Practice Exam 1

[1] Solve the following system of equations:

$$
\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
6
\end{array}\right]
$$

[2] Compute a matrix giving the number of walks of length 4 between pairs of vertices of the following graph:

[3] Express the following matrix as a product of elementary matrices:

$$
\left[\begin{array}{llll}
0 & 1 & 3 & 0 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0
\end{array}\right]
$$

[4] Compute the determinant of the following 4×4 matrix:

$$
\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
1 & \lambda & 1 & 0 \\
0 & 1 & \lambda & 1 \\
0 & 0 & 1 & \lambda
\end{array}\right]
$$

What can you say about the determinant of the $n \times n$ matrix with the same pattern?
[5] Use Cramer's rule to give a formula for w in the solution to the following system of equations:

$$
\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

Exam 1

[1] Solve the following system of equations:

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

[2] Compute matrices giving the number of walks of lengths 1,2 , and 3 between pairs of vertices of the following graph:

[3] Express the following matrix as a product of elementary matrices:

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

[4] Compute the determinant of the following 4×4 matrix:

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
2 & 2 & 0 & 2 \\
3 & 0 & 3 & 3 \\
0 & 4 & 4 & 4
\end{array}\right]
$$

What can you say about the determinant of the $n \times n$ matrix with the same pattern?
[5] Use Cramer's rule to give a formula for the solution to the following system of equations:

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 a \\
2 b \\
2 c
\end{array}\right]
$$

Practice Exam 2

[1] Let P be the set of all polynomials $f(x)$, and let Q be the subset of P consisting of all polynomials $f(x)$ so $f(0)=f(1)=0$. Show that Q is a subspace of P.
[2] Let A be the matrix

$$
A=\left[\begin{array}{lll}
1 & -1 & 1 \\
2 & -2 & 2 \\
1 & -1 & 0
\end{array}\right]
$$

Compute the row space and column space of A.
[3] The four vectors

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-1 \\
0 \\
-2
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
2 \\
6
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

span a subspace V of \mathbb{R}^{3}, but are not a basis for V. Choose a subset of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ which forms a basis for V. Extend this basis for V to a basis for \mathbb{R}^{3}.
[4] Let L be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} which rotates one half turn around the axis given by the vector $(1,1,1)$. Find a matrix A representing L with respect to the standard basis

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{e}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Choose a new basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for \mathbb{R}^{3} which makes L easier to describe, and find a matrix B representing L with respect to this new basis.
[5] Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be ordered bases for \mathbb{R}^{2}, and let L be the linear transformation represented by the matrix A with respect to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$, where

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
-2
\end{array}\right], \quad A=\left[\begin{array}{rr}
6 & -2 \\
-2 & 9
\end{array}\right] .
$$

Find the transition matrix S corresponding to the change of basis from $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Find a matrix B representing L with respect to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

Exam 2

[1] Let P be the set of all degree ≤ 4 polynomials in one variable x with real coefficients. Let Q be the subset of P consisting of all odd polynomials, i.e. all polynomials $f(x)$ so $f(-x)=-f(x)$. Show that Q is a subspace of P. Choose a basis for Q. Extend this basis for Q to a basis for P.
[2] Let A be the matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 2
\end{array}\right]
$$

Compute the row space and column space of A.
[3] Let L be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} which reflects through the plane P defined by $x+y+z=0$. In other words, if \mathbf{u} is a vector lying in the plane P, and \mathbf{v} is a vector perpendicular to the plane P, then $L(\mathbf{u}+\mathbf{v})=\mathbf{u}-\mathbf{v}$. Choose a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for \mathbb{R}^{3}, and find a matrix A representing L with respect to this basis.
[4] Let $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ be ordered bases for \mathbb{R}^{2}, and let L be the linear transformation represented by the matrix A with respect to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$, where

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad A=\left[\begin{array}{ll}
-1 & 2 \\
-4 & 5
\end{array}\right] .
$$

Find the transition matrix S corresponding to the change of basis from $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Find a matrix B representing L with respect to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
[5] Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\},\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ be ordered bases for \mathbb{R}^{2}. If

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

is the transition matrix corresponding to the change of basis from $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, and

$$
B=\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]
$$

is the transition matrix corresponding to the change of basis from $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$, express \mathbf{v}_{1} and \mathbf{v}_{2} in terms of \mathbf{w}_{1} and \mathbf{w}_{2}.

