[1] Let P be the set of all polynomials $f(x)$, and let Q be the subset of P consisting of all polynomials $f(x)$ so $f(0) = f(1) = 0$. Show that Q is a subspace of P.
Problem: _____
[2] Let A be the matrix

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 1 & -1 & 0 \end{bmatrix}.$$

Compute the row space and column space of A.
Problem: _____
The four vectors

\[\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 6 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \]

span a subspace \(V \) of \(\mathbb{R}^3 \), but are not a basis for \(V \). Choose a subset of \(\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \} \) which forms a basis for \(V \). Extend this basis for \(V \) to a basis for \(\mathbb{R}^3 \).
Problem: _____
[4] Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 which rotates one half turn around the axis given by the vector $(1,1,1)$. Find a matrix A representing L with respect to the standard basis

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Choose a new basis $\{v_1, v_2, v_3\}$ for \mathbb{R}^3 which makes L easier to describe, and find a matrix B representing L with respect to this new basis.
Problem: _____
Let \(\{e_1, e_2\} \) and \(\{v_1, v_2\} \) be ordered bases for \(\mathbb{R}^2 \), and let \(L \) be the linear transformation represented by the matrix \(A \) with respect to \(\{e_1, e_2\} \), where

\[
\begin{align*}
e_1 &= \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad v_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \quad A = \begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix}.
\end{align*}
\]

Find the transition matrix \(S \) corresponding to the change of basis from \(\{e_1, e_2\} \) to \(\{v_1, v_2\} \). Find a matrix \(B \) representing \(L \) with respect to \(\{v_1, v_2\} \).
Problem: _____