COLUMBIA UNIVERSITY

Math V1102
Calculus II
Spring 2014

Practice Exam I
20.02.2014

Instructor: S. Ali Altug

Name and UNI:

<table>
<thead>
<tr>
<th>Question</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points:</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>51</td>
</tr>
<tr>
<td>Score:</td>
<td></td>
</tr>
</tbody>
</table>

Instructions:

- There are 8 questions on this exam.
- Please write your NAME and UNI on top of EVERY page.
- In order to get full credit you need to answer the first 7 questions correctly.
- The last question is a bonus question, and you do not have to answer it.
- Unless otherwise is explicitly stated SHOW YOUR WORK in every question.
- Please write neatly, and put your final answer in a box.
- No calculators, cell phones, books, notebooks, notes or cheat sheets are allowed.
1. (3 points) \[\int xe^x \, dx \]

2. (5 points) \[\int x \ln(x) \, dx \]

3. (5 points) \[\int \sec^3(x) \tan^3(x) \, dx \]

4. (5 points) \[\int \csc(x) \, dx \]

 \textit{(Hint: You can try multiplying and diving by} \ (\csc(x) - \cot(x)).)\]

5. (6 points) \[\int (\arcsin(x))^2 \, dx \]

 \textit{(Hint: You can try using the substitution} \ u = \sin(\theta), \ \text{and take it from there.})\]

6. (6 points) \[\int \arcsin(x) \, dx \]

 \textit{(Hint: You can try substituting} \ x = \sin(\theta), \ \text{and then use integration by parts.})\]

7. Determine if the following improper integrals converge.

 (a) (3 points) \[\int_0^\pi \tan(x) \, dx \]

 (b) (3 points) \[\int_1^\infty \frac{dx}{\sqrt{x} - 1} \]

 \textit{(Hint: Think of the inequality} \ \sqrt{x} - 1 < \sqrt{x}.)\]

8. (6 points) \[\int \frac{1}{(x^2 - 1)^{3/2}} \, dx \]

9. (6 points) \[\int \frac{x^5 + 1}{x^4 - 1} \, dx \]

10. (3 points) Find the volume of the solid obtained by rotating the area between \(\frac{1}{x} \) and \(\frac{1}{x^2} \) from 1 to \(\infty \) around the \(x \)-axis.