define a transformation τPP ′ of A − l, where l is the line PP ′,

as follows: For Q /∈ l, Q′ is the fourth corner of the parallelogram on P , P ′, Q,
and we set τPP ′(Q) = Q′.

Step 2. If τPP ′(Q) = Q′, then for any R /∈ PP ′ and R /∈ QQ′, we have

τPP ′(R) = τQQ′(R).

Indeed, define
R′ = τPP ′(R).

Then, by A5a, QR ‖ Q′R′, so we have also

R′ = τQQ′(R).

Step 3. Starting with P , P ′, Q, taking Q′ = τPP ′(Q), we can now define τ
to be τPP ′ or τQQ′ , whichever one happens to be defined at a given point, since
we saw they agree where they are both defined.

Step 4. Note that if R is any point, and τ(R) = R′, then τ = τRR′ whenever
they are both defined. This follows as above.

Step 5. Clearly τ is 1–1 and onto. If X, Y , Z are collinear points, let X ′,
Y ′, Z ′ be their images. Then

τ(Y ) = τXX′(Y )

and
τ(Z) = τXX′(Z).

So it follows immediately from the definition of τXX′ that X ′, Y ′, Z ′ are col-
linear. Hence τ is an automorphism of A. One sees immediately from the con-
struction that it is a dilation with no fixed points, hence is a translation, and it
takes P to P ′.

Finally, the uniqueness of τ follows from the fact that a translation with a
fixed point is the identity.

(ii)⇒(i) We assume the existence of translations, and must deduce A5a.
Suppose given l, m, n, A, A′, B, B′, C, C ′, as in the statement of A5a, and let
τ be a translation taking A into A′. Then, by our hypotheses, τ(B) = B′ and
τ(C) = C ′. Hence BC ‖ B′C ′ since τ is a dilation.
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Proposition 7.7 (Assuming A5a) Tran(A) is an abelian group.

Proof. Let τ , τ ′ be translations. We must show ττ ′ = τ ′τ .
Case 1. τ and τ ′ translate in different directions. Let P be a point. Let

τ(P ) = P ′, τ ′(P ) = Q. Then

τ(Q) = ττ ′(P )

and
τ ′(P ′) = τ ′τ(P )

are both found as the fourth vertex of the parallelogram on P , P ′, Q, hence are
equal, so ττ ′ = τ ′τ . (Note so far we have not used A5a.)

Case 2. τ and τ ′ are in the same direction. Let τ∗ be a translation in a
different direction (here we use Theorem 7.6 and axiom A3 to ensure that there
is another direction, and a translation in that direction). Then

ττ ′ = ττ ′τ∗τ∗−1 = (τ ′τ∗)ττ∗−1

since τ and τ ′τ∗ are in different directions. This equals

τ ′ττ∗τ∗−1 = τ ′τ

Since τ and τ∗ are in different directions.

Definition. Let G be a group, and let H, K be subgroups. We say G is the
semi-direct product of H and K if

1. H is a normal subgroup of G

2. H ∩K = {1}

3. H and K together generate G.

This implies that every element g ∈ G can be written uniquely as a product
g = hk, h ∈ H, k ∈ K.

Definition. Let O be a point in A, and define DilO(A) to be the subgroup
of Dil(A) consisting of those dilations ϕ such that ϕ(O) = O.

Proposition 7.8 Dil(A) is the semi-direct product of Tran(A) and DilO(A).

Proof. 1) We have seen that Tran(A) is a normal subgroup of Dil(A).
2) If ϕ ∈ Tran(A)∩DilO(A), then ϕ has a fixed point, but being a translation

it must be the identity.
3) Let ϕ ∈ Dil(A). Let ϕ(O) = Q. Let τ be a translation such that τ(O) = Q.

Then τ−1ϕ ∈ DilO(A), so ϕ = ττ−1ϕ shows that Tran(A) and DilO(A) generate
Dil(A). Note here we have used the existence of translations.

A5b (Big Desarges’ Axiom) Let O, A, B, C, A′, B′, C ′ be distinct points
in the affine plane A, and assume that

O, A, A′ are collinear
O, B, B′ are collinear
O, C, C ′ are collinear
AB ‖ A′B′
AC ‖ A′C ′.
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Then

BC ‖ B′C ′.

Note that this statement follows from P5, if A is embedded in a projective
plane π.

Theorem 7.9 The following two statements are equivalent, in the affine plane
A.

1. The axiom A5b holds in A.

2. Given any three points O, P , P ′, with P 6= O, P ′ 6= O, and O, P , P ′ are
collinear, there exists a unique dilation σ of A, such that σ(O) = O and
σ(P ) = P ′.

Proof. The proof is entirely analogous to the proof of theorem ????, so the
details will be left to the reader. Here is an outline:

(i)⇒(ii) Given O, P , P ′ as above, define a transformation ϕO,P,P ′ , for points
Q not on the line l containing O, P , P ′ as follows: ϕO,P,P ′(Q) = Q′, where Q′

is the intersection of the line OQ with the line through P ′, parallel to PQ.
Now if ϕO,P,P ′(Q) = Q′, one proves using A5b that ϕO,P,P ′ agrees with

ϕO,Q,Q′ (defined similarly) whenever both are defined. Hence one can define σ
to be either one, and σ(O) = O. Then σ is defined everywhere. Next show that
if σ(R) = R′, R 6= O, then σ = ϕO,R,R′ whenever the latter is defined. Now
clearly σ is 1–1 and onto. But, using previous results, one can show easily that
it takes lines into lines, so is an automorphism, and that PQ ‖ σ(P )σ(Q) for
any P , Q, so σ is a dilation. The uniqueness follows from Corollary ????.

(ii)⇒(i) Let O, A, B, C, A′, B′, C ′ be given satisfying the hypotheses of
A5b. Let σ be a dilation which leaves O fixed and sends A into A′. Then, by the
hypotheses, σ(B) = B′, and σ(C) = C ′. So from the fact that σ is a dilation,
BC ‖ B′C ′.

Remark. Using the theorems 7.6 and 7.9, we can show that A5b⇒A5a, although
this is not obvious from the geometrical statements.

Indeed, let us assume A5b. Let P , P ′ be two points. We will construct a
translation sending P into P ′, which will show that A5a holds, since P , P ′ are
arbitrary.

Let Q be a point not on PP ′, and let Q′ be the fourth vertex of the paral-
lelogram on P , P ′, Q. Let O be a point on PP ′, 6= P , and 6= P ′. let σ1 be a
dilation which leaves O fixed, and sends P into P ′ (which exists by Theorem
??). Let σ1(Q) = Q′′. Then P ′, Q′, Q′′ are collinear, so there exists a dilation
σ2 leaving P ′ fixed, and sending Q′′ to Q′.

Now consider τ = σ2σ1. Being a product of dilations, it is itself a dilation.
One sees easily that τ(P ) = P ′ and τ(Q) = Q′. Now any fixed point of τ must
lie on PP ′ and on QQ′ (because if X is a fixed point, XP ‖ XP ′ ⇒ X, P ,
P ′ collinear; similar for Q). But PP ′ ‖ QQ′, so τ has no fixed points. (We are
implicitly assuming P 6= P ′; but if P = P ′ we could have taken the identity,
which is a translation sending P to P ′.) Hence τ is a translation sending P into
P ′, so by Theorem 7.6, A5a holds.

Now we come to the construction of coordinates in the affine plane A. In
fact, we will find it convenient to construct a few more things, while we are at
it. So our program is to construct the following objects:
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1. We will define a division ring F .

2. We will assign coordinates to the points of A, so that A is in 1–1 corre-
spondence with the set of ordered pairs of elements of F .

3. We will find the equation of an arbitrary translation of A, in terms of the
coordinates.

4. We will find the equation of an arbitrary dilation.

5. Finally, we will show that the lines in A are given by linear equations, and
this will prove that A is isomorphic to the affine plane A2

F .

In the course of these constructions, there will be about a thousand details
to verify, so we will not attempt to do them all, but will give indications, and
leave the trivial verifications to the reader.

Definition of F . Fix a line l in A, and fix two points on l, call them 0, 1. Now
let F be the set of points on l.

If a ∈ F (i.e. if a is a point of l), let τa be the unique translation which takes
0 into a (here we use A5a). If a ∈ F and a 6= 0, let σa be the unique dilation of
A which leaves 0 fixed and sends 1 into a.