Additional Practice Problems for Final

[1] By least squares, find the equation of the form $y=a x+b$ which best fits the data $\left(x_{1}, y_{1}\right)=(0,1),\left(x_{2}, y_{2}\right)=(1,1),\left(x_{3}, y_{3}\right)=(2,-1)$.
[2] Find (s, t) so $\left[\begin{array}{rr}1 & 0 \\ -1 & 1 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}s \\ t\end{array}\right]$ is as close as possible to $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
[3] Find an orthogonal basis for the subspace $w+x+y+z=0$ of \mathbb{R}^{4}.
[4] Let A be the matrix

$$
A=\left[\begin{array}{rr}
-3 & -4 \\
-4 & 3
\end{array}\right]
$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^{A}.
[5] Find a matrix A in standard coordinates having eigenvectors $\mathbf{v}_{1}=(1,1), \mathbf{v}_{2}=(1,2)$ with corresponding eigenvalues $\lambda_{1}=2, \lambda_{2}=-1$.
[6] Let A be the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

Find an orthogonal basis in which A is diagonal.

Final Exam

Linear Algebra, Dave Bayer, December 16, 1999
Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Only work which can be found in this way will be graded.

Please do not use calculators or decimal notation.
[1] Let L be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} which projects onto the line $(1,1,1)$. In other words, if \mathbf{u} is a vector in \mathbb{R}^{3}, then $L(\mathbf{u})$ is the projection of \mathbf{u} onto the vector $(1,1,1)$. Choose a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for \mathbb{R}^{3}, and find a matrix A representing L with respect to this basis.
[2] Compute the determinant of the following 4×4 matrix:

$$
\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

What can you say about the determinant of the $n \times n$ matrix with the same pattern?
[3] By least squares, find the equation of the form $y=a x+b$ which best fits the data $\left(x_{1}, y_{1}\right)=(0,0),\left(x_{2}, y_{2}\right)=(1,1),\left(x_{3}, y_{3}\right)=(3,1)$.
[4] Find (s, t) so $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}s \\ t\end{array}\right]$ is as close as possible to $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
[5] Find an orthogonal basis for the subspace $w+2 x+3 y+4 z=0$ of \mathbb{R}^{4}.
[6] Let A be the matrix

$$
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]
$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^{A}.
[7] Let A be the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

Find an orthogonal basis in which A is diagonal.
[8] Find a matrix A so the substitution

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=A\left[\begin{array}{l}
s \\
t
\end{array}\right]
$$

transforms the quadratic form $x^{2}+4 x y+y^{2}$ into the quadratic form $s^{2}-t^{2}$.

Final Exam
Linear Algebra, Dave Bayer, December 16, 1999
Name: \qquad School: \qquad ID:

$[\mathbf{1}]$ (5 pts)	$[\mathbf{2}](5 \mathrm{pts})$	$[\mathbf{3}](5 \mathrm{pts})$	$[\mathbf{4}](5 \mathrm{pts})$
$[\mathbf{5}]$ (5 pts)	$[\mathbf{6}](5 \mathrm{pts})$	$[\mathbf{7}](5 \mathrm{pts})$	$[\mathbf{8}](5 \mathrm{pts})$

Please work only one problem per page, starting with the pages provided, and number all continuations clearly. Only work which can be found in this way will be graded.

Please do not use calculators or decimal notation.
[1] Let L be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{3} which projects onto the line $(1,1,1)$. In other words, if \mathbf{u} is a vector in \mathbb{R}^{3}, then $L(\mathbf{u})$ is the projection of \mathbf{u} onto the vector $(1,1,1)$. Choose a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ for \mathbb{R}^{3}, and find a matrix A representing L with respect to this basis.
First solution: Choose standard basis $\{(1,0,0),(0,1,0),(0,0,1)\}_{1}$

$$
\text { prog }\left(1, D_{1}\right) \text { onto }(1,1,1)=\left[\frac{(1,0,0) \cdot(1,1,1)}{(1,1,1) \cdot(1,1)}\right](1,1,1)=\frac{1}{3}(1,1,1)
$$

$$
\text { prig }(0,1,0) \text { onto }(1,1,1)=\frac{1}{3}(1,1,1) \text { by symmetry }
$$

