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Chapter 1

Adeles, Ideles

1.1 Topological groups

Definition 1.1.1. A topological group is a group G equipped with a topology such
that the maps

GxG—G (x,y)— zy (multiplication)
G—G x + 2~ (inversion)

are continuous.

Remark 1.1.2. The continuity of the multiplication and inversion maps is equiva-
lent to the continuity of the map G x G — G given by (z,y) — x7'y.

Example 1.1.3.

(1) Any group equipped with the discrete topology is a topological group.

(2) The additive groups R, C equipped with the Euclidean topology are topological
groups. More generally, a finite-dimensional real vector space equipped with
the Euclidean topology is a topological group.

(3) The multiplicative groups R*, C* equipped with the Euclidean topology are
topological groups. More generally, the general linear groups GL,(R), GL,,(C),
equipped with the Euclidean topology are topological groups.

(4) The additive group @, and the multiplicative group Q) equipped with the
topology defined by the p-adic absolute value are topological groups.

Remark 1.1.4. For x € G, the map [,: G — G given by y — zy, called left
translation by x, is continuous. Moreover, [, has a continuous inverse [,-1, so [, is a
homeomorphism. Similarly, the map r,: G — G given by y — yz (right translation
by z) is a homeomorphism. It follows that G is a homogeneous space, in the sense
that given z,y € G, there exists a homeomorphism G — G sending z to y (for
example, l,,-1 or r,-1, or 1,0 1). Thus G looks topologically the same at all points.
We can use translations to transfer topological properties from one point to another.

Lemma 1.1.5. For a topological group G, the following conditions are equivalent:
(1) G is Hausdorff;
(2) every point of G is closed;
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(3) the identity element e € G is closed.

Recall that a topological space X is Hausdorff if and only if the diagonal Ax C
X x X is closed.

Proof. (1) = (2). Clear. (This holds in fact for any topological space.)
(2) = (3). Trivial.
(3) = (1). Indeed, (3) implies that Ag = ¢~1(e) is closed in G x G, where

¢:GxG =G (2,9) 1y
O

Recall that a topological space is locally compact if every point admits a compact
neighborhood. Every closed subspace of a locally compact space is locally compact.
Recall the following fact from general topology:

e Every open subspace of a locally compact Hausdorff space is locally compact
(IB1, 1.9.7], [H, page 59]). Equivalently, for each point z of a locally compact
Hausdorff space, compact neighborhoods of x form a basis of neighborhoods
of z.

Definition 1.1.6. A [ocally compact group is a locally compact Hausdorff topolog-
ical group.

All the topological groups in Example are locally compact groups. In (4),
Z, is a compact neighborhood of 0. Indeed, as the finite discrete spaces Z/p"Z are
compact, the compactness of Z, ~ @n Z./p"Z follows from the following fact from
general topology.

Lemma 1.1.7. Let (X;);er be a system of compact Hausdorff spaces indexed by a
partially ordered set I. Then the limit l'gliel X; is compact Hausdorff.

Proof. (1) (Tychonoff’s Theorem) The product of a (possibly infinite) family of
compact spaces is compact.
(2) The product of a (possibly infinite) family of Hausdorff spaces is Hausdorff.
(3) The limit V' = l‘mie s X; of a system of Hausdorff spaces is a closed subspace of
the product X = [[;c; X;. Indeed, V is the intersection of the closed subspaces
Vij € X defined by «;;(z;) = z; (inverse image of the graph in X; x X of the
transition map o;;: X; = X;) for i < j.
]

Subgroups

Lemma 1.1.8. Let G be topological group and let H C G be a subgroup. Then the
closure H is a subgroup.

Proof. Indeed, we have ¢~ *(H) 2O H x H, which implies ¢~'(H) D H x H = H x
by continuity.

0

Lemma 1.1.9. Every open subgroup H of a topological group G is closed.
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Proof. Indeed, every left coset gH is open, and H = G — Uy .p gH. n

Proposition 1.1.10. Fvery locally closed subgroup H of a topological group G is
closed.

Proof. By the preceding lemmas, H is an open subgroup of H, hence is closed in
H, thus closed in G. O

Corollary 1.1.11. Fwvery locally compact subgroup of a Hausdorff topological group
1s closed. In particular, every discrete subgroup of a Hausdorff topological group is
closed.

Proof. Indeed, every locally compact subset of a Hausdorff space is locally closed,
because every compact subset of a Hausdorff space is closed. O

Corollary 1.1.12. A subgroup H of a locally compact group is closed if and only if
H is locally compact.

Example 1.1.13. Z C R is a discrete (hence closed) subgroup. Z, C Q, is an open
(hence closed) subgroup.

Locally profinite groups

This subsection will not be used in the sequel of this chapter or in the next chapter.

The identity component of a topological group G is defined to be the connected
component containing the identity e. It is a normal closed subgroup.

Recall that a topological space X is called totally disconnected if the connected
components of X are one-point sets. Every subspace of a totally disconnected space
is totally disconnected. Every limit of totally disconnected spaces is totally dis-
connected. A topological group G is totally disconnected if and only if its identity
component is {e}. Totally disconnected groups are Hausdorft.

Proposition 1.1.14. Let G be a locally compact group. The following conditions
are equivalent:

(1) G is totally disconnected.

(2) Every neighborhood of e contains an open subgroup of G.

(8) The intersection of open subgroups of G is {e}.