Now we define addition and multiplication in F as follows. If a, b ∈ F , define

a+ b = τaτb(0) = τa(b).

Since the translations form an abelian group, we see immediately that addition
is associative and commutative:

(a+ b) + c = a+ (b+ c)
a+ b = b+ a,

that 0 is the identity element, and that τ−1
a (0) = −a is the additive inverse.

Thus F is an abelian group under addition. (Notice how much simpler these
verifications are than if we had followed the plan suggested on pp. ????.)

Note also from our definition of addition that we have

τa+b = τaτb for all a, b ∈ F .

Now we define multiplication as follows: 0 times anything is 0. If a, b ∈ F ,
b 6= 0, we define

ab = σb(a) = σbσa(1).

Now, since the dilations form a group, we see immediately that

(ab)c = a(bc),
a · 1 = 1 · a = a for all a,
σa
−1(1) = a−1 is a multiplicative inverse.

Therefore the non-zero elements of F form a group under multiplication. Fur-
thermore, we have the formulae (for b 6= 0)

τab = σbτaσb
−1

σab = σbσa.
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It remains to establish the distributive laws in F . For some reason, one of
them is much harder than the other, perhaps because our definition of multipli-
cation is asymmetric. First consider (a + b)c. If c = 0, (a + b)c = 0 = ac + bc,
ok. If c 6= 0, we use the formulae above, and find

τ(a+b)c = σcτa+bσc
−1 = σcτaτbσc

−1 = σcτaσc
−1σcτbσc

−1

= τacτbc = τac+bc.

Now, applying both ends of this equality to the point 0, we have

(a+ b)c = ac+ bc.

Before proving the other distributivity law, we must establish a lemma. For
any line m in A, let Tranm(A) be the group of translations in the direction of
m, i.e. those translations τ ∈ Tran(A) such that either τ = id or PP ′ ‖ m for
all P (where τ(P ) = P ′).

Lemma 7.10 Let m, n be lines in A (which may be the same). Let τ ′ ∈
Tranm(A) and τ ′′ ∈ Trann(A) be fixed translations, different from the identity,
and let 0 be a fixed point of A. We define a mapping

ϕ : Tranm(A)→ Trann(A)

as follows: For each τ ∈ Tranm(A), τ 6= id, there exists a unique dilation σ ∈
Dil0(A), leaving 0 fixed, and such that

τ = στ ′σ−1.

(Indeed, take σ such that σ(τ ′(0)) = τ(0).) Define

ϕ(τ) = στ ′′σ−1

(with that σ).
Then, ϕ is a homomorphism of groups, i.e. for all τ1, τ2 ∈ Tranm(A), ϕ(τ1τ2) =

ϕ(τ1)ϕ(τ2).

Proof. Case 1. First we treat the case where m ∦ n. Replacing m, n by lines
parallel to them, if necessary, we may assume that m and n pass through 0. Let
τ ′(0) = P ′, τ ′′(0) = P ′′. Let τ∗ be the unique translation which takes P ′ into
P ′′. Then

τ ′′ = τ ′τ∗.

If τ1, τ2 ∈ Tranm(A), let σ1, σ2 be the corresponding dilations. Then

ϕ(τ1) = σ1τ
′′σ1

−1 = σ1τ
′τ∗σ1

−1 = σ1τ
′σ1

−1σ1τ
∗σ1

−1

= τ1 · σ1τ
∗σ1

−1 = τ1τ
∗
1 ,

where we define
τ∗1 = σ1τ

∗σ1
−1.

Similarly,
ϕ(τ2) = τ2τ

∗
2 ,
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where
τ∗2 = σ2τ

∗σ2
−1,

and
ϕ(τ1τ2) = τ1τ2 · τ∗3 ,

where σ3 corresponds to τ1, τ2 and

τ∗3 = σ3τ
∗σ3

−1.

So we have

ϕ(τ1τ2) = τ1τ2 · τ∗3
ϕ(τ1)ϕ(τ2) = τ1τ2 · τ∗1 τ∗2 .

Now ϕ(τ1τ2) and ϕ(τ1)ϕ(τ2) are both translations in the m direction. τ∗3 and
τ∗1 τ

∗
2 are both translations in the τ∗ direction. But this can only happen if

τ∗3 = τ∗1 τ
∗
2

and
ϕ(τ1τ2) = ϕ(τ1)ϕ(τ2),

which is what we wanted to prove. (To make this argument more explicit, con-
sider the points Q and R, which are the images of O under the two translations
above. Then we have O,Q,R collinear, and also τ1τ2(0), Q,R collinear, which
implies Q = R.)

Case 2. If m ‖ n, τ ′, τ ′′ ∈ Tranm(A). Take another line o, not parallel to m,
and take τ ′′′ ∈ Trano(A). Define

ψ1 : Tranm(A)→ Trano(A)

using τ ′ and τ ′′′, and define

ψ2 : Trano(A)→ Tranm(A)

using τ ′′′ and τ ′′.
ψ1, ψ2 are homomorphisms by Case 1, so ϕ = ψ2ψ1 is a homomorphism.
(Note the analogy of this proof with the proof of Proposition 7.7.)

Now we can prove the other distributivity law, as follows. Consider λ(a+ b).
In the lemma, take m = n = l, o = o, τ ′ = τ1, τ ′′ = τλ. Then ϕ is the
map of Tranl(A) → Tranl(A) which sends τa into τλa, for any a. Indeed, τa =
σaτlσa

−1, so σ = σa and σaτλσa
−1 = τλa. Now the lemma tells us that ϕ is a

homomorphism, i.e. for any a, b ∈ F ,

ϕ(τaτb) = ϕ(τa)ϕ(τb)

or
ϕ(τa+b) = ϕ(τa)ϕ(τb).

Hence
τλ(a+b) = λa+ λb.

Thus we have proved
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Theorem 7.11 Let A be an affine plane satisfying A5a and A5b. Let l be a
line of A, let 0, 1 be two points of l, let F be the set of points of l, and define
+ and · in F as above. Then F is a division ring.

Now we can introduce coordinates in A. We have already fixed a line l in
A and two points 0, 1 on l, and on the basis of these choices we defined our
division ring F . Now we choose another line, m, passing through 0, and fix a
point 1′ on m.

For each point P ∈ l, if P corresponds to the element a ∈ F , we give P the
coordinates (a, 0). Thus 0 and 1 have coordinates (0, 0) and (1, 0), respectively.

If P ∈ m, P 6= 0, then there is a unique dilation σ leaving 0 fixed and sending
1′ into P . σ must be of the form σa for some a ∈ F . So we give P the coordinates
(0, a).

Finally, if P is a point not on l or m, we draw lines through P , parallel to l
and m, to intersect m in (0, b) and l in (a, 0). Then we give P the coordinates
(a, b).

One sees easily that in this way A is put into 1–1 correspondence with the
set of ordered pairs of elements of F . We have yet to see that lines are given by
linear equations—this will come after we find the equations of translations and
dilations.

Now we will investigate the equations of translations and dilations. First,
some notation. For any a ∈ F , denote by τ ′a the translation which takes 0 into
(0, a). Thus τ ′1 is the translation which takes 0 into 1′, and for any a ∈ F ,
a 6= 0,

τ ′a = σaτ
′
1σa

−1.

This follows from the definition of the point (0, a). Furthermore, it follows from
Lemma 7.10 that the mapping

τa → τ ′a

from Tran1(A) to Tranm(A) is a homomorphism, and hence we have the formu-
lae, for any a, b ∈ F ,

τ ′a+b = τ ′aτ
′
b

τ ′ab = σbτ
′
aσb

−1.

Proposition 7.12 Let τ be a translation of A, and suppose that τ(0) = (a, b).
Then τ takes an arbitrary point Q = (x, y) into Q′ = (x′, y′) where{

x′ = x+ a
y′ = y + b.

Proof. Indeed, let τ0Q be the translation taking 0 into Q. Then τ0Q = τxτ
′
y.

Also τ = τaτ
′
b. So

τ(Q) = ττ0Q(0)
= τaτ

′
bτxτ

′
y(0) = τaτxτ

′
bτ
′
y(0)

= τa+xτ
′
b+y(0) = (x+ a, y + b).
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Proposition 7.13 Let σ be any dilation of A leaving 0 fixed. Then σ = σa for
some a ∈ F , and σ takes the point Q = (x, y) into Q′ = (x′, y′), where{

x′ = xa
y′ = ya.