$$
\|(0,0,1) \quad " \quad \ldots \quad "
$$

So columns of A are each $(1 / 3,1 / 3,1 / 3)$

Page 1
Continued on page:

$$
\begin{aligned}
& \text { er for } 2 \text { nd solution }
\end{aligned}
$$

Second solution: L takes any rector \perp to $(1,1,1)$ to 0
$\Leftrightarrow \lambda=0$ has eigenspace 1 to $(1,1,1)$
L takes $(1,1,1)$ to 1 self
$\Leftrightarrow \lambda=1$ has eigenspace spanned by $(1,1,1)$
So choose eigenvector basis $\{\underbrace{(1,-1,0),(0,1,-1)}_{\perp \text { to }(1,1,1)}, \underbrace{(1,1,1)}_{\lambda=1}\}=V$
$\lambda=0$
In this bass we know A is diagonal w/ agenvalue entrees:

$$
A=\left[\begin{array}{lll}
0 & & \\
& 0 & \\
& & 1
\end{array}\right]
$$

$V \leftarrow V$
$\frac{V \leftarrow V}{\text { check these answers against each other: }}$
eyeball the $\frac{\text { nuevse }}{}$ **

how'd I eyeball muevse?

Page 2

by looking for rows that dotted night with cols of ong matux. (I liked its columns best...) Continued on page:
[2] Compute the determinant of the following 4×4 matrix:

$$
\left(\begin{array}{l}
t \\
\pm
\end{array}\right]\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \text { (expand down }{ }^{\text {st column })}
$$

What can you say about the determinant of the $n \times n$ matrix with the same pattern?
Let $f(n)=$ deft of $n \times n$ math with same pattern.

$$
\left.\left.\begin{array}{rl}
f(4) & =+2\left|\begin{array}{ccc}
2 & -1 \\
-1 & 2 & -1 \\
-1 & 2
\end{array}\right|+1\left|\begin{array}{rrr}
-1 & 0 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right| \\
& =+2 f(3)-f(2) \\
f(3) & =\left|\begin{array}{cc}
2 & -1 \\
-1 & 0
\end{array}\right| \\
-1 & -1 \\
0 & -1
\end{array}|=-1| \begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array} \right\rvert\,\right)|=+2| \begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}|+1| \begin{array}{cc}
-1 & 0 \\
-1 & 2
\end{array}|=2| \begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\left|-|2| \begin{array}{ll}
2 & f(2)-f(1)
\end{array}\right.
$$

$$
f(2)=\left|\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right|=3
$$

So $f(3)=2 \cdot 3-2=4$??

$$
f(1)=2
$$

check: $\left|\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right|=\begin{array}{cc}-1 & 0 \\ -1 & 2\end{array}|+2| \begin{array}{cc}2 & 0 \\ 0 & 2\end{array}\left|+\left|\begin{array}{ll}2 & -1 \\ 0 & -1\end{array}\right|\right.$ \longrightarrow middle vow to be different!

$$
\begin{aligned}
f(4) & =2 f(3)-f(2) \\
& =2 \cdot 4-3=5 \mathrm{hmm} ?
\end{aligned}
$$

guessing here that $f(n)=n+1$. The for $n=1,2,3,4$

$$
\begin{aligned}
& \text { un here that } f(n)=n+1 . \\
& \underbrace{f(n+1)}_{n+2} \stackrel{?}{=} \underbrace{2 f(n)}_{2(n+1)}-\underbrace{f(n-1)}_{n} \text { \& proved by induction!! }
\end{aligned}
$$

pattern is $n \times n$ determinant $=n+1$
Page 3 over for another try".

Continued on page: 4

Problem: 2
how about mstead low redoing, Hacking determinant?

