That is $\text{As supp}(f)$ means that the value of f on any $s F^K$ is already determined by the restriction of s to A.

The essential rank of f is defined as $\min\{|A| | A \in \text{As supp}(f)|$. If α is a primitive class (variety) of algebras, define its rank to be the supremum of the essential ranks of all α-algebraic operations. Since the essential rank of an algebraic operation is always less than the dimension (Σ^α [3]) of α, this supremum exists.

Now let f be any element of the free algebra $F(X, \alpha)$ with basis X of the primitive class α, and let A be any algebra in α. One can define an X-ary operation f^A on A by $f^A(s) = \varphi(f)$ for any $s A^X$. Here φ is the homomorphic extension of α to a homomorphism of $F(X, \alpha)$ to A. f^A is an algebraic operation on A; in fact $f \mapsto f^A$ is a surjective homomorphism of $F(X, \alpha)$ onto the algebra $H^K(A)$ of all X-ary algebraic operations on A (see for instance [1]).

THEOREM: If the categories $\alpha(\Delta)$ and $\alpha(\Delta')$ are isomorphic, then Δ and Δ' are equivalent types.

We shall prove this theorem in two steps. Let s denote the canonical underlying set functors on $\alpha(\Delta)$ and $\alpha(\Delta')$.

LEMMA 1: If the concrete categories $\alpha(\Delta), s)$ and $\alpha(\Delta'), s)$ are concretely isomorphic (that is isomorphic by a functor which preserves underlying sets), then Δ is equivalent to Δ'.

Proof: Let $\Delta = (X, \Delta)'$. It suffices to show that the knowledge of the category $\alpha(\Delta)$ and its underlying set functor is sufficient to recover Δ up to equivalence. Now the definition of free algebra