Proof. Again write τ0Q = τxτ
′
y. Then

σ(Q) = σaτxτ
′
y(0) = σaτxτ

′
yσa

−1(0)
= σaτaσa

−1 · σaτ
′
yσa

−1(0)
= τxa · τ ′ya(0) = (xa, ya).

Theorem 7.14 Let A be an affine plane satisfying A5a and A5b. Fix two lines
l, m in A, and fix points 1 ∈ l, 1′ ∈ m, different from 0 = l ·m. Then, assigning
coordinates as above, the lines in A are given by linear equations of the form

y = mx+ b m, b ∈ F
or x = a a ∈ F .

Thus A is isomorphic to the affine plane A2
F .

Proof. By construction of the coordinates, a line parallel to l will have an equa-
tion of the form y = b, and a line parallel to m will have an equation of the
form x = a.

Now let r be any line through 0, different from l andm. Then r must intersect
the line x = 1, say in the piont Q = (1,m) (m ∈ F ).

Now if R is any other point on r, different from 0, there is a unique dilation
σλ leaving 0 fixed and sending Q into R. Hence R will have coordinates

x = l · λ
y = m · λ.

Eliminating λ, we find the equation of r is

y = mx.

Finally, let s be a line not passing through 0, and not parallel to l or m. Let
r be the line parallel to s passing through 0. Let s intersect m in (0, b). Then it
is clear that the points of s are obtained by applying this translation τ ′b to the
points of r. So if (λ,mλ) is a point of r (for x = λ), the corresponding point of
s will be

x = λ+ 0
y = mλ+ b.

So the equation of r is
y = mx+ b.

61



Remark. If σ is an arbitrary dilation of A, then σ can be written as τσ′, where
τ is a translation and σ′ is a dilation leaving 0 fixed (cf. Proposition 7.8). So if
τ has equations {

x′ = x+ c
y′ = y + d

and σ′ has equations {
x′ = xa
y′ = ya,

we find that σ has equations {
x′ = xa+ c
y′ = ya+ d.

Theorem 7.15 Let π be a projective plane satisfying P1–P5. Then there is a
division ring F such that π is isomorphic to P2

F , the projective plane over F .

Proof. Let l0 be any line in π, and consider the affine plane A = π − l0. Then
A satisfies A5a and A5b, hence A ∼= A2

F , by the previous theorem. But π is
the projective plane associated to the affine plane A, and P2

F is the projective
plane associated to the affine plane A2

F , so this isomorphism extends to show
π ∼= P2

F .

Remark. This is a good point to clear up a question left hanging from Chapter 1,
about the correspondence between affine planes and projective planes. We saw
that an affine plane A could be completed to a projective plane S(A) by adding
ideal points and an ideal line. Conversely, if π is a projective plane and l0 a line
in π then π − l0 is an affine plane.

What happens if we perform first one process and then the other? Do we get
back where we started? There are two cases to consider.

1) If π is a projective plane, l0 a line in π, π − l0 the corresponding affine
plane, then one can see easily that S(π− l0) is isomorphic to π in a natural way.

2) Let A be an affine plane, and let S(A) = A ∪ l∞ be the corresponding
projective plane. Then clearly S(A)− l∞ ∼= A. But suppose l1 is a line in S(A),
different from l∞? Then in general one cannot expect S(A)−l1 to be isomorphic
to A.

For example, let Π be the free projective plane on the configuration π0 =
a projective plane on seven points, plus one more point. Let A = Π−l∞, where
l∞ is one of the lines of π0. Then S(A) = Π. Let l1 be a line of Π containing
no point of π0. Then Π − l1 is not isomorphic to A, because Π − l1 contains a
confined configuration, but A contains no confined configuration.

However, if we assume that A satisfies A5a and A5b, then S(A) − l1 ∼=
A. Indeed, S(A) ∼= P2

F , for some division ring F , and we can always find an
automorphism ϕ ∈ AutP2

F , taking l1 to l∞ (see Proposition 6.6). Then ϕ gives
an isomorphism of S(A)− l1 and A.
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8

Projective Collineations

Let us look back for a moment at what we have accomplished so far. We
have been approaching the subject of projective geometry from two different
directions, the synthetic and the analytic.

The synthetic approach starts from the axioms P1–P4, and eventually P5,
P6, P7, and builds everything in logical steps from there. Thus we have the
notion of harmonic points, of perspectivities and projectivities from one line
to another, and the Fundamental Theorem, which says that there is a unique
projectivity from a line l into itself which sends three given points A, B, C into
three other given points A′, B′, C ′.

The analytic approach starts from an algebraic object, such as a division ring
or field F , or the real numbers R. Then we define P2

F as triples of elements of the
field with a certain equivalence relation, and lines as linear equations. We can
define certain automorphisms of P2

F using matrices, others using automorphisms
of F , and we have a Fundamental Theorem telling us that these two types of
automorphisms generate the entire group of automorphisms of P2

F .
In the last two chapters, we have tied these two approaches together, by

showing that a (synthetic) projective plane is of the form P2
F for some division

ring F , if and only if Desargues’ Axiom, P5, holds. Furthermore, we showed
that the axioms P6 and P7, which are synthetic statements, are equivalent to
algebraic statements about the division ring F .

In this chapter we will continue exploring the relationship between the syn-
thetic and the analytic approaches, in two important situations. One is to give
an analytic interpretation of the group PJ(l) of projectivities of a line into itself,
which so far we have studied only from the synthetic point of view. The other is
to give a synthetic interpretation of the group PGL(2) of automorphisms of P2

F

defined by matrices, which so far we have studied only from the analytic point
of view.

Projectivities on a line

Let F be a field (we will stick to the commutative case for simplicity), and
let π = P2

F be the projective plane over F . Then π satisfies P5 and P6. Let l
be the line x3 = 0, so that l has homogeneous coordinates x1 and x2. We have
already studied the group PJ(l) of projectivities of l into itself (see Chapter 5).
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Now we will define another group of transformations of l into itself, PGL(l), and
will prove it is equal to PJ(l).

Let A =
(
a b
c d

)
be a 2×2 matrix with coefficients in F , and with det(A) ≡

ad− bc 6= 0. Then we define a transformation of l into itself by the equations

x′1 = ax1 + bx2

x′2 = cx1 + dx2.

Call this transformation TA. As in Chapter 3, one can show easily that TA is a
one-to-one transformation of l onto itself, whose inverse is TA−1 . If A,B are two
such matrices, then TATB = TAB , so the set of all such transformations forms a
group. Two matrices A and A′ define the same transformation (i.e. TA = TA′)
if and only if there is an element λ ∈ F, λ 6= 0, such that A′ = λA.

Definition. The group of transformations of l into itself of the form TA

defined above, where A =
(
a b
c d

)
is a matrix of elements of F with ad−bc 6= 0,

is called PGL(l;F ), or PGL(l) for short.
In dealing with the group PGL(l), we will find it more convenient to introduce

a non-homogeneous coordinate x = x1/x2 on l. Thus x may take on all values
of F , plus the value ∞ (where a/0 = ∞ for any a ∈ F, a 6= 0). Then the
points of l are in one-to-one correspondence with the elements of the set F ∪
{∞}. Furthermore, the group PGL(l) is then the group of fractional linear
transformations of l, namely those given by equations of the form

x′ =
ax+ b

cx+ d
ad− bc 6= 0, a, b, c, d ∈ F .

When x =∞, this expression is defined to be a/c if c 6= 0 and ∞ if c = 0 (note
that a = c = 0 is impossible because of the condition ad− bc 6= 0).

Proposition 8.1 Let A,B,C and A′, B′, C ′ be two triples of distinct points on
l. Then there is a unique element of PGL(l) which sends A,B,C into A′, B′, C ′,
respectively.

Proof. The proof could be done as in Chapter 3 for PGL(2), but it is simple
enough to be worth repeating in this new context.

For the existence of such a transformation, it is sufficient to consider the
case where A,B,C = 0, 1,∞, respectively, and where A′, B′, C ′ are three points
with coordinates α, β, γ respectively. Then we must find a, b, c, d so that the
transformation

x′ =
ax+ b

cx+ d

takes 0, 1,∞ to α, β, γ. So we must solve

α =
b

d
, β =

a+ b

c+ d
, γ =

a

c
.