$$
\left.\begin{array}{l}
{\left[\begin{array}{cccc}
2 & -1 & & \\
-1 & 2 & -1 & \\
& -1 & 2 & -1 \\
& -1 & 2
\end{array}\right]=2\left[\begin{array}{cccc}
1 & -1 / 2 & \\
0 & 3 / 2 & -1 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]=2 \cdot 3 / 2\left[\begin{array}{ccc}
1 & -1 / 2 \\
0 & 1 & -2 / 3 \\
0 & 0 & 4 / 3 \\
0 & -1 \\
0 & 0 & -1
\end{array} 2^{2}\right.}
\end{array}\right]
$$

$$
\text { so set }=2 \cdot 3 / 2 \cdot 4 / 3 \cdot 5 / 4=5 \text {. }
$$

For $n \times n$ case, same pattern, tet $=2 \cdot 3 / 2 \cdot 4 / 3 \cdot \ldots \cdot n+1 / n=n+1$
so answer checks of
[3] By least squares, find the equation of the form $y=a x+b$ which best fits the data $\left(x_{1}, y_{1}\right)=(0,0),\left(x_{2}, y_{2}\right)=(1,1),\left(x_{3}, y_{3}\right)=(3,1)$.
take a look:

or for us, $\left[\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ (vardetermined " $A x=b$ " 50 " $A^{\top} A x=A^{\top} b$ " instead:
$\left[\begin{array}{ll}{\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right.} \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 3 & 1\end{array}\right]\left[\begin{array}{ll}a \\ b\end{array}\right]=\underbrace{\left[\begin{array}{ll}0 & 1\end{array}\right.} \begin{aligned} & 1 \\ & 1\end{aligned} 1-1\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
$\left[\begin{array}{cc}10 & 4 \\ 4 & 3\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}4 \\ 2\end{array}\right] \quad \operatorname{det}\left[\begin{array}{cc}10 & 4 \\ 4 & 3\end{array}\right]=30-16=14$
so $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{cc}3 & -4 \\ -4 & 10\end{array}\right]\left[\begin{array}{l}4 \\ 2\end{array}\right] / 14=\left[\begin{array}{ll}10 & 4 \\ 4 & 3\end{array}\right]=\left[\begin{array}{ll}3 & -4 \\ 4\end{array}\right] / 14=\left[\begin{array}{l}2 / 7 \\ 277\end{array}\right]$

$$
-9] / 14
$$

check: $\left[\begin{array}{c}104 \\ 4\end{array}\right]\left[\begin{array}{l}2 \\ 2\end{array}\right]=\left[\begin{array}{c}{[84} \\ 14\end{array}\right]=\left[\begin{array}{l}4 \\ 2\end{array}\right) d$ so $a=2 / 7 b=2 / 7$

$$
a x+b=2 / 7 x+2 / 7
$$

check

x	4	$2 / 7(x+1)$	error
0	0	$2 / 7$	$2 / 7$
1	1	$4 / 7$	$-3 / 7$
3	1	$8 / 7$	$1 / 7$

Page 5

Continued on page: \qquad

Problem: 3

up and down pulls balance: $2 / 7-3 / 7+1 / 2=0$
$1 / 7$ down at $x=3$ has twice leverage of $1 / 7$ down at $x=0$, around pivot of $x=1$, so line doesnit want to twist, either.
looks good

[4] Find (s, t) so $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}s \\ t\end{array}\right]$ is as close as possible to $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
cant solve $\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}s \\ t\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ exactly, Overdetermined " $A x=b^{\prime \prime}$
so "A $A x=A^{T} b^{\prime}$ " instead:
check

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 / 3 \\
1 / 3
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right]
$$

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 / 3 \\
1 / 3 \\
2 / 3
\end{array}\right]=\left[\begin{array}{l}
2 / 3 \\
2 / 3 \\
-2 / 3
\end{array}\right] \text { is } 1 \text { to both } \begin{array}{r}
(1,0,1) \\
(0,1,1)
\end{array}
$$

so this is closest point
(vector from nearest point on plane, to $(1,1, n)$,
is \perp to plane io

Page 7
Continued on page: \qquad

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]-3} \\
& {\left[\begin{array}{l}
S \\
t
\end{array}\right]=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]_{/ 3}\left[\begin{array}{l}
1 \\
1
\end{array}\right)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{3}=\left[\begin{array}{l}
1 / 3 \\
1 / 3
\end{array}\right] \quad\left(\begin{array}{l}
5 \\
t
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
1 / 3
\end{array}\right]}
\end{aligned}
$$

