Algebraic topology

Discussion 5 Section 4.2 of Hatcher (subsections on the Freudenthal theorem, Eilenberg-MacLane spaces, fiber bundles).

Homework 5. Due Monday, October 16.

1. Show that the spaces \mathbb{S}^2 and $\mathbb{S}^3 \times \mathbb{C}P^\infty$ have isomorphic homotopy groups but are not homotopy equivalent.

2. Let X_n be the subset of \mathbb{C}^n consisting of n-tuples of pairwise distinct complex numbers (z_1, \ldots, z_n).

 (a) Show that the forgetful map $X_n \to X_{n-1}$ given by omitting z_n make X_n a fiber bundle with base X_{n-1}.

 (b) Using induction on n and the long exact homotopy sequence of a fibration prove that X_n is a $K(H, 1)$-space for some group H. This group is called the pure braid group on n strands.

 (c) The symmetric group S_n acts on X_n by permuting the z_i’s. Let $X_n \to X'_n$ be the quotient map. Explain why this map is a locally-trivial covering, compute its group of deck transformations, and show that X'_n is a $K(G, 1)$-space for some group G (called the braid group on n strands).

 (d) Show that there exists a short exact sequence

 $$1 \to H \to G \to S_n \to 1.$$

 (e) Determine the braid group and the pure braid group in the case $n = 2$.

3. Let $p : E \to B$ be a Serre fibration, $b \in B$ and $F = p^{-1}(b)$. We constructed a homomorphism $p_* : \pi_n(E, F) \to \pi(B)$ and checked its injectivity. Check that the homomorphism is surjective and conclude that p_* is an isomorphism.

4. Suppose that $p : E \to B$ is a locally-trivial covering. What does the long exact sequence for p tell us about the homotopy groups of $E, B,$ and F?

5. Let G be a group and X a simply-connected space. Show that for the product $K(G, 1) \times X$ the action of π_1 on π_n is trivial for all $n > 1$.