Suppose that α, β, γ are all different from ∞. (We leave the special case when
one of them is ∞ to the reader!) Then set d = 1, and solve the other equations,
finding

b = α, c =
α− β
β − α

, a =
α− β
β − γ

· γ.
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Then
ad− bc =

α− β
β − γ

(γ − α) 6= 0

since α, β, γ are all distinct. Thus we have a transformation of the right kind,
which does what we want.

To show uniqueness, it is sufficient to show that if the transformation

x′ =
ax+ b

cx+ d

leaves 0, 1,∞ fixed, then it is the identity. Indeed, in that case we have

0 =
b

d
, 1 =

a+ b

c+ d
, ∞ =

a

c
,

which implies b = 0, c = 0, a = d, so x′ = x.

Proposition 8.2 The group PGL(l) of fractional linear transformations is gen-
erated by transformations of the following three kinds:

(i) x′ = x+ a a ∈ F
(ii) x′ = ax a ∈ F , a 6= 0
(iii) x′ = 1

x ,

(each of which is, of course, a fractional linear transformation).

Proof. First of all, it is clear that by using a type (ii) transformation, followed
by a type (i) transformation, we can get an arbitrary transformation of the form
(∗)

x′ = ax+ b a, b ∈ F , a 6= 0.

Now let
x′ =

ax+ b

cx+ d
ad− bc 6= 0

be an arbitrary fractional linear equation. If c = 0, then x′ = a
dx+ b

d and a
d 6= 0,

so it is the above form (∗). So we may suppose c 6= 0. Then let x1 = cx+ d, so
that x = 1

c (x1 − d) and

x′ =
a 1

c (x1 − d) + b

x1
=
b− ad

c

x1
+
a

c
.

Now b−ad
c 6= 0 by hypothesis, hence x′ can be obtained from x1 by an application

of (iii) followed by one of the above type (∗).
Thus, all together, x′ is obtained from x by one application of (iii) and two

applications each of transformations of the types (ii) and (i).

Proposition 8.3 Each one of the three special types of transformations (i),
(ii), and (iii) of the previous proposition is a projectivity of l into itself.

Proof. We must exhibit each of these transformations as a product of perspec-
tivities, to show that it is a projectivity.

(i) x′ = x+a. Take x2 = 0 to be the line at infinity, and take affine coordinates
x = x1/x2, y = x3/x2 in the affine plane. Then l is the x-axis, and we can
construct x+ a geometrically as follows:

65



1. Project (x, 0) from the point (0, 1) onto the line l∞, getting W .

2. Project W back onto l from the point (a, 1). This gives x+ a.

Thus the transformation x′ = x + a is a product of two perspectivities and so
is a projectivity.

(ii) x′ = ax, a 6= 0. This transformation, too, is a product of two perspectiv-
ities.

1. Project (x, 0) in the vertical direction onto the line x = y, getting the
point Y .

2. Project Y back onto l, in the direction of the line joining (1, 1) and (a, 0)
to obtain the point (ax, 0).

(iii) x′ = 1
x . This transformation is a product of three perspectivities.

1. Project (x, 0) from the point (1, 1) onto the line at infinity, l∞, getting W .

2. Project W from the point (1, 0) onto the line x = y, getting Z.

3. Project Z in the vertical direction back onto l, getting the point ( 1
x , 0).

Theorem 8.4 Let F be a field, let π = P2
F , let l be the line x3 = 0. Then

the group PJ(l) of projectivities of l into itself is equal to the group PGL(l) of
fractional linear transformations on l.

Proof. We have seen that PGL(l) is generated by transformations of three spe-
cial types, each of which is a projectivity. So we conclude that every fractional
linear transformation is a projectivity, i.e.

PGL(l) ⊆ PJ(l).

Now let ϕ take the points 0, 1,∞ into A,B,C respectively. Then by Proposition
8.1, there is a fractional linear transformation taking 0, 1,∞ into A,B,C, and
of course this is also a projectivity. However, by the Fundamental Theorem for
projectivities on a line (Theorem 5.6) there is only one projectivity taking 0, 1,∞
into A,B,C. So the two are equal, i.e. ϕ is a fractional linear transformation,
and so

PGL(l) = PJ(l).

Remarks. 1. Notice that we have had to use the full strength of our synthetic
theory (in the form of the Fundamental Theorem for projectivities on a line,
which was a hard theorem) to prove this result. And that is not surprising,
because what we have proved is really a rather remarkable fact. It says that
our two entirely different approaches have actually converged, and that we have
arrived in each case at the same group of transformations of the line into itself.

2. One may wonder what is special about the line x3 = 0 which occurs in the
statement of the theorem. Nothing is special about it. More precisely, if l′ is any
other line, then the groups PJ(l) and PJ(l′) are isomorphic, as abstract groups.
To get such an isomorphism, let P be any point not on l or l′, and let ψ : l→ l′
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be the perspectivity lP[ l
′. Then for each α ∈ PJ(l), we have ψαψ−1 ∈ PJ(l′),

and the mapping
α 7→ ψαψ−1

is an isomorphism of PJ(l) onto PJ(l′). (Details left to the reader!) One will
note, however, that this isomorphism depends on the choice of P . In fact, there
is no one way to make PJ(l) and PJ(l′) isomorphic that is better than all other
ways. So we say PJ(l) and PJ(l′) are non-canonically isomorphic.

To recapitulate, we have been examining a certain group of transformations
of the line l into itself, namely PJ(l) = PGL(l), and have found that we can
describe it in two different ways. One is by considering l as a line in P2

F , and using
incidence properties of the projective plane. The other is by using the algebraic
structure on l given by its coordinatization. Now we will give a third way of
characterizing these transformations, namely as the group of all permutations
of l which preserve cross-ratio. (This notion will be explained presently.) Finally,
in case F is the field C of complex numbers, we will give a fourth interpretation
of this group, as the group of all conformal, orientation-preserving maps of the
Riemann sphere onto itself.

Definition. Let F be a field, and let a, b, c, d be four distinct points on the
line l as above, i.e. a, b, c, d ∈ F ∪ {∞}. Then we define the cross-ratio of the
four points by

R×(a, b, c, d) =
a− c
a− d

· b− d
b− c

.

(In case one of a, b, c, d is ∞, one must make the definition more precise, e.g. if
a =∞, we get for the cross-ratio b−d

b−c .)

Theorem 8.5 Let F be a field, and let l, as above, be the projective line over
F , with non-homogeneous coordinate x which varies over the set F ∪{∞}. Then
the group PGL(l) of fractional linear transformations on F is precisely the group
of permutations of l which preserve the cross-ratio, i.e. one-to-one mappings ϕ
of l onto l, such that whenever A,B,C,D are four distinct points of l, and
ϕ(A) = A′, etc., then

R×(A,B,C,D) = R×(A′, B′, C ′, D′).

Proof. First we must see that every fractional linear transformation does pre-
serve the cross-ratio. Since the group PGL(l) is generated by transformations of
the three special types (i), (ii), (iii) of Proposition 8.2, it will be sufficient to see
that each one of them preserves the cross-ratio. So let A,B,C,D be four points
of l, with coordinates a, b, c, d. Then

R×(A,B,C,D) =
a− c
a− d

· b− d
b− c

.

(i) If we apply a transformation of the type x′ = x + λ, λ ∈ F , our new
points A′, B′, C ′, D′ have coordinates a + λ, b + λ, c + λ, d + λ, respectively.
Hence

R×(A′, B′, C ′, D′) =
(a+ λ)− (c+ λ)
(a+ λ)− (d+ λ)

· (b+ λ)− (d+ λ)
(b+ λ)− (c+ λ)

,

which is easily seen to be equal to the original cross-ratio.
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(ii) If we apply a transformation of the form x′ = λx, λ ∈ F , λ 6= 0, we have

R×(A′, B′, C ′, D′) =
λa− λc
λa− λd

· λb− λd
λb− λc

,

which again is clearly equal to the first cross-ratio.
(iii) If we apply the transformation x′ = 1

x , we have

R×(A′, B′, C ′, D′) =
1
a −

1
c

1
a −

1
d

·
1
b −

1
d

1
b −

1
c

.

Now multiplying above and below by abcd, we obtain the original cross-ratio
again. (One must consider the special case when one of a, b, c, d is 0 or ∞
separately—left to the reader.)