Problem:

not orthonormal ie. lengths dost have to be 1.
[5] Find an orthogonal basis for the subspace $w+2 x+3 y+4 z=0$ of \mathbb{R}^{4}.
First, equation is 1 condition on $\frac{4}{2}$ dimensions, leaving
subspace of $d_{1 m}=3$. Expect basis of 3 vectors.
[1) find somehow (eyeball it) 3 indep vectors \perp to $(1,2,3,4)$
(sump and negate, rest zeros)

$$
\text { (this is what } w+2 x+3 y+4 z=0)
$$

$$
V_{1}=(2,-1,0,0)
$$

$v_{2}=(0,3,-2,0) \quad$ check \perp

$$
\begin{align*}
& v_{2}=(0,2,-4,-3) \tag{tabular}\\
& v_{3}=(0,0,4,
\end{align*}
$$

[2] Fix this up to be mutually 1 by Gram-schmid $w / 0$ normalizing to length 1.

$$
\begin{aligned}
& w_{1}=v_{1}=(2,-1,0,0) \\
& w_{2}=v_{2}-\left(\text { prog } v_{2} \text { onto } w_{1}\right)=v_{2}-\left(\frac{v_{2} \cdot w_{1}}{w_{1} \cdot w_{1}}\right) w_{1} \\
&=(0,3,-2,0)-\left(\frac{-3}{5}\right)(2,-1,0,0) \\
&=(0,3,-2,0)+(6 / 5,-3 / 5,0,0) \\
&=(6 / 5,12 / 5,-2,0) \\
& \sim(6,12,-10,0) \sim(3,6,-5,0) \\
& \text { clean up numb l }
\end{aligned}
$$

check $(3,6,-5,0) \cdot(1,2,3,4)=0$ क
(by clean up numbers by changing length for easiest arithmetic.
$\omega_{2}=(3,6,-5,0)$
$w_{3}=v_{3}-$ (pro v_{3} into w_{1}) -(prog v_{3} onto w_{2})

$$
=(0,0,4,-3)-\left(\frac{0}{(n n}\right)(\operatorname{mum})-\left(\frac{-20}{9+36+25}\right)(3,6,-5,0)
$$

$$
=(0,0,4,3)+\frac{25}{6} \frac{2 D}{70}(3,6,-5,0)
$$

-over -
Page 9
Continued on page: 10

Problem: 5

$$
\begin{aligned}
w_{3} & =(0,0,4,-3)+2 / 7(3,6,-5,0) \\
& \sim 7(0,0,4,-3)+2(3,6,-5,0) \quad \text { (rescale by denom) } \\
& =(0,0,28,-21)+(6,12,-10,0) \\
& =(6,12,18,-21) \\
& \sim(2,4,6,-7) \quad \text { (pull out a } 3)
\end{aligned}
$$

check: $(2,4,6,-7) \cdot(1,2,3,4)=2+8+18-28=0$ ob

$$
\begin{aligned}
& \begin{array}{l}
w_{1}=(2,-1,0,0) \\
w_{2}=(3,6,-5,0) \\
w_{3}=(2,4,6,-7)
\end{array}
\end{aligned} \begin{aligned}
& (2,-1,0,0)=0 \\
& (3,6,-5,0)=6+24-30=0 \\
&
\end{aligned}
$$

Note, perhaps eagles to choose in different order:

$$
\begin{aligned}
& v_{1}=w_{1}=(2,-1,0,0) \\
& v_{2}=w_{2}=(0,9,4,-3) \quad(\text { already } 1) \\
& v_{3}=(0,3,-2,0)
\end{aligned}
$$

$$
w_{3}=v_{3}-\left(\frac{v_{3} \cdot w_{1}}{w_{1} \cdot w_{1}}\right)\left(w_{1}-\left(\frac{v_{3} \cdot w_{2}}{w_{2} \cdot w_{2}}\right) w_{2}\right.
$$

$$
\begin{aligned}
& =v_{3}\left(\frac{2}{w_{1}} \cdot w_{1}\right) w_{1}-\left(\vec{w}_{2} \cdot \omega_{2}\right)(0,4) \\
& =(0,3,-2,0)-\left(\frac{-3}{5}\right)(2,-1,0,0)-\left(\frac{-8}{25}\right)(0,0,4,-3)
\end{aligned}
$$

$$
\begin{aligned}
& =(0,3,-2,0)-\left(\frac{-5}{5}\right)(2,-1,0) \\
& \sim 25(0,3,-2,0)+15(2,-1,0,0)+8(0,0,4,-3) \\
&
\end{aligned}
$$

$$
\begin{aligned}
& 25(0,3,-2,0)+15(2,-1,0,0) \\
&=(0,75,-50,0)+(30-15,9,0)+(0,0,32,-24) \\
&=(5,10,-3,-4) \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =(0,75,-50,0)+(30-15,9,0)+(0,0,32,-24) \\
& =(30,60,18,-24) \sim(5,10,-3,-4) \text { dearly }+ \text { to } \omega_{1}, \omega_{2} \\
& \text { check }(1,2,3,4) \cdot(5,10,-3,-4)=5+20-9-16=0
\end{aligned}
$$ check $(1,2,3,4) \cdot(5,10,-3,-4)=5+20-9-16=0 \quad \phi$

