Final Examination

Dave Bayer, Modern Algebra, December 23, 1997
Each problem is worth 5 points for a total of 50 points. Work as much of each problem as you can.

Figure 1
[1] Let the dihedral group D_{3} of symmetries of the triangle act on the cells shown in Figure 1. For example, a vertical axis flip takes cell B to cell C, and a clockwise rotation takes cell B to cell P.

What are the orbits of D_{3}, acting on the set of cells

$$
\{A, B, C, D, E, F, G, H, I, J, K, L, M, N, P, Q, R, S, T, U, V\} ?
$$

[2] Let a, b be two elements of a group G, and let H be a subgroup of G. Consider the left cosets $a H$ and $b H$ of H in G. Show that if $a H$ and $b H$ have any elements in common, then $a H=b H$.
[3] The center Z of a group G is the set of elements of G which commute with all elements of G :

$$
Z=\{g \in G \mid g h=h g \text { for all } h \in G\} .
$$

The centralizer $Z(x)$ of an element $x \in G$ is the set of elements of G which commute with x :

$$
Z(x)=\{g \in G \mid g x=x g\} .
$$

(a) Show that $Z(x)$ is a subgroup of G.
(b) Show that $x \in Z$ if and only if $Z(x)=G$.
[4] The centralizer $Z(x)$ of $x \in G$ can also be thought of as the stabilizer of x with respect to conjugation:

$$
Z(x)=\left\{g \in G \mid g x g^{-1}=x\right\} .
$$

Suppose that $a x a^{-1}=y$ for some $a \in G$, so x and y are conjugate elements of G.
(a) Describe the subset $\left\{g \in G \mid g x g^{-1}=y\right\}$ in terms of $Z(x)$ and a.
(b) Show that the number of elements of G conjugate to x is given by the formula $|G| /|Z(x)|$.
(c) Show that any group of order p^{2} is abelian, when p is prime.
[5] Let U, V, and W be three subspaces of a finite-dimensional vector space over a field F. Prove that

$$
\operatorname{dim}(U+V+W) \leq \operatorname{dim}(U)+\operatorname{dim}(V)+\operatorname{dim}(W)
$$

[6] Find the multiplicative inverse of $102 \bmod 103$.
[7] Let

$$
A=\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right]
$$

Find a change of basis matrix B so $A=B C B^{-1}$ where C is in Jordan canonical form. Use B and C to find $e^{A t}$.
[8] Let $G=\left\{1, a, a^{2}, b, a b, a^{2} b\right\}=\left\langle a, b \mid a^{3}=b^{2}=1, b a=a^{-1} b\right\rangle$; this is a presentation of the dihedral group D_{3}. Let $U=\left\{a, a^{2}, a b, a^{2} b\right\} \subset G$, and let G act on itself by left multiplication.
(a) What is the stabilizer $H=\operatorname{Stab}(U)$ of U ?
(b) List the right cosets $H a$ of H in G.
(c) Express U as a union of right cosets of H, and verify that $|H|$ divides $|U|$.
[9] Let G be a group of order $p^{e} m$, where p is a prime that does not divide m. Prove that G has a subgroup H of order p^{e}.
[10] Classify the groups of order n, where
(a) $\mathrm{n}=33$.
(b) $\mathrm{n}=39$.
(c) $\mathrm{n}=49$.