Thus we have shown that every fractional linear transformation preserves
the cross-ratio. Now conversely, let us suppose that ϕ is a transformation which
preserves cross-ratio. Let ϕ send 0, 1,∞ into a, b, c respectively, and let ϕ(x) =
x′. Then we have

R×(0, 1,∞, x) = R×(a, b, c, x′)

or
0−∞
0− x

· 1− x
1−∞

=
a− c
a− x′

· b− x
′

b− c
or

x− 1
x

=
a− c
b− c

· b− x
′

a− x′
.

Solving for x′, we find that ϕ is given by the expression

x′ =
a−b
b−c cx+ a
a−b
b−cx+ 1

,

which is indeed a fractional linear transformation.

Example. Let F = C be the field of complex numbers. Then the line l is
the projective line over C, that is, the ”plane” of complex numbers, plus one
additional point, called ∞. This is most easily represented by a sphere, called
the Riemann sphere, via the stereographic projection. (For details, see any book
on functions of a complex variable.) A unit sphere is placed on the origin of the
complex plane (which becomes the S pole of the sphere). Then, projecting from
the N pole of the sphere, the point at infinity corresponds to the N pole and all
other points of the sphere correspond in a one-to-one manner with the points
of the complex plane.

Now it is proved in courses on functions of a complex variable (q.v.) that
the fractional linear transformations of the extended complex plane correspond
precisely to those one-to-one transformations of the Riemann sphere onto itself
which preserve orientation, and which are conformal, i.e. which preserve the
angles between any two intersecting curves.
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Projective collineations

Now we come to the study of projective collineations. In general, any auto-
morphism of a projective plane π is called a collineation, because it sends lines
into lines.

Definition. A projective collineation is an automorphism ϕ of the pro-
jective plane π, such that, whenever l is a line of π, and l′ = ϕ(l) is its image
under ϕ, then the restriction of ϕ to l,

ϕ |l: l→ l′,

which is a mapping of the line l to the line l′, should be a projectivity.
For example, the identity transformation is a projective collineation. But

we will see that in general, there are many more projective collineations. In
fact we will prove that if π is a projective plane satisfying P5 and P6, then
the projective collineations satisfy a fundamental theorem: there is a unique
one of them sending any four points, no three collinear, into any other four
points, no three collinear. We will also study the structure of the group of
projective collineations, by showing that it is generated by certain special kinds
of projective collineations, called elations and homologies. Finally, we will show
that if π ∼= P2

F , where F is a field, then the group of projective collineations is
precisely PGL(2, F ).

Proposition 8.6 Let ϕ be an automorphism of π. Then ϕ is a projective col-
lineation if and only if there exists some line l0, such that ϕ |l0 is a projectivity.

Proof. If ϕ is a projective collineation, any l0 will do. So suppose conversely that
ϕ is an automorphism whose restriction to l0 is a projectivity. Say ϕ(l0) = l′0.
Now let l be any other line, and let P be a point not on l or l0. Let ψ : l → l0
be the perspectivity lP[ l0. Now if A ∈ l and A0 ∈ l0, then say that ψ(A) = A0

is the same as saying P,A,A0 are collinear. Since ϕ is an automorphism, this is
the same as saying that P ′, A′, A′0 are collinear (where ′ denotes the action of
ϕ). Let l′ = ϕ(l). In other words, the transformation

ϕψϕ−1 : l′ → l′0

is the same as the perspectivity l′ P
′

[ l
′
0. Call it ψ′. So

ψ′ = ϕψϕ−1.

In other words,
ϕ |l= ψ−1ϕ |l0 ψ.

But ψ, ϕ |l0 , and ψ′−1 are all projectivities, so ϕ |l is also a projectivity, and
hence ϕ is a projective collineation, since l was arbitrary.

Before we can prove much about projective collineations, we must study
some special types of collineations, caled elations and homologies. Then we will
use them to deduce properties of the group of projective collineations.

Definition. An elation is an automorphism of the projective plane π, which
leaves some line, say l0, pointwise fixed, and which has no other fixed points.
The line l0 is called the axis of the elation.
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Let α be an elation of π, with axis l0, and let A be the affine plane π − l0.
For any P,Q ∈ A, let PQ meet l0 at X. Then X is fixed, so P ′Q′ also meets l0
at X, where P ′ and Q′ are the images of P and Q under α. Hence PQ ‖ P ′Q′ in
A, so α restricted to A is a dilation. But α has no fixed points outside of l0, so
α restricted to A is in fact a translation. Conversely any translation of A gives
an elation of π with axis l0.

Proposition 8.7 The elations of π with axis l0 correspond, by restriction, to
the translations of the affine plane π − l0. Hence, if one includes the identity,
the elations with axis l0 form a group El0 .

Proof. We need only refer to the fact that the translations of an affine plane
form a group.

If α is an elation with axis l0, then we can speak of the direction of the
translation α |A. Indeed, for any P,Q, PP ′ ‖ QQ′. Say they meet l0 at O. Then
O is the center of the elation α.

One should not suppose that all the elations taken together form a group.
For if α1, α2 are elations with different axes l1 and l2, there is no reason why
α1α2 should be an elation at all.

However, we can say something about all the elations. First we have shown
that the elations with a fixed asix l0 (including the identity) form a group, El0 .
Similarly, if l1 is another line, the elations are both subgroups of Autπ. Let ϕ
be an automorphism of π which takes l0 into l1 (so long as π satisfies P5, there
will be one!). Then the mapping

α 7→ ϕαϕ−1

for α ∈ El0 can easily be seen to be an isomorphism of El0 onto El1 . Note,
for example, that ϕ−1 takes l1 into l0, α leaves l0 pointwise fixed, and ϕ takes
l0 into l1, so that ϕαϕ−1 leaves l pointwise fixed. Similarly one can see that
ϕαϕ−1 has no other fixed points, so it is an elation. We leave some details to
the reader. This is a familiar situation in group theory. In fact, we have the
following definition.

Definition. Let G be a group, and let H0 and H1 be subgroups of G. Then
we say that H0 and H1 are conjugate subgroups if there is an element g ∈ G,
so that the map

h0 7→ gh0g
−1

is an isomorphism of H0 onto H1.
Thus we have proved

Proposition 8.8 Let π be a projective plane satisfying P5. Let El0 and El1

denote the groups of elations of π with axes l0 and l1, respectively. Then El0

and El1 are conjugate subgroups of Autπ.

Conversely, one can see easily that any conjugate subgroup of El0 is of the
form El, for some line l in π. Thus the set of all elations of π is the union of the
subgroup El0 of Autπ, together with its conjugates.

Definition. A homology of the projective plane π is an automorphism of
π which leaves a certain line l0 pointwise fixed, and which has precisely one
other fixed point O. l0 is called the axis of the homology, and O is called its
center.
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As above, we note that the homologies with axis l0 correspond to dilations
of the affine plane π − l0. Hence, if one adjoins the homologies with axis l0 and
the identity, they form a group, which we will call Hl0 . For any other axis l1,
Hl1 is a conjugate subgroup of Autπ to Hl0 . Refining some more, we see that
for any line l0, and for any point O not on l0, the homologies with axis l0 and
center O form a group Hl0,O. And since in a Desarguesian projective plane we
can move a line l0 and a point O to any other line l1 and point P , we see as
above that Hl1,P is conjugate to Hl0,O. Hence the homologies of π are the union
of the subgroup Hl0,O of Autπ with all of its conjugates.

Proposition 8.9 Elations and homologies are projective collineations.

Proof. By Proposition 8.6, it is sufficient to note that their restriction to a single
line is a projectivity. But the restriction of any elation or homology to its axis
is the identity, which is a projectivity.

Proposition 8.10 Let π be a projective plane satisfying P5. Let A,B,C,D
and A′, B′, C ′, D′ be two quadruples of points, no three of which are collinear.
Then one can find a product ϕ of elations and homologies, such that ϕ(A) = A′,
ϕ(B) = B′, ϕ(C) = C ′, and ϕ(D) = D′.

Proof. Step 1. Choose a line l0 such that A and A′ are not on l0. Then, since π
is Desarguesian (cf. Chapter VII) there is a translation of π− l0 which sends A
into A′, i.e. an elation α1 of π such that α1(A) = A′. Let α1 take B,C,D into
B′′, C ′′, D′′. Then we have reduced to the problem of finding a product of ela-
tions and homologies which leaves A′ fixed, and sends B′′, C ′′, D′′ into B′, C ′, D′.
Furthermore, since α1 is an automorphism, A′, B′′, C ′′, D′′ are four points no
three of which are collinear. Thus, relabeling A′, B′′, C ′′, D′′ as A,B,C,D, we
have reduced to the original problem, under the additional assumption that
A = A′.

