Problem 1. Factor the polynomial $X^3 - 4X^2 - 7X + 10$.

Problem 2. We consider the map

$$F : \mathbb{R}[X] \rightarrow \mathbb{R}[X]$$

$$P \rightarrow X^2 P(X).$$

(1) If P has degree $n \in \mathbb{N}$, what is the degree of $F(P)$?
(2) Is F injective?
(3) Is F surjective?

Problem 3. (1) Find all polynomials $P \in \mathbb{R}[X]$ such that $P(x) = P(x - 3)$ for any $x \in \mathbb{R}$.
(2) We consider the map

$$G : \mathbb{R}[X] \rightarrow \mathbb{R}[X]$$

$$P \rightarrow P(X) - P(X - 3).$$

(a) If P has degree $n \in \mathbb{N}$, what is the degree of $G(P)$?
(b) Is G injective?

Problem 4 (Due by March 8th). We recall that for any $n \in \mathbb{N}$, $n \geq 1$ we have $X^n - 1 = (X - 1) \times \sum_{k=0}^{n-1} X^k$.

Let $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$, $n \geq 1$. Let $P = aX^{n+1} + bX^n + 1$.

(1) Find a necessary and sufficient condition on a and b for P to have 1 as a root.
(2) Under this condition, give explicitly the polynomial Q (that will depend on n and a) such that

$$P = (X - 1)Q.$$

(3) Under which condition does Q have 1 as a root?

Problem 5. Let $n \in \mathbb{N}$.

(1) Show that if n odd then $n^2 \equiv 1 \mod 8$.
(2) Show that if n is even then n^2 is equal to 0 or 2 $\mod 8$.
(3) What are the integers $x, y \in \mathbb{N}$ such that $x^2 + y^2 \equiv 2 \mod 8$?
Problem 6. I explain again here the problem I solved in class. Prove that there is a unique polynomial P with degree 3 such that for any $N \in \mathbb{N}$ we have

$$P(N) = \sum_{n=0}^{N} n^2. \tag{1}$$

Solution. First we are going to ”guess” what this polynomial can be. Let P be a polynomial with degree 3. It can be written

$$P = a_3 X^3 + a_2 X^2 + a_1 X + a_0$$

with $a_0, a_1, a_2, a_3 \in \mathbb{R}$. If P satisfies the requirement, we have in particular

\[
\begin{align*}
0 &= a_0 \\
0 + 1 &= a_0 + a_1 + a_2 + a_3 \\
0 + 1 + 2^2 &= a_0 + 2a_1 + 4a_2 + 8a_3 \\
0 + 1 + 2^2 + 3^2 &= a_0 + 3a_1 + 9a_2 + 27a_3
\end{align*}
\]

We solve this system (you should be able to do it properly – otherwise try this during recitation) and find

$$a_0 = 0, \ a_1 = \frac{1}{6}, \ a_2 = \frac{1}{2}, \ a_3 = \frac{1}{3}.$$

Now we have found the only possible candidate for the solution of our problem: it is

$$P = \frac{1}{3} X^3 + \frac{1}{2} X^2 + \frac{1}{6} X = \frac{X(2X + 1)(X + 1)}{6}.$$

We still have to prove that this candidate actually works, that it to say that it satisfies Equation (1) for all $N \in \mathbb{N}$.

So let us prove by induction on $N \in \mathbb{N}$ that – with the P we found – we have $P(N) = \sum_{n=0}^{N} n^2$ for all $N \in \mathbb{N}$.

- Base step: for $N = 0$ it is true.
- Suppose that for some fixed $N_0 \in \mathbb{N}$ we know that $P(N_0) = \sum_{n=0}^{N_0} n^2$. Then, by induction hypothesis, we have

$$\sum_{n=0}^{N_0+1} n^2 = P(N_0) + (N_0 + 1)^2$$
and we notice that

\[
P(N_0) + (N_0 + 1)^2 = \frac{N_0(2N_0 + 1)(N_0 + 1)}{6} + (N_0 + 1)^2
\]

\[
= \frac{N_0(2N_0 + 1)(N_0 + 1) + 6(N_0 + 1)^2}{6}
\]

\[
= \frac{(N_0 + 1)[(2N_0 + 1)N_0 + 6(N_0 + 1)]}{6}
\]

\[
= \frac{(N_0 + 1)[2N_0^2 + 7N_0 + 6]}{6}
\]

\[
= \frac{(N_0 + 1)(2N_0 + 3)(N_0 + 2)}{6}
\]

and we recognize here \(P(N_0 + 1)\). So we have proved that, provided (1) is true at rank \(N_0\), then it is true at rank \(N_0 + 1\).

*

The first part of the proof finds the only possible polynomial \(P\) with degree 3 that satisfies the requirement. The second part proves (by induction) that this \(P\) indeed satisfies the requirement.

Problem 7. Here is an exercise that should have echos of the remarks I made in class.

(1) Find all polynomials with degree 3 such that

\[P(1) = P(2) = P(3) = 0.\]

First discuss how many of them there can be (up to multiplication by a constant). Then find one... and conclude.

(2) Find all polynomials \(P \in \mathbb{R}[X]\) such that for all \(n \in \mathbb{Z}\) we have

\[P(n) = \cos(2n\pi/3).\]

(3) Find all polynomials \(P \in \mathbb{R}[X]\) such that for all \(n \in \mathbb{Z}\) we have

\[P(n) = \sin(n\pi) + \sqrt{5}.\]