1. Suppose \(F = 2xyi + (x^2 + byz)j + y^2k \).

 A. For what number \(b \) does \(\text{div}(F) = \text{curl}(F) \cdot i \)?

 Note that \(\text{div}(F) = 2y + bz \) and \(\text{curl}(F) = (2y - by)i + 0j + 0k \). So \(\text{div}(F) = \text{curl}(F) \cdot i \) when \(b = 0 \).

 B. For what (different) number \(b \) is \(F \) conservative? Since \(F \) is conservative when \(\text{curl}(F) = 0 \) we need \(b = 2 \).

 C. For this second number \(b \), find \(f \) so that \(\nabla(f) = F \). One choice is \(f = x^2y + y^2z \).

2. A. Rewrite the following integral as an iterated integral in the order \(dydxdz \):

 \[
 \int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} f(x, y, z) \, dz \, dy \, dx.
 \]

 The answer is

 \[
 \int_{0}^{1} \int_{-\sqrt{1-z}}^{\sqrt{1-z}} \int_{x^2}^{1} f(x, y, z) \, dy \, dx \, dz.
 \]

 B. Rewrite the integral in spherical coordinates.

 \[
 \int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{4-x^2-y^2}} z \, dz \, dy \, dx.
 \]

 The answer is

 \[
 \int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{2} \rho^3 \cos(\phi) \sin(\phi) \, d\rho \, d\phi \, d\theta.
 \]

C. Evaluate \(\int \int_{R} e^{9x^2+4y^2} \, dA \) where \(R \) is the region bounded by \(9x^2+4y^2 = 1 \).

Let \(x = u/3 \) and \(y = v/2 \). Let \(S \) be the region in the \((u,v)\)-plane bounded by \(u^2 + v^2 = 1 \). Then the Jacobian of this transformation is \(J = 1/6 \). So the answer is

\[
\int_{S} \int 1/6 e^{u^2+v^2} \, dA = \int_{0}^{2\pi} \int_{0}^{1} 1/6 \, e^{r^2} \, r \, dr \, d\theta = e \pi /6.
\]
3. A. Let \(F = (1 + \tan(x), x^2 + e^y) \) be a force field. Let \(C \) be the boundary of the region enclosed by the parabola \(x = y^2 \) and the lines \(x = 1 \) and \(y = 0 \). Find the work done by \(F \) as a particle travels once around \(C \) in the counterclockwise direction.

The work is \(W = \int_C F \cdot dr = \int_C (1 + \tan(x))dx + (x^2 + e^y)dy \). By Green’s Theorem, \(W = \int_0^1 \int_{y^2}^1 2x dx dy = \int_0^1 (1 - y^4)dy = 4/5 \).

B. (5 points) Find a vector field \(F \) such that \(\int_C F \cdot dr = 0 \) whenever the endpoints of \(C \) both lie on the curve \(y = x^3 + x + 1 \).

If \(f(x,y) = y - x^3 - x - 1 \), then \(F = \nabla(f) = (-3x^2 - 1)i + j \). Suppose \(C \) starts at \(a = (x_1, y_1) \) and ends at \(b = (x_2, y_2) \) where \(a \) and \(b \) lie on this curve and thus \(f(a) = f(b) = 0 \). By the Fundamental Theorem of line integrals, \(\int_C F \cdot dr = f(b) - f(a) = 0 - 0 \).

4. Consider the surface \(S \) in \(\mathbb{R}^3 \) given parametrically by \(x = u \cos(v), y = u \sin(v), \) and \(z = u \). Let \((u,v) \) range through the domain \(D = \{(u,v) | 0 \leq u \leq 1, 0 \leq v \leq 2\pi \} \).

A. Graph \(S \). Mark the grid curves \(u = 1 \) and \(v = 0 \).

See picture \(V \) on page 1091 for a picture of this cone. The curve \(u = 1 \) is a circle and \(v = 1 \) is a line.

B. Find the surface area (for \((u,v) \in D \)).

Let \(r(u,v) = (u \cos(v), u \sin(v), u) \). Then \(r_u = (\cos(v), \sin(v), 1) \) and \(r_v = (-u \sin(v), u \cos(v), 0) \). Thus \(r_u \times r_v = (-u \cos(v), -u \sin(v), u) \).

Thus \(|r_u \times r_v| = \sqrt{2}u \). The surface area is \(SA = \int_0^1 \int_0^{2\pi} \sqrt{2} u dv du \). Thus \(SA = (2\pi) \sqrt{2}/2 = \sqrt{2}\pi \).

C. Let \(C \) be the grid curve \(v = 0, 0 \leq u \leq 1 \). Find \(\int_C 1 ds \). What physical quantity does this integral represent?

Here \(r(u,0) = (u,0,u) \) and \(r'(u) = (1,0,1) \) for \(0 \leq u \leq 1 \). Note \(r'(u) \) has length \(\sqrt{2} \). By page 1053, \(\int_C 1 ds = \int_0^1 \sqrt{2} du = \sqrt{2} \) is the arclength.