[6] Let A be the matrix

$$
A=\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right]
$$

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e^{A}.

$$
\begin{aligned}
&|A-\lambda I|= \lambda^{2}-(\text { trace of } A) \lambda+(\operatorname{det} \text { of } A)=0 \\
&\binom{\text { sum of diag }}{3+3} \\
& \lambda^{2}-6 \lambda+5=0 \text { factors as }(\lambda-1)(\lambda-5)
\end{aligned}
$$

So $\lambda=1,5$.
$\lambda_{1}=1$ A-1I $=\left(\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right)$ has kernel basis $(1,-1)=V_{1}$
$\lambda_{2}=5$ A -SI $=\left[\begin{array}{cc}-2 & 2 \\ 2 & -2\end{array}\right]$ has kerne basis $(1,1)=v_{2}$
check: A symmetric, and $v_{1} \perp v_{2}$ as expected.
check: $\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}1 \\ -1\end{array}\right]=1\left[\begin{array}{c}1 \\ -1\end{array}\right]$

$$
\left[\begin{array}{ll}
2 & 3
\end{array}\right][-1]\left[\begin{array}{ll}
1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{l}
5 \\
5
\end{array}\right]=s\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Delta
$$

So we have $\quad E=$ standard basis

$$
\begin{aligned}
& E=\text { standard basis basis } \quad v_{1}=(1,-1) \quad v_{2}=(1,1) \\
& V=\text { eqgen bask invert }
\end{aligned}
$$

Page 11

Problem: 6
So we can compute e^{A} by this same change of cords:

$$
e^{A}=\left[\begin{array}{rr}
1 & 1 \\
-1 & A 1
\end{array}\right] \quad e^{\left[\begin{array}{c}
1 \\
s
\end{array}\right]}\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right] / 2
$$

E $\in E \quad \quad E \in V \quad V \in V \quad V \in E$

$$
e^{A}=\left[\begin{array}{cc}
1 & 1 \\
-1 & \mu_{1}
\end{array}\right]\left[\begin{array}{ll}
e & 0 \\
0 & e^{s}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] / 2
$$

(ok to leave in) this form
correct
or multiplied out, If correct

$$
\begin{aligned}
& e^{A}=\left[\begin{array}{cc}
1 & 1 \\
-1 A+1
\end{array}\right]\left[\begin{array}{cc}
e & -e \\
e^{5} & e^{5}
\end{array}\right] / 2 \\
& e^{A}=\frac{1}{2}\left[\begin{array}{cc}
e+e^{5} & -e+e^{5} \\
-e+e^{5} & e+e^{5}
\end{array}\right]
\end{aligned}
$$

Argh! e^{A} should be symmetric, I just caught a sign error in espying from previous page, that I never would have caught without multiplying oft and stanng at answer to see if I believed it.
So multiplying out is nit required but is sertanly safer!!
\qquad
[7] Let A be the matrix

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

Find an orthogonal basis in which A is diagonal.
First, short direct attack by cleverness:

$$
\begin{aligned}
& A=\underbrace{\left[\begin{array}{ll}
2 & 2 \\
& 2 \\
\hline
\end{array}\right]}_{\begin{array}{c}
\text { stretches } \\
\text { Uniformly by } 2
\end{array}}+\underbrace{\left[\begin{array}{ll}
1 \\
1 & 1
\end{array}\right]}_{\begin{array}{c}
\text { swaps } 1^{\text {st }} \\
\text { coovds }
\end{array}} 3^{\text {nd }} \text { : } \\
& \begin{array}{ll}
(1,0,1) \longmapsto(1,0,1) & \lambda=1 \\
(1,0,-1) \longmapsto(-1,0,1) & \lambda=-1 \\
(0,1,0) \longmapsto(0,1,0) & \lambda=1
\end{array} \\
& \lambda=2,2,2
\end{aligned}
$$

