Modelling Volatility and Volatility Derivatives

Andrew Matytsin

New York, 25 September 1999
This report represents only the personal opinions of the author and not those of J.P. Morgan, its subsidiaries or affiliates.
What Determines the Smile Term Structure?

S&P500 volatility surface on January 11, 1996

Market crashes drive the short-term smile
Uncertainty in volatility drives the long-term smile
How to Combine Stochastic Volatility and Jump Diffusion?

- **between jumps**
 \[
 \begin{align*}
 \frac{dS}{S} &= \mu dt + \sqrt{v} dz_1 \\
 dv &= \kappa(\theta - v)dt + \sigma \sqrt{v} dz_2 \\
 \text{Corr}(dz_1, dz_2) &= \rho
 \end{align*}
 \]

- **market crashes form a Poisson process with rate** \(\lambda \)
 \[
 \begin{align*}
 \log S &\rightarrow \log S + \gamma_s + \delta_s \varepsilon \\
 \varepsilon &\sim N(0,1)
 \end{align*}
 \]

- **the option price obeys the equation**
 \[
 \begin{align*}
 \frac{\partial f}{\partial t} + \mu^* S \frac{\partial f}{\partial S} + \kappa(\theta - v) \frac{\partial f}{\partial v} + \frac{1}{2} v \left\{ S^2 \frac{\partial^2 f}{\partial S^2} + \sigma^2 \frac{\partial^2 f}{\partial v^2} + 2 \rho \sigma S \frac{\partial^2 f}{\partial S \partial v} \right\} \\
 + \lambda E^* \left[f(S e^{\gamma_s + \delta_s \varepsilon}, v + \gamma_v) - f(S, v) \right] &= rf
 \end{align*}
 \]

European option prices can be computed analytically.
What are the European Option Prices?

- Call prices equal
 \[C = S P_1 - K e^{-rT} P_0 \]

- The Fourier Transforms of \(P_1 \) and \(P_0 \) have the affine form
 \[\hat{P}_n = e^{C(T-t,\varphi)+D(T-t,\varphi)v} \]

- \(C(\tau, \varphi) \) and \(D(\tau, \varphi) \) obey the first order equations in \(\tau \)
 \[
 \begin{aligned}
 C(\tau, \varphi) &= C_H(\tau, \varphi) + \lambda \tau \left[e^{i \varphi \delta^2 \tau^2 / 2} I(\tau) - 1 \right] \\
 D(\tau, \varphi) &= D_H(\tau, \varphi)
 \end{aligned}
 \]

 \[
 I(\tau) = \frac{1}{\tau} \int_0^\tau e^{\gamma v D(t,\varphi)} dt = -\frac{2\gamma v}{p_+ p_-} \int_0^{\gamma v D(\tau,\varphi)} \frac{e^{-z} dz}{(1+z/p_+)(1+z/p_-)}
 \]

 Computed efficiently using the Fast Fourier Transform

 There is no need to sum over jumps
Does the Model Fit the Smile?

S&P500 volatility surface on June 11, 1997

The whole volatility surface is described by one set of constant parameters
Does the Model Fit the Smile?

S&P500 volatility surface in August, 1999

The whole volatility surface is described by one set of constant parameters
Are Smile Parameters Stable Over Time?

● Volatility parameters:
 - current volatility \sqrt{v}
 - correlation ρ
 - vol of vol σ
 - long run volatility $\sqrt{\theta}$
 - mean reversion rate κ

● Market crash parameters:
 - crash rate λ
 - crash magnitude γ_s
 - vol jump magnitude γ

Mean reversion, correlation and crash size are constant
Patterns in Stochastic Volatility Parameters

Long run diffusion volatility is relatively stable
Are Exotics Prices Different?