Step 2. Choose another line l1 such that A ∈ l1, but B,B′ /∈ l1. Then
choose an elation α2 with axis l1, and such that α2(B) = B′. Then, using α2,
and relabeling again, we have reduced the original problem to the case A = A′

and B = B′.
Step 3. Let l2 = AB. Then C and C ′ are not on l2, because A,B,C are not

collinear, and A′, B′, C ′ are not collinear. So again, we can choose an elation
α3 with axis l2, such that α3(C) = C ′, and so reduce the problem to the case
A = A′, B = B′, C = C ′.

Step 4. Draw AD and BD′ and let them meet at E. Now since A,D,E are
collinear, and D,E are different from A, There exists a dilation of the affine
plane π −BC, which leaves A fixed, and sends D into E. In other words, there
is a homology β1 of π with axis BC and center A, which sends D into E.

Step 5. Similarly, there is a homology β2 of π with axis AC and center B,
which sends E into D′. Therefore β2β1 leaves A,B,C fixed, and sends D into
D′.

This completes the proof of the proposition. Note that, in general, we need
three elations and two homologies.

Proposition 8.11 Let π be a projective plane satisfying P5 and P6. Let ϕ be
a projective collineation of π, which leaves fixed four points A,B,C,D, no three
of which are collinear. Then ϕ is the identity.
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Proof. Let l be the line BC. Since B and C are fixed, ϕ sends l into itself, and
ϕ restricted to l must be a projectivity, since ϕ is a projective collineation. But
ϕ also leaves A and D fixed, so ϕ must leave AD · l = F fixed. So ϕ |1 is a
projectivity of l into itself which leaves fixed the three points B,C, F . Hence
ϕ leaves l pointwise fixed, by the Fundamental Theorem for projectivities on a
line (Chapter 5). Now ϕ restricted to π− l is a dilation with two fixed points A
and D, so it must be the identity. Hence ϕ is the identity.

Proposition 8.12 (Fundamental Theorem for Projective Collineations)
Let π be a projective plane satisfying P5 and P6, and denote by PC(π) the
group of projective collineations of π. If A,B,C,D and A′, B′, C ′, D′ are two
quadruples of points, no three collinear, then there is a unique element ϕ ∈
PC(π) such that ϕ(A) = A′, ϕ(B) = B′, ϕ(C) = C ′, and ϕ(D) = D′.

Proof. Since elations and homologies are projective collineations (Proposition 8.9)
and since there are enough of them to send A,B,C,D to A′, B′, C ′, D′ (Propo-
sition 8.10), there certainly is some such ϕ. On the other hand, if ψ is another
such projective collineation, then ψ−1ϕ is a projective collineation which leaves
A,B,C,D fixed, and so is the identity (Proposition 8.11). Hence ϕ = ψ, and ϕ
is unique.

Corollary 8.13 The group PC(π) of projective collineations is generated by
elations and homologies.

Proof. Let ψ ∈ PC(π), let A,B,C,D be four points, no three collinear, and let
ψ send A,B,C,D into A′, B′, C ′, D′. Construct by Proposition 8.10 a product
ϕ of elations and homologies which also sends A,B,C,D to A′, B′, C ′, D′. Then
by the uniqueness of the theorem, ψ = ϕ, so ψ is a product of elations and
homologies.

Finally, we come to the analytic interpretation of the projective collineations.

Theorem 8.14 Let F be a field, and let π = P2
F be the projective plane over

F . Then
PC(π) = PGL(2, F ).

Proof. First we will show that certain very special elations and homologies are
represented by matrices.

Consider an elation α with axis x3 = 0 and center (1, 0, 0). If A is the affine
plane x3 6= 0 with affine coordinates

x = x1/x3

y = x2/x3,

then α is a translation of A in the x-direction, i.e. it has equations

x′ = x+ a

y′ = y.

So its homogeneous equations are

x′1 = x1 + ax3

x′2 = x2

x′3 = x3,
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so α is represented by the matrix

Ea =

 1 0 a
0 1 0
0 0 1


with a ∈ F .

Now if α′ is any other elation with axis l0 and center O, we can find a matrix
A, such that TA sends the line x3 = 0 into l0 and (1, 0, 0) to O. Then α′ will be
of the form

α′ = TAαT
−1
A ,

where α is an elation of the above special type. In other words, α′ is represented
by the matrix AEaA

−1 for some a ∈ F .
Similarly, consider a homology β, with axis x1 = 0 and center (1, 0, 0). Pass-

ing to the affine plane x1 6= 0, we see that it is a dilation with center (0, 0), hence
is a stretching in some ratio k 6= 0, and its equation in homogeneous coordinate
is

x′1 = x1

x′2 = kx2

x′3 = kx3.

So it is represented by the matrix 1 0 0
0 k 0
0 0 k

 .

We can get another matrix representing the same transformation by multiplying
by the scalar b = k−1, so we find β is represented also by the matrix b 0 0

0 1 0
0 0 1

 b ∈ F , b 6= 0.

As before, any other homology β′ is a conjugate by some matrix B of one of
this form, so any homology β′ is represented by a matrix of the form BHbB

−1

for some b ∈ F, b 6= 0.
Thus we have seen that every elation and every homology can be represented

by a matrix, i.e. they are elements of the group PGL(2, F ). But by Corollary 8.13
above, the group of projective colllineations is generated by elations and homolo-
gies, so we have

PC(π) ⊆ PGL(2, F ).

But we have seen (Chapter 6) that over a field F there is a unique element
of PGL(2, F ) sending four points, no three collinear, into four points, no three
collinear. Since this is already accomplished by the subgroup PC(π), according
to the Fundamental Theorem above, the two groups must be equal.

Corollary 8.15 Let F be a field. Then every invertible 3 × 3 matrix M with
coefficients in F can be written as a scalar times a product of conjugates of
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matrices of the two forms Ea and Hb above. In particular, we can write M in
the form

M = λB2Hb2B
−1
2 B1Hb1B

−1
1 A3Ea2A

−1
2 A1Ea1A

−1
1

with a1, a2, a3 ∈ F , b1, b2, λ ∈ F , b1, b2, λ 6= 0, A1, A2, A3, B1, B2 invertible
matrices.

Remark. From this result, one can deduce with comparatively little effort the
fact that the determinant function on 3× 3 matrices is determined uniquely by
the properties D1 and D2 on page 17. Compare also Problem 19.
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Problems

In the following problems, you may use the axioms and propositions given
in class. Refer to them explicitly.

1. Show that any two pencils of parallel lines in an affine plane have the
same cardinality (i.e. that one can establish a one-to-one correspondence
between them). Show that this is also the cardinality of the set of points
on any line.

2. If there is a line with exactly n points, show that the number of points in
the whole affine plane is n2.

3. Discuss the possible systems of points and lines which satisfy P1, P2, P3,
but not P4.

4. Prove that the projective plane of 7 points, obtained by completing the
affine plane of four points, is the smallest possible projective plane.

5. If one line in a projective plane has n points, find the number of points in
the projective plane.

6. Let S be a projective plane, and let l be a line of S. Define S0 to be the
points of S not on l, and define lines in S0 to be the restrictions of lines
in S. Prove (using P1–P4) that S0 is an affine plane. Prove also that S is
isomorphic to the completion of the affine plane S0.

7. Using the axioms S1–S6 of projective three-space, prove the following
statements. Be very careful not to assume anything except what is stated
by the axioms. Refer to the axioms explicitly by number.

(a) If two distinct points P,Q lie in a plane Σ then the line joining them
is contained in Σ.

(b) A plane and a line not contained in the plane meet in exactly one
point.

(c) Two distinct planes meet in exactly one line.

(d) A line and a point not on it lie in a unique plane.

8. Prove that any plane Σ in a projective three-space is a projective plane,
i.e. satisfies the axioms P1–P4. (You may use the results of the previous
problem.)
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Finite affine planes

9. Show that any two affine planes with 9 points are isomorphic. (We say
that two planes A and A′ are isomorphic if there is a one-to-one mapping
T : A→ A′ that takes lines into lines.)