so combined effect is

$$
\begin{array}{ll}
(1,0,1) \xrightarrow{A} 2(1,0,1)+(1,0,1)=3(1,0,1) & \lambda=2+1=3 \\
(0,1,0) \xrightarrow{A} 2(0,1,0)+(0,1,0)=3(0,1,0) & \lambda=2+1=3 \\
(1,0,-1) \xrightarrow{A} 2(1,0,-1)+(-1,0,1)=(1,0,-1) & \lambda=2-1=1
\end{array}
$$

And this basis is orthogonal:

$$
\begin{gathered}
(1,0,1) \cdot(1,0,-1)=0 \quad 6 \\
(1,0,1) \cdot(0,0)=0 \quad 0 \\
(1,0,-1) \cdot(0,1,0)=0
\end{gathered}
$$

Eigenvector 1 basis (expected because A symmetric):

$$
\begin{aligned}
& \begin{array}{l}
V_{1}=(1,0,1) \quad \lambda_{1}=3 \\
V_{2}=(1,0,-1)
\end{array} \text { 2 cough a mistake !!!!! } \\
& \left.\begin{array}{ll}
V_{2}=(1,0,-1) & \lambda_{2}=3 \\
V_{3}=(0,1,0) & \lambda_{3}=3
\end{array}\right] \quad E=\text { usual coovds }
\end{aligned}
$$

check that A is diagonal in this basis: $\quad V=$ eigenvector basis

and $\left[\begin{array}{c}* \\ k \\ k\end{array}\right]=\left[\begin{array}{c}11 \\ 1-1\end{array}\right]$ and $\left[\begin{array}{c}11 \\ 17\end{array}\right]^{-1}=\frac{-1}{2}\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 1 \\ 1-1\end{array}\right] / 2$
 (0_{1} you gust died the bot win dangit?!n?

$$
\begin{aligned}
& {\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 2
\end{array}\right] \stackrel{?}{=}\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right][\underbrace{\left.\begin{array}{lll}
3 & \\
& & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & -1 \\
0 & 2 & 0
\end{array}\right] / 2}} \\
& {\left[\begin{array}{lll}
4 & 0 & 2 \\
0 & 6 & 0 \\
2 & 4
\end{array}\right] \text { Argyll This int coming }}
\end{aligned}
$$

How will I ever get that At

How would I have figured out agenuectors by "usual" machine?

$$
\left.\begin{array}{l}
\begin{array}{l}
+\left|\begin{array}{ccc}
2-\lambda \\
0 & 0 & 1 \\
1 \\
3-\lambda & 0 \\
0 & 2-\lambda
\end{array}\right|
\end{array}=(2-\lambda)\left|\begin{array}{cc}
3-\lambda & 0 \\
0 & 2-\lambda
\end{array}\right|+2\left|\begin{array}{cc}
0 & 1 \\
3-\lambda & 0
\end{array}\right| \\
\\
=(2-\lambda)^{2}(3-\lambda)-(3-\lambda) \\
\\
=\left[(2-\lambda)^{2}-1\right](3-\lambda)=\left[\lambda^{2}-4 \lambda+3\right](3-\lambda) \\
\\
=-(\lambda-1)(\lambda-3)(\lambda-3) \\
\text { so } \lambda=1,3,3
\end{array}\right] \begin{aligned}
\lambda=3:\left[\begin{array}{ccc}
2-3 & 0 & 1 \\
0 & 3-3 & 0 \\
1 & 0 & 2-3
\end{array}\right] & =\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right] \text { has kernel basis } \begin{array}{ll}
(1,0,-1),(0,1,0) \quad \lambda=3
\end{array}
\end{aligned}
$$

$\lambda=1$ matrix is symmative so $3^{\text {rd }}$ eigenvector is 1 to these, ie. $(1,0,1) \geq \lambda=1$
[8] Find a matrix A so the substitution

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=A\left[\begin{array}{l}
s \\
t
\end{array}\right]
$$

transforms the quadratic form $x^{2}+4 x y+y^{2}$ into the quadratic form $s^{2}-t^{2}$.
(Unfair question, did we do anything like this? We id discs) quadratic forms in several classes...