Down-and-out call maturity 3 years

Deltas in the two models

<table>
<thead>
<tr>
<th>strike</th>
<th>barrier level</th>
<th>Stochastic Volatility / Jump Diffusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>95</td>
<td>1.46 1.13 0.98 0.86</td>
</tr>
<tr>
<td>100</td>
<td>90</td>
<td>1.29 1.01 0.87 0.78</td>
</tr>
<tr>
<td>110</td>
<td>90</td>
<td>1.12 0.89 0.77 0.70</td>
</tr>
<tr>
<td>120</td>
<td>90</td>
<td>0.95 0.77 0.68 0.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>strike</th>
<th>barrier level</th>
<th>Implied Tree / Dupire</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>95</td>
<td>1.11 1.24 1.02 0.94</td>
</tr>
<tr>
<td>100</td>
<td>90</td>
<td>0.97 1.08 0.89 0.83</td>
</tr>
<tr>
<td>110</td>
<td>90</td>
<td>0.84 0.92 0.76 0.72</td>
</tr>
<tr>
<td>120</td>
<td>90</td>
<td>0.71 0.77 0.64 0.61</td>
</tr>
</tbody>
</table>

Deterministic volatility models may misprice barrier options
What are the Risk Premia?

- The risk-neutral drift of variance and the jump rate contain risk premia: \(\sigma_m^* = \sqrt{\theta^*} > \sigma_m = \sqrt{\theta} \quad \lambda^* > \lambda \)

- In the power utility model with \(U(C) \propto C^\alpha \)

 \[
 dC_t / C_t = \mu_c dt + \sigma_c \sqrt{v_t} dz_c + (e^{\gamma_c} - 1) dq
 \]

 - crash rate \(\lambda^* = \lambda e^{(\alpha-1)\gamma_c} \)

 - mean reversion \(\kappa^* = \kappa - (\alpha-1)\sigma_c \sigma \rho_{cv} \)

 - total return \(R = r - (\alpha-1)\nu_t \sigma_c \sigma_x \rho_{cx} + (e^{\gamma_x} - 1)(\lambda - \lambda^*) \)

- Rough estimates for S&P500: \(\lambda \propto 0.1, \quad \lambda^* \propto 0.5 \)
 \(\gamma_x \propto -0.1, \quad \alpha-1 \propto -16, \quad \gamma_c \propto -0.1 \quad \Rightarrow \quad \kappa^* - \kappa \propto -1.5, \quad \lambda^* \propto 5\lambda \)

Risk premia are roughly consistent with historic observations
Derivatives on Realized Volatility

- Volatility swap:
 \[\text{payout at maturity} = \text{notional} \times \left[\sigma_{\text{historic}} - \sigma_{\text{agreed vol}} \right] \]

- Variance swap:
 \[\text{payout at maturity} = \text{notional} \times \left[\sigma_{\text{historic}}^2 - \sigma_{\text{agreed var}}^2 \right] \]

- \(\sigma_{\text{historic}} \) is the standard deviation of realized returns
 \[\sigma_{\text{historic}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (r_i - \bar{r})^2}, \quad r_i = \ln \left(\frac{S_{i+1}}{S_i} \right) \]

- To hedge a variance swap, buy 2 log contracts \(f(S_T) = \log(S_T / F) \)
 \[\Delta t \left[\frac{1}{2} \sigma_{\text{realized}}^2 S^2 \Gamma_f - \frac{1}{2} \sigma_{\text{implied}}^2 S^2 \Gamma_f \right] = \frac{1}{2} \Delta t \left(\sigma_{\text{implied}}^2 - \sigma_{\text{realized}}^2 \right) \]

Without jumps, the log hedge is model-independent
How to Find Expected Volatility?

- Evaluate the characteristic functional
 \[f(v, t \mid z) = E_t^* \left[e^{-zV_t} \mid F_t \right] \]
 \[V_t = \int_0^T v(\tau)d\tau + \sum_{n=1}^{N_j} (\gamma_s + \delta_s \epsilon)^2 \]

- Expected variance:
 \[E\{V_t\} = -\left(\frac{\partial f}{\partial z} \right) \bigg|_{z=0} \]

- Expected volatility:
 \[E\left\{ \sqrt{V_t} \right\} = \frac{1}{2\sqrt{\pi}} \int_0^\infty \frac{1 - E(e^{-zV_t})}{z^{3/2}}dz \]

- Expected payout of a variance call option:
 \[E\{\max(V_t - K, 0)\} = \frac{1}{\pi} \text{Re} \int_0^\infty \frac{1 - E(e^{i\varphi(V_t - K)})}{\varphi^2} d\varphi + \frac{1}{2} \left[E\{V_t\} - K \right] \]

The characteristic functional is easily found in closed form
What are the Resulting Prices?