10. Construct an affine plane with 16 points. (Hint: We know from Problem
1 that each pencil of parallel lines has four lines in it. Let a, b, c, d be
one pencil of parallel lines, and let 1, 2, 3, 4 be another. Then label the
intersections A1 = a ∩ 1, etc. To construct the plane, you must choose
other subsets of four points to be the lines in the three other pencils of
parallel lines. Write out each line explicitly by naming its four points, e.g.
the line 2 = {A2, B2, C2, D2}.)

11. Euler in 1779 posed the following problem:
”A meeting of 36 officers of six different ranks and from six different regi-
ments must be arranged in a square in such a manner that each row and
each column contains 6 officers from different regiments and of different
ranks.”

It has been shown that this problem has no solution. Deduce from this
fact that there is no affine plane with 36 points.

We will consider the Desargues configuration, which is a set of 10 elements,
Σ = {O,A,B,C,A′, B′, C ′, P,Q,R}, and 10 lines, which are the subsets

O,A,A′

O,B,B′

O,C,C ′

A,B, P

A′, B′, P

A,C,Q

A′, C ′, Q

B,C,R

B′, C ′, R

P,Q,R.

Let G = AutC be the group of automorphisms of Σ.

12. Show that G is transitive on Σ.

13. (a) Show that the subgroup of G leaving a point fixed is transitive on a
set of six letters.

(b) Show that the subgroup of G leaving two collinear points fixed has
order 2.

(c) Deduce the order of G from the previous results.
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Now we consider some further subsets of Σ, which we call planes, namely

1 = {O,A,B,A′, B′, P}
2 = {O,A,C,A′, C ′, Q}
3 = {O,B,C,B′, C ′, R}
4 = {A,B,C, P,Q,R}
5 = {A′, B′, C ′, P,Q,R}

14. Show that each element of G induces a permutation of the set of five
planes, {1, 2, 3, 4, 5}, and that the resulting mapping

ϕ : G→ Perm{1, 2, 3, 4, 5}

is an isomorphism of groups. Thus G is isomorphic to the permutation
group on five letters.

15. (a) Let π0 be a set of four points A,B,C,D, and no lines. Let π be the
free projective plane generated by the configuration π (as in class).
Show that any permutation of the set {A,B,C,D} extends to an
automorphism of the projective plane π.

(b) Show that these are not the only automorphisms of π.

16. Prove that there is no finite configuration in the real projective plane such
that each line contains at least three points, every pair of distinct points
lies on a line, and not all the points are collinear. (Hint: First reduce to
the Euclidean plane, then choose a triangle with minimal altitude.)

17. Let π be a projective plane. Let T be an involution of π, that is, let T be
an automorphism of π such that T 2 = T ·T = identity map of π. Let Σ be
the set of fixed points of π. Prove that one (and only one) of the following
is true:

Case 1. There is a line l0 in π such that Σ = l0.

Case 2. There is a line l0 and a point P0 /∈ l0 such that Σ = l0 ∪ {P}.
Case 3. Σ is a projective plane, where we define a ”line” in Σ to be any
subset of Σ, of the form (line in π) ∩ Σ, which has at least two points.

Prove furthermore that Case 1 can arise only if the axiom P7 is not sat-
isfied.

18. For each case 1, 2, 3 above, give without proof a specific example of a
projective plane π, and an involution T 6= identity, which has the property
of the given case.

19. Let ϕ be a function from the set of 2× 2 real matrices {A =
(
a b
c d

)
} to

the real numbers, such that

D1 ϕ(A ·B) = ϕ(A) · ϕ(B), and

D2 ϕ
(
a 0
0 1

)
= a, for each a ∈ R.
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Prove that ϕ(A) = detA, i.e. ϕ
(
a b
c d

)
= ad− bc, for all a, b, c, d ∈ R.

(A similar but more involved proof would work for n× n matrices.)

20. Let π be the real projective plane, and let

A = (a, 0, 1)
B = (b, 0, 1)
C = (c, 0, 1)
D = (d, 0, 1), a, b, c, d ∈ R,

be four poitns on the ”x1-axis”. Prove that AB,CD are four harmonic
points if and only if the product

R×(AB,CD) ≡ a− c
a− d

· b− d
b− c

is equal to −1. (In general, this product R×(AB,CD) is called the cross-
ratio of the four points.) You may use methods of Euclidean geometry in
the affine plane x3 6= 0.

21. By interchanging the words ”point” and ”line”, etc., make a careful state-
ment of the dual, P6*, of Pappus’ Axiom, P6. Then use P1–P4 and P6 to
prove P6*.

22. Consider the configuration of Pappus’ Axiom in the real projective plane,
and take the line PQ (using the notation given in class) to be the line at
infinity. Pappus’ Axiom then becomes a statement in the Euclidean plane.
Write out this statement, and then prove it, using methods of Euclidean
geometry. (This gives a second proof that P6 holds in the real projective
plane.)

For the next three problems, we consider the following situation: Let

lO[m
O
[ n

be a chain of two perspectivities, and assume l 6= n. Let ϕ : l → n be the
resulting projectivity from l to n, and let X be the point l · n.

23. (a) Prove that if ϕ is actually a perspectivity, then ϕ(X) = X.

(b) Now assume simply that ϕ(X) = X, and prove that one of the fol-
lowing conditions holds:

i. l,m, n are concurrent, or
ii. O,P,X are collinear.

24. With the initial hypotheses above, assume furthermore that l,m, n are
concurrent. Prove that there is a point Q such that O,P,Q are collinear,
and ϕ is the perspectivity lQ[ n. (Use P5 or P5*.)

25. With the initial hypotheses above, assume also that O,P,X are collinear,
but that l,m, n are not concurrent. Let Y = l ·m, let Z = m · n, and let
Q = OZ · PY . Prove that ϕ is the perspectivity lQ[ n. (Use P6 or P6*.)
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Remark. The problems 23, 24, 25 give a proof of Lemma 5.4 mentioned in class.
In fact, they prove a stronger result, namely, that under the initial hypotheses
above, the following three conditions are equivalent:

(i) ϕ is a perspectivity
(ii) ϕ(X) = X
(iii) either i) or ii) of # 23 above is true.

26. Let k = {0, 1, 2} be the field of 3 elements, with addition and multiplica-
tion modulo 3. Let F = {a+ bj | a, b ∈ k}, where j is a symbol.

(a) Define addition and multiplication in F , using the relation j2 = 2,
and prove that F is then a field.

(b) Prove that the multiplicative group F ∗ of non-zero elements of F is
cyclic of order 8.

27. Let A = F as a set, and denote the elements of A as (x) where x ∈ F .
Define addition and multiplication in A as follows:

(x) + (y) = (x+ y)

(here the left-hand + is the addition in A; the right-hand + is the addition
in F ).

(x)(y) =
{

(xy) if y is a square in F
(x3y) if y is not a square in F .

(We say y is a square in F if ∃z ∈ F such that y = z2.)

Prove

(a) A is an abelian group under +.

(b) The non-zero elements A∗ of A form a group under multiplication.

(c) (0)(x) = (x)(0) = (0) for all (x) ∈ A.

(d) ((x) + (y))(z) = (x)(z) + (y)(z) for all (x), (y), (z) ∈ A.

28. Let A be a finite algebra satisfying a), b), c), d) of the previous problem
(i.e. A is a finite set, with two operations, such taht a), b), c), d) hold).
Note that A would be a division ring, except that the left distributive law
is missing. Prove that one can construct a projective plane P2

A over A as
follows:

I. A point is an equivalence class of triples (x1, x2, x3) with xi ∈ A, where
(x1, x2, x3) ∼ (x1λ, x2λ, x3λ) for any λ ∈ A, λ 6= 0. (Prove this is an
equivalence condition.)

II. A line is the set of all points satisfying an equation of the form

29. If A is the algebra of the Problem 27, show that P2
A does not satisfy

Desargues’ Axiom P5. Thus P2
A is an example of a finite non-Desarguesian

projective plane.