$$
x^{2}+4 x y+y^{2}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

so if I can understand good cords for maM $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ Ill understand problem.
Is this an eigenvector problem in disguise?

$$
\text { Is this an eigenvector problem }|A-\lambda I|=\lambda^{2}-2 \lambda-3=(\lambda+1)(\lambda-3) \text { so } \lambda=-1,3
$$

$\lambda=-1:\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$ has kernel $(1,-1) \lambda=-1$
symmetry so eigenvectors are 1 :

$$
[(1,+1) \lambda=3
$$

check $\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ +1\end{array}\right]=\left[\begin{array}{l}3 \\ 3\end{array}\right]=3\left(\begin{array}{l}1 \\ 1\end{array}\right], \quad\left[\begin{array}{c}1 \\ 2 \\ 2\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right)=\left[\begin{array}{c}-1 \\ 1\end{array}\right)=-\binom{1}{-1} \quad$ o
(I had written $(1,-1)$ without thinking, uss caught it by checking. See the sign change?
so $(1,1)$ and $(1,-1)$ is a good cord system.
Let's try plugging in $x=s+t \quad y=s-t$ (inspired by $(1,1),(1,-1)$) and see what happens,

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
S \\
t
\end{array}\right] \quad \text { ie. } A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

$$
\begin{aligned}
x^{2}+4 x y+y^{2} & =(s+t)^{2}+4(s+t)(s-t)+(s-t)^{2} \\
& =s^{2}+2 s t+t^{2}+4 s^{2}-4 t^{2}+s^{2}-2 s t+t^{2} \\
& =6 s^{2}-2 t^{2}
\end{aligned}
$$

I see the 2 (from Taylor's tho ???) the $-1,3$ from eigenvalues.
There's probably some theory for rescaling, but let's just wing it. Page 15 Continued on page: 16

Problem: 8
I have $6 s^{2}-2 t^{2}$, want $s^{2}-t^{2}$
replace s by $\frac{1}{\sqrt{6}} s$, t by $\frac{1}{\sqrt{2}} t$ would work.
Let's find this out by general substitution

$$
\begin{aligned}
& x=a s+b t \quad y=a s-b t \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
a & -b
\end{array}\right]\left[\begin{array}{l}
s \\
t
\end{array}\right]} \\
& \text { (I guess in that general) } \\
& \text { theory, it's the } \\
& \text { column's of } A \text { that } \\
& \text { matter. Peethy typrealo. } \\
& x^{2}+4 x y+y^{2}=(a s+b t)^{2}+4(a s+b t)(a s-b t)+(a s-b t)^{2} \\
& =a^{2} s^{2}+2 a b s t+b^{2} t^{2}+4 a^{2} s^{2}-4 b^{2} t^{2}+a^{2} s^{2}-2 a b s t+b^{2} t^{2} \\
& =6 a^{2} s^{2}-2 b^{2} t^{2} \overline{\overline{\text { want }}} s^{2}-t^{2}
\end{aligned}
$$

 dove mi high school teachers crazy
answer: $\left[\begin{array}{l}x \\ 4\end{array}\right]=\left[\begin{array}{cc}1 / \sqrt{6} & 1 / \sqrt{2} \\ 1 / \sqrt{6} & -1 / \sqrt{2}\end{array}\right]\left[\begin{array}{l}s \\ t\end{array}\right]$
so what's the general theory, and now do eigenvectors enter in?

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 / \sqrt{6} & 1 / \sqrt{6}
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
1 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right]=[1 / \sqrt{6} 1 / \sqrt{6}] \cdot 3[1 / \sqrt{6} 1 / \sqrt{6}]=3\left(\frac{1}{6}+\frac{1}{6}\right)=+1} \\
& {\left[\begin{array}{ll}
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=[1 / \sqrt{2}-1 / \sqrt{2}) \cdot(-1)\left[(1 / \sqrt{2},-1 / \sqrt{2})=-1\left(\frac{1}{2}+\frac{1}{2}\right)=-1\right.}
\end{aligned}
$$

if $* A v=\lambda v$
$v \cdot A v=v \cdot \lambda v=\lambda v \cdot v$ so we need to rescale v so $v \cdot v=\left|\frac{1}{\lambda}\right|$.
Nice theol for next time...
Page 16

