Practice Exam 1

[1] Solve the following system of equations:

$$
\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
6
\end{array}\right]
$$

[2] Compute a matrix giving the number of walks of length 4 between pairs of vertices of the following graph:

[3] Express the following matrix as a product of elementary matrices:

$$
\left[\begin{array}{llll}
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0
\end{array}\right]
$$

[4] Compute the determinant of the following 4×4 matrix:

$$
\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
1 & \lambda & 1 & 0 \\
0 & 1 & \lambda & 1 \\
0 & 0 & 1 & \lambda
\end{array}\right]
$$

What can you say about the determinant of the $n \times n$ matrix with the same pattern?
[5] Use Cramer's rule to give a formula for w in the solution to the following system of equations:

$$
\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

Exam 1

[1] Solve the following system of equations:

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

[2] Compute matrices giving the number of walks of lengths 1,2 , and 3 between pairs of vertices of the following graph:

[3] Express the following matrix as a product of elementary matrices:

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

[4] Compute the determinant of the following 4×4 matrix:

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
2 & 2 & 0 & 2 \\
3 & 0 & 3 & 3 \\
0 & 4 & 4 & 4
\end{array}\right]
$$

What can you say about the determinant of the $n \times n$ matrix with the same pattern?
[5] Use Cramer's rule to give a formula for the solution to the following system of equations:

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 a \\
2 b \\
2 c
\end{array}\right]
$$

Practice Exam 2

[1] Let P be the set of all polynomials $f(x)$, and let Q be the subset of P consisting of all polynomials $f(x)$ so $f(0)=f(1)=0$. Show that Q is a subspace of P.
[2] Let A be the matrix

$$
A=\left[\begin{array}{lll}
1 & -1 & 1 \\
2 & -2 & 2 \\
1 & -1 & 0
\end{array}\right]
$$

Compute the row space and column space of A.
[3] The four vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-1 \\
0 \\
-2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

span a subspace V of \mathbb{R}^{3}, but are not a basis for V. Choose a subset of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ which forms a basis for V. Extend this basis for V to a basis for \mathbb{R}^{3}.
[4] Let L be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} which rotates one half turn around the axis given by the vector $(1,1,1)$. Find a matrix A representing L with respect to the standard basis

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Choose a new basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for \mathbb{R}^{3} which makes L easier to describe, and find a matrix B representing L with respect to this new basis.
[5] Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be ordered bases for \mathbb{R}^{2}, and let L be the linear transformation represented by the matrix A with respect to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$, where

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
-2
\end{array}\right], \quad A=\left[\begin{array}{rr}
6 & -2 \\
-2 & 9
\end{array}\right] .
$$

Find the transition matrix S corresponding to the change of basis from $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Find a matrix B representing L with respect to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

Exam 2

[1] Let P be the set of all degree ≤ 4 polynomials in one variable x with real coefficients. Let Q be the subset of P consisting of all odd polynomials, i.e. all polynomials $f(x)$ so $f(-x)=-f(x)$. Show that Q is a subspace of P. Choose a basis for Q. Extend this basis for Q to a basis for P.
[2] Let A be the matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{array}\right]
$$

Compute the row space and column space of A.
[3] Let L be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} which reflects through the plane P defined by $x+y+z=0$. In other words, if \mathbf{u} is a vector lying in the plane P, and \mathbf{v} is a vector perpendicular to the plane P, then $L(\mathbf{u}+\mathbf{v})=\mathbf{u}-\mathbf{v}$. Choose a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for \mathbb{R}^{3}, and find a matrix A representing L with respect to this basis.
[4] Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be ordered bases for \mathbb{R}^{2}, and let L be the linear transformation represented by the matrix A with respect to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$, where

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad A=\left[\begin{array}{ll}
-1 & 2 \\
-4 & 5
\end{array}\right] .
$$

Find the transition matrix S corresponding to the change of basis from $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Find a matrix B representing L with respect to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
[5] Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\},\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ be ordered bases for \mathbb{R}^{2}. If

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

is the transition matrix corresponding to the change of basis from $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, and

$$
B=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]
$$

is the transition matrix corresponding to the change of basis from $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$, express \mathbf{v}_{1} and \mathbf{v}_{2} in terms of \mathbf{w}_{1} and \mathbf{w}_{2}.

Additional Practice Problems for Final

[1] By least squares, find the equation of the form $y=a x+b$ which best fits the data $\left(x_{1}, y_{1}\right)=(0,1),\left(x_{2}, y_{2}\right)=(1,1),\left(x_{3}, y_{3}\right)=(2,-1)$.
[2] Find (s, t) so $\left[\begin{array}{rr}1 & 0 \\ -1 & 1 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}s \\ t\end{array}\right]$ is as close as possible to $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
[3] Find an orthogonal basis for the subspace $w+x+y+z=0$ of \mathbb{R}^{4}.
[4] Let A be the matrix

$$
A=\left[\begin{array}{rr}
-3 & -4 \\
-4 & 3
\end{array}\right]
$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^{A}.
[5] Find a matrix A in standard coordinates having eigenvectors $\mathbf{v}_{1}=(1,1), \mathbf{v}_{2}=(1,2)$ with corresponding eigenvalues $\lambda_{1}=2, \lambda_{2}=-1$.
[6] Let A be the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

Find an orthogonal basis in which A is diagonal.

