First Exam AA
Surfaces and Knots, Dave Bayer, February 21, 2002

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam AB
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: _______________________________ School: _________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam AE
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ____________________________ School: ______

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing diagrams](image1)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

![Gluing diagrams](image2)
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam AL
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___ School: _________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

![Gluing Diagrams](image)
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

\[\text{Diagram 1} \]

\[\text{Diagram 2} \]

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam BD
Surfaces and Knots, Dave Bayer, February 21, 2002

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam BI
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ________________________________ School: __________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Diagram](image1)

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Diagram](image2)

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Diagram](image3)
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam BM
Surfaces and Knots, Dave Bayer, February 21, 2002

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams]

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam BN
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ____________________________ School: _________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam CA
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___________________________ School: _______

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam CC
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ____________________________ School: _______

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image1)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

![Gluing Diagrams](image2)
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam CG
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___ School: _______

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams]

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Diagrams](image1)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

![Diagrams](image2)
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam DC
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___________________________ School: ________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam DF
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ________________________________ School: _________

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam DH
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___ School: _______

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image1.png)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

![Gluing Diagrams](image2.png)
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing diagrams]

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam EG
Surfaces and Knots, Dave Bayer, February 21, 2002

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

![Gluing Diagrams](image)
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing diagrams](image1)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

![Gluing diagrams](image2)
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam FB
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ____________________________ School: ________

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam FC
Surfaces and Knots, Dave Bayer, February 21, 2002

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams]

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image1)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

![Gluing Diagrams](image2)
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam GJ
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___ School: ______

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam GM
Surfaces and Knots, Dave Bayer, February 21, 2002

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam HC
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: _______________________________ School: _________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam HG
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___________________________ School: ________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam HK
Surfaces and Knots, Dave Bayer, February 21, 2002

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

1. Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

2. Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

3. Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

Name:

School:

First Exam HL
Surfaces and Knots, Dave Bayer, February 21, 2002

1 2 3 4 5 TOTAL
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam HN
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ____________________________ School: ______

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Surface Diagram](image1)

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Surface Diagram](image2)

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Surface Diagram](image3)
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam IA
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___________________________ School: _________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Hexagonal Gluing Diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam ID
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: .. School:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

1. Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

2. Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

3. Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam IG
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ____________________________ School: ________

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

1. Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

2. Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

3. Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam IL
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___ School: __________

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam IN
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___________________________ School: ________

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Gluing Diagram](image1.png)

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Gluing Diagram](image2.png)

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Gluing Diagram](image3.png)
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam JA
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___________________________ School: _________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams]

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam JJ
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ____________________________ School: _______

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Diagram](image1)

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Diagram](image2)

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Diagram](image3)
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Hexagonal gluing diagrams](image1)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

![Hexagonal gluing diagrams](image2)
First Exam JN
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ____________________________ School: ________

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam KC
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: _____________________________ School: _________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam KD
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: __ School: ________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam KI
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: __ School: __________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Gluing Diagram](image1.png)

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Gluing Diagram](image2.png)

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Gluing Diagram](image3.png)
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Hexagonal gluing diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam KJ
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___________________________ School: _________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam KK
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___________________________ School: _________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam KL
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___________________________ School: ________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams]

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam KM
Surfaces and Knots, Dave Bayer, February 21, 2002

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam LB
Surfaces and Knots, Dave Bayer, February 21, 2002

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing diagrams for exercise 4]

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

![Gluing diagrams for exercise 5]
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams]

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam LJ
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ________________________________ School: ________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing diagrams](image1)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

![Gluing diagrams](image2)
First Exam LL
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___________________________ School: ________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam LM
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ____________________________ School: _________

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing diagrams]

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam MA
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___ School: ________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image)

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam MH
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___________________________ School: ________

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>TOTAL</th>
</tr>
</thead>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
4. Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

![Gluing Diagrams](image)

5. Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
First Exam MK
Surfaces and Knots, Dave Bayer, February 21, 2002

Name: ___________________________ School: ________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Gluing Diagram 1](image1.png)

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Gluing Diagram 2](image2.png)

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

![Gluing Diagram 3](image3.png)
Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.
You may use scratch paper, but only this sheet will be graded; please present all answers on this sheet.

[1] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[2] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.

[3] Finish labeling the gluing diagram on the right, so it glues together to form the surface on the left. Compute the Euler characteristic of this surface.
[4] Determine what surface each of the following gluing diagrams represents, by computing its Euler characteristic, and determining whether it is orientable or not.

Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.

[5] Find a pair of gluing diagrams, above, which represent the same surface. In any set of eight hexagonal gluing diagrams, why must there always be such a pair? Demonstrate that your pair represents the same surface, by modifying the diagrams until they agree.