- Characteristic functional has the form \(f(v, t \mid z) = e^{C(t, z)+D(t, z)v} \)

- The final result is \(f(v, t \mid z) = \psi_{sv}(z) \psi_j(z) \)

\[
\psi_{sv}(z) = e^{\zeta \tau/2} \left[\cosh\left(\frac{\mu \tau}{2}\right) + \frac{1}{\mu} \sinh\left(\frac{\mu \tau}{2}\right) \right]^{-\zeta} \exp\left\{-\frac{2zv}{\kappa[1+\mu \coth(\mu \tau/2)]}\right\}
\]

\[
\psi_j(k) = \exp\left\{ -\lambda T \left(1 - \frac{1}{\sqrt{1+2k\delta^2}} e^{-k\delta^2/2} \left(\frac{T}{T_0} \int e^{D(t)\gamma} \, dt \right) \right) \right\}
\]

\[
D(t \mid z) = -\frac{2z}{\kappa} \frac{1}{1+\mu \coth(\mu \tau/2)}
\]

- What is the difference between expected vol and variance?

<table>
<thead>
<tr>
<th></th>
<th>Swap</th>
<th></th>
<th>Spread to implied vol</th>
<th>Convexity adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>volatility</td>
<td>variance</td>
<td>implied vol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>combined model</td>
<td>26.34%</td>
<td>31.20%</td>
<td>26.53%</td>
<td>-0.19%</td>
</tr>
<tr>
<td>stochastic vol</td>
<td>28.64%</td>
<td>31.29%</td>
<td>26.53%</td>
<td>2.11%</td>
</tr>
<tr>
<td>jump diffusion</td>
<td>27.55%</td>
<td>30.06%</td>
<td>26.53%</td>
<td>1.02%</td>
</tr>
</tbody>
</table>

The convexity adjustment due to jumps may be substantial

JPMorgan
How to Hedge Against Jumps?

- Constant diffusion volatility \Rightarrow no risk between crashes
- An exact hedge against a crash is $x = \gamma^2 / (e^\gamma - 1 - \gamma)$ of the log security together with its delta $\Delta = (1/S) e^{-r(T-t)}$
- During a crash, gain $\left[\log(S_{i+1} / S_i) \right]^2 = \gamma^2$ on the variance contract which offsets exactly by the loss on the hedge:
 $$x \left\{ \log(S_t e^\gamma) - \log(S_t) \right\} + \Delta (S_t e^\gamma - S_t) = -x(e^\gamma - 1 - \gamma)$$
- For S&P500, with jump size $\gamma \approx -0.15$ the hedge ratio $x \approx 2(1-\gamma / 3) \approx 2.10$

In the stochastic volatility & jump diffusion model the optimal hedge ratio is closer to 2.0
What is the Optimal Log Hedge?

- Hedge with x log contracts and y shares
- Find x and y to minimize the expected P/L variance

\[
\lambda \left\{ \Delta C + x \Delta L + y \Delta S \right\}^2 + \nu_t \left\{ \sigma^2 (\Lambda_C + x \Lambda_L)^2 + y^2 + 2 \rho \sigma y (\Lambda_C + x \Lambda_L) \right\}
\]

- The optimal amounts and exposures change over time

\[
x/(1/\sigma_{\text{exp}})
\]

![Volatility Swap](image)

![Variance Swap](image)
Summary and Overview

- Model matches the whole smile with one set of parameters
- It provides a realistic representation of risks
- The impact of jumps on the pricing and hedging of volatility derivatives is significant