Problem 1. Use Gaussian elimination, find all solutions to the linear system:
\[
\begin{align*}
 x - y + z &= 2, \\
 x + 2y - z &= 3, \\
 2x + y + 3z &= 21.
\end{align*}
\]

Problem 2. Use Taylor approximation to rigorously compute the following limit:
\[
\lim_{x \to 0} \frac{\sin(x) - x - (\log(1 - x))(1 - \cos(x))}{x^3}
\]

Problem 3. Consider the symmetric matrix \(A = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix} \).

1. Write down all eigenvalues of \(A \) and the corresponding eigenvectors. Why does \(A \) have an eigenbasis?
2. Write down a diagonal matrix \(D \) and an invertible matrix \(S \) so that \(A = SDS^{-1} \).
3. Write down a matrix \(B \) so that \(B^8 = A \) (using the first two parts.)

Problem 4. Consider the symmetric matrix \(A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 1 \end{bmatrix} \).

1. Write down the associated quadratic form and show it is positive definite.
2. For what values of \(c \) is the quadratic form \(Q(x, y) = 3x^2 - (5 + c)xy + 2y^2 \) positive definite, positive semidefinite, or indefinite?

Problem 5. Let \(A \) be a symmetric \(n \times n \) matrix with eigenvalues \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \) and let \(Q \) be the associated quadratic form. Show that, for any vector \(x \in \mathbb{R}^n \),
\[
\lambda_1 \|x\|^2 \leq Q(x) \leq \lambda_n \|x\|^2
\]
where \(\|\| \) is the length of the vector. (Hint: use the spectral theorem to reduce to the diagonal case, and use properties of orthogonal matrices.)

Problem 6. Let \(A \) be a \(n \times m \) matrix with \(n \leq m \). For every choice of \(n \) columns, we have a \(n \times n \) matrix (these are examples of minors of \(A \)). Show that, if there exists some \(n \times n \) minor with a nonzero determinant, then \(A \) has rank \(n \). The other direction is true too, but you don’t have to prove that.

Problem 7. In this question, use Taylor polynomials to prove a ”third-derivative” test for critical points: Suppose we have a \(C^3 \)-function \(f(x) \) such that \(f(0) = 0 \), \(f'(0) = 0 \) and \(f''(0) = 0 \) (so that the second derivative test doesn’t provide any information); suppose also that the third derivative \(f^{(3)}(0) > 0 \).

Show that \(f(x) \) does not have a local maximum or a local minimum at \(x = 0 \) by showing that \(f(x) > 0 \) for \(x > 0 \) sufficiently small, and \(f(x) < 0 \) for \(x < 0 \) and sufficiently small.