30. Axioms for the real affine plane

In the ordinary Euclidean plane, let 〈ABC〉 stand for the relation ”A,B,C
are collinear, and B is between A and C”. Write down some nice properties
of this relation.
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Now let Σ be an abstract affine plane satisfying A1, A2, A3, A5a, A5b, and
A6 (you define this one—Pappus’ Axiom). Assume that Σ has a notion of
betweenness given, i.e. for certain triples of points A,B,C ∈ Σ, we have
〈ABC〉, and assume that this notion 〈〉 satisfies certain axioms, namely the
properties you listed earlier. (Make sure there were enough.) Add further
a ”completeness” axiom, say

C (Dedekind cut axiom) Whenever a line l is divided into two non-
empty subsets l′ and l′′, so that no element of one subset is between two
elements of the other subset, then there exists a unique point A ∈ l, such
that ∀B ∈ l′, ∀C ∈ l′′, B 6= A and C 6= A, we have 〈BAC〉.

Now try to prove that your geometry Σ, with this notion of between-
ness, must be the affine plane over the real numbers R. (You may use the
theorem that R is the only complete ordered field.)

E

A

B DC

F

Hint: Try the following as one of your axioms:

C (Pasch’s axiom) If A,B,C are three non-collinear points, and if
〈BCD〉 and 〈AEC〉, then there exists a point F on the line DE, such
that 〈BFA〉.

31. Let S4 be the subgroup generated by the permutation (1 2 3 4).

(a) What is the order of G? (The order is the number of elements in G.)

(b) Let H ⊆ S4 be the subgroup generated by the permutations (1 2)
and (3 4). What is the order of H?

(c) Is there an isomorphism (of abstract groups) ϕ : G→ H? If so, write
it explicitly. If not, explain why not.

32. The Pappus Configuration, Σ, is the configuration of 9 points and 9
lines as shown in the diagram.

(a) What is the order of the group of automorphisms of Σ?

(b) Explain briefly how you arrived at the answer to a).

33. (a) In the real projective plane, what is the equation of the line joining
the points (1, 0, 1) and (1, 2, 3)?

(b) What is the point of intersection of the lines

x1 − x2 + 2x3 = 0
3x1 + x2 + x3 = 0 ?
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Q

R
P

A

B'

C

A'

B

C'

34. In the real projective plane, we know that there is an automorphism which
will send any four points, no three collinear, into any four points, no three
collinear. Find the coefficients aij of an automorphism with equations

x′i =
3∑

j=1

aijxj i = 1, 2, 3

which sends the points

A = (0, 0, 1), B = (0, 1, 0), C = (1, 0, 0), D = (1, 1, 1)

into

A′ = (1, 0, 0), B′ = (0, 1, 1), C ′ = (0, 0, 1), D′ = (1, 2, 3)

respectively.

35. (a) State the axioms P1, P2, P3, P4 of a projective plane.

(b) Give a complete proof that they imply the statement

Q There are four points, no three of which are collinear.

(c) Prove also that P1, P2, and Q imply P3 and P4.

36. For each of the following projective planes, state which of the axioms P5,
P6, P7 hold in it, and explain why each axiom does or does not hold.
(Please refer to results proved in class, and give brief outlines of their
proofs.)

(a) The projective plane of seven points.

(b) The real projective plane.

(c) The free projective plane generated by four points.

37. (a) Draw a picture of the projective plane of seven points, π.

(b) Is there an automorphism T of π such that T 7 = identity, but T 6=
identity? If so, write one down explicitly. If not, explain why not.
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38. Let l, l′ be two distinct lines in a projective plane π. Let X = l · l′. Let
A,B be two distinct points on l, different from X. Let C,D be two distinct
points on l′, different from X. Construct a projectivity ϕ : l → l′ which
sends A,X,B into X,C,D, respectively.

39. Let l be a line in a projective plane π satisfying P1–P6. Let ϕ be a per-
mutation of the points on l, such that for any four points A,B,C,D on l,
AB,CD are four harmonic points⇔ A′B′, C ′D′ are four harmonic points
(where A′ = ϕ(A), B′ = ϕ(B), etc.). Is ϕ necessarily a projectivity of l
into itself? Prove or give a counterexample.

40. Find the diagonal points of the complete quadrangle on the four points
(±1,±1, 1).

41. Let π be a projective plane of seven points. Let A and B be two distinct
points of π. How many automorphisms of π are there which send A to B?
Give your reasons!

42. (a) Let F be a division ring, and let λ be a fixed non-zero element of F .
Prove that the map ϕ : F → F , defined by

ϕ(x) = λxλ−1

for all x ∈ F , is an automorphism of F .
(b) Let p be a prime number. Prove that the field F of p elements has no

automorphisms other than the identity automorphism. (Recall that
F = {0, 1, . . . , p − 1}, where addition and multiplication are defined
modulo p.)

43. Let F be the field with three elements, let π = P2
F , and let l be any line of

π. Show that l has exactly four points A,B,C,D and that they are four
harmonic points, in any order. Quote explicitly any theorems from class
which you may wish to use.

44. In the ordinary Euclidean plane (considered as being contained in the real
projective plane), let C be a circle with center 0, let P be a point outside
C, and let t1 and t2 be the tangents from P to C, meeting C at A1 and
A2. Draw A1A2 to meet OP at B, and let OP meet C at X and Y . Prove
(by any method) that X,Y,B, P are four harmonic points.

45. Let F be a field, and let X = (x1, x2, x3), Y = (y1, y2, y3), and Z =
(z1, z2, z3) be three points in the projective plane π = P2

F . If X 6= Y , and
X,Y, Z are collinear, prove that there exist elements λ and µ in F such
that

zi = λxi + µyi for i = 1, 2, 3.

46. Let π be a projective plane satisfying P5, P6, and P7, and let l be a line
in π. Prove that if ϕ is a projectivity of l into l which interchanges two
distinct points A,B of l (i.e. ϕ(A) = B and ϕ(B) = A), then ϕ2 is the
identity.

Hint: Let C be another point of l and let ϕ(C) = D. Construct a projec-
tivity ψ : l → l which interchanges A and B, and interchange C and D,
using the diagram below. Then apply the Fundamental Theorem.
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47. Let p be a prime number, let F be the field with p elements, let π = P2
F ,

and let G = Autπ. Prove that the order of G is p3(p3 − 1)(p2 − 1).

Hint: First prove that G = PGL(2, F ). Then use the result from class
which says that a matrix  a1 a2 a3

b1 b2 b3
c1 c2 c3


of elements of F has determinant 6= 0 if and only if no row is all zeros, and
the points A = (a1, a2, a3), B = (b1, b2, b3), and C = (c1, c2, c3) of π are
not collinear. Or you may use the Fundamental Theorem for projective
collieneations of π.

83



84



Bibliography

[1] E. Artin, Geometric Algebra, Interscience, N.Y. 1957.
Chapter II contains the construction of coordinates in an affine plane, from
a slightly more abstract approach than ours.

[2] R. Artzy, Linear Geometry, Addison–Wesley, 1965.
Contains a good chapter on the various different axioms one can put on a
plane geometry, especially various non-Desarguesian planes.

[3] H. F. Baker, Principles of Geometry, Cambridge University 1929–1940.
Volume I, Chapter I has the proof that any chain of perspectivities between
distinct lines can be reduced to a chain of length two.

[4] G. Birkhoff and S. MacLane, A survey of Modern Algebra, Macmillan, 1941.
We refer to the chapter on group theory to supplement the very sketchy
treatment given in these notes.

[5] R. D. Carmichael, Introduction to the theory of groups of finite order, 1937,
Dover reprint, 1956.
Section 108 contains examples of finite non-Desarguesian projective planes,
one of which we have reproduced in Problems 26–29.

[6] H. S. M. Coxeter, The Real Projective Plane, McGraw–Hill, 1949.
A good general reference for synthetic projective geometry.

[7] H. S. M. Coxeter, Introduction to Geometry, Wiley, 1961.
Chapter 14 gives a good brief survey of the basic topics of projective geo-
metry.

[8] W. T. Fishback, Projective and Euclidean Geometry, Wiley, 1962.
A good general reference, much in the spirit of our treatment.

[9] D. Hilbert and S. Cohn–Vossen, Geometry and the Imagination, Chelsea,
1952 (translated from German, Anschauliche Geometrie, Springer 1932).
Chapter III on projective configurations is very pleasant reading and quite
relevant.

[10] M. Kraitchik, Mathematical Recreations, Norton Co., 1942. Dover reprint
1953.
See Chapter VII, Section 12 for the interpretation of magic squares as finite
affine planes, and Euler’s problem of the officers.

[11] A. Seidenberg, Lectures in Projective Geometry, Van Nostrand, 1963.
A very good general reference, with emphasis on axiomatics.

85


