1. Apostol §1.17 (p. 30) 2, 3, 4.

*2. Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by $(1, 1, 1, 1)$, $(-1, 4, 4, -1)$, and $(4, -2, 2, 0)$.

3. Apostol §5.5 (pp. 118–120) 3, 4, 5, 6.

4. Apostol §5.11 (pp. 124–126) 1, 2, 6, 8, *13, 14.
 Hint for 13: If $v, w \in \mathbb{R}^n$ are regarded as $n \times 1$ matrices, then $v \cdot w = v^t w$.

*5. Let V be a finite-dimensional Euclidean or Hermitian space, $U \subset V$ any subspace. Show that $\dim U + \dim U^\perp = \dim V$.

*6. (20 pts) Let U, V, W be finite-dimensional Euclidean or Hermitian spaces, $S : U \to V$ and $T : V \to W$ linear maps. Show that:

 (a) $T^\circ\circ = T$. (Choosing ONBs is perfectly legitimate, but working directly from the definition is in better taste.)

 (b) $\ker T^* = (\text{im } T)^\perp$.

 (c) $\ker T = (\text{im } T^*)^\perp$.

 (d) $\text{rank } T^* = \text{rank } T$.

 (e) Use the above to give an alternate proof that the row-rank of a real square matrix equals its column-rank.

 (f) $(TS)^* = S^* T^*$.

 (g) If T is invertible, then so is T^*, and $(T^*)^{-1} = (T^{-1})^*$.
7. (20 pts) Prove the *finite-dimensional spectral theorem*:

Let \(V \) be a finite-dimensional Hermitian space and \(T : V \rightarrow V \) a linear map. Then \(V \) has an orthonormal basis of \(T \)-eigenvectors if and only if \(T \) is normal (i.e. \(TT^* = T^*T \)).

Step 1. Prove the “only if” part by considering a diagonal matrix representation of \(T \).

Step 2. Show that *any* linear map \(T : V \rightarrow V \) can be written \(T = H + iK \), where \(H \) and \(K \) are Hermitian.

Step 3. If \(T \) is normal, show that \(H \) and \(K \) commute in the above description.

Step 4. Let \(\lambda \) be an eigenvalue of \(H \), and \(E_{\lambda} \) the corresponding eigenspace. Show that \(K \) maps \(E_{\lambda} \) into itself, and so by the Hermitian case of the spectral theorem, \(E_{\lambda} \) has an orthonormal basis of \(K \)-eigenvectors.

Step 5. Show that two commuting self-adjoint linear maps can be “simultaneously diagonalized,” i.e. there exists an orthonormal basis of \(V \) consisting of eigenvectors for both \(H \) and \(K \).

Step 6. Show \(V \) has an orthonormal basis of \(T \)-eigenvectors.

8. A linear map \(T : V \rightarrow V \) on a finite-dimensional Hermitian space is called *non-negative* if it is self-adjoint and all its eigenvalues are positive or zero. Show, using the spectral theorem, that a non-negative linear map has an *unique* non-negative square root.