1. Apostol §8.3 (pp. 245–7) 2. You needn’t do it all, just enough to get the idea.

2. Apostol §8.5 (pp. 251–2) *6, 7, 8.

3. Apostol §8.9 (pp. 255–6) 4, 7, 8, 9, 10, 12, *20, 21, *22.

4. Apostol §8.14 (pp. 262–3) 1, 2, 7, 10, 11.

 Hint for 13: you may use the fact, asserted in class and in Figure 8.8, that for any scalar field \(f : \mathbb{R}^3 \to \mathbb{R} \), its gradient vectors \(\nabla f(x, y, z) \) are perpendicular to the tangent planes of its level surfaces \(f(x, y, z) = c \). We will speak more rigorously about surfaces and tangent planes in the future.

6. Show that if \(U \) and \(V \) are open in \(\mathbb{R}^n \), then so are \(U \cup V \) and \(U \cap V \).

*7. Show that the product \((a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_n, b_n)\) is an open set in \(\mathbb{R}^n \).

*8. Suppose that \(F : \mathbb{R}^n \to \mathbb{R} \) is linear. Show that for any \(x \in \mathbb{R}^n \), the total derivative of \(F \) at \(x \) is just \(F \) itself.

9. A function \(G : \mathbb{R}^n \to \mathbb{R} \) is called homogeneous if \(G(tx) = tG(x) \) for all nonzero \(t \in \mathbb{R} \) and all nonzero \(x \in \mathbb{R}^n \). Suppose that \(G \) is homogeneous and continuous.
 (a) Show that \(G(0) = 0 \).
 (b) Show that the directional derivative of \(G \) at \(0 \) along \(y \) exists for all \(y \in \mathbb{R}^n \).
 (c) Show that \(G \) is differentiable at \(0 \) if and only if it is linear. Hint: If it’s differentiable, look at a single line through the origin at a time, and show that there it equals its own derivative.

*10. Suppose \(H : \mathbb{R}^n \to \mathbb{R} \) satisfies \(|H(x)| \leq c \|x\|^2\) for some constant \(c \in \mathbb{R} \) and for all \(x \in \mathbb{R}^n \). Show that it is differentiable at \(0 \) and compute its derivative.

Strictly speaking, this is really called homogeneous of degree 1, but never mind.