Proof. (1) = (2). This is [B1} Section III.4, Proposition 14, Corollaire 1].
(2) = (3). Since G is Hausdorff, the intersection of neighborhoods of e is {e}.
(3) = (1). Since open subgroups are closed, the identity component is contained
in every open subgroup. O]

Corollary 1.1.15. Let G be a topological group. The following conditions are equiv-
alent:

(1) G is compact and totally disconnected.

(2) G is a filtered limit of discrete finite groups.

(3) G is a limit of discrete finite groups.
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Proof. (1) = (2). By the proposition, open subgroups of G form a basis of neigh-
borhoods of e. Since G is compact, each open subgroup has finite index, hence only
a finite number of conjugates. The intersection of the conjugates is a normal open
subgroup of G. Thus normal open subgroups V' of G form a basis of neighborhoods
of e. The continuous homomorphism f: G — l'mv G/V has dense image. For ev-
ery e # g € G, there exists V such that g ¢ V. Thus f is injective. Since G is
compact and the target is Hausdorft, f is closed. Therefore, f is an isomorphism of
topological groups.

(2) = (3) = (1). Clear. O

Definition 1.1.16. A topological group is locally profinite (resp. profinite) if it is
locally compact (resp. compact) and totally disconnected.

Example 1.1.17. Z, and Z, are profinite groups. Q, and Q' are locally profinite
groups.

Example 1.1.18. Let L/K be a (possibly infinite) Galois field extension. Then
Gal(L/K) ~ lim Gal(F'/K) is a profinite group, where F' runs through intermediate
fields such that F//K is a finite Galois extension. Conversely, for every profinite
group G and every field k, there exists an extension K/k and a Galois extension

L/K such that G ~ Gal(L/K) (Exercise, due to Waterhouse).

Quotients

Let H be subgroup of a topological group G. The left coset space G/H is equipped
with the quotient topology. This is the finest topology on G/H such that the
quotient map ¢: G — G/H is continuous. A subset V' C G/H is open if and only if
q (V) is open.

Proposition 1.1.19. (1) The quotient map q: G — G/H is open.
(2) If H is a normal subgroup of G, then G/H is a topological group.

Proof. (1) Indeed, for any open subset U C G, ¢ (¢(U)) = Upeng Uh C G is open,
so q(U) C G/H is open by the definition of quotient topology.
(2) We need to show that the map ¢': G/HxG/H — G/H given by (z,y) — x ™y
is continuous. The map sits in the commutative diagram

GxG—2 G

] !

G/H x G/H-~G/H,

where ¢: (z,y) — x~'y. The map ¢ x ¢ is open and surjective, hence a quotient
map. The continuity of ¢ and ¢ then implies the continuity of ¢'.
m

Remark 1.1.20. The product of two quotient maps of topological spaces is not
a quotient map in general. For example, if we equip Q C R with the subspace
topology and take q: Q@ — X to be the quotient map identifying Z C Q to a point,
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then ¢ X ¢ is not a quotient map. Indeed, if U C R x R is an open subset such that
UN((ZxQ)U(QxZ)) = 0 and the closure of po(UN(Z x R)) contains some a € Q,
then V=UN(QxQ) = (gxq) " ((gxq)(V))is closed in Q x Q but (g x ¢)(V) is
not closed because its closure contains (¢ x ¢)(0, a).

Proposition 1.1.21. (1) H is closed if and only if G/H is Hausdorff.
(2) H is open if and only if G/H is discrete.
(8) If G is locally compact, then G/H s locally compact.

Proof. (1) We use the notation in the proof of the previous proposition. If G/H
is Hausdorff, then {H} C G/H is closed, so H = ¢ '({H}) C G is closed.
Conversely, if H C G is closed, then (¢ x ¢) " (Ag/u) = ¢ (H) C G x G is
closed, so that Ag/y € G/H x G/H is closed, that is, G/H is Hausdorff.

(2) Indeed, H is open < the cosets gH are open <> all points of G/H are discrete.

(3) Since ¢ is open, it sends a compact neighborhood of x € G onto a compact
neighborhood of ¢(z) € G/H.

O

Proposition 1.1.22 (First isomorphism Theorem). Let G and H be topological
groups and let f: G — H be a continuous homomorphism. Then f = jf'q:

G4 G/Ker(f) L m(f) L H,

where q is the quotient map, j is the inclusion, and f' is a continuous group iso-
morphism. If f is open or closed, then [’ is an isomorphism of topological groups
(namely, a group isomorphism that is also a homeomorphism).

Proof. The first assertion is clear. If f is open or closed, then the same holds for f,
which implies that f’ is a homeomorphism. H

Example 1.1.23 (Second isomorphism theorem). Let G be a topological group,
let H C G be a normal subgroup and let . C G be a subgroup. Then the map
L — LH/H induces a continuous group isomorphism L/L N H — LH/H. This is
not an isomorphism of topological groups in general. For example, if G = R, H = 7Z,
L = MZ, X\ irrational, then L/LNH = L is discrete, but (L+ H)/H is dense in R/Z.

Remark 1.1.24 (Third isomorphism theorem). Let G be a topological group and
let H C L C G be subgroups such that H is a normal subgroup of G. Then the
map f: G/L — (G/H)/(L/H) is a homeomorphism. In particular, if L is a normal
subgroup of GG, then f is an isomorphism of topological groups.

We refer to [H| for a more detailed account of topological groups. See also [B1],
which discusses completeness [B1} Section I11.3] and metrizability [B1, IX.3.1] among
other things.
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1.2 (Global fields, Local fields

Valued fields

Definition 1.2.1. A topological ring is a ring R equipped with a topology such that
the maps

RxR—R (zv,y)—x+y
RxR—R (z,y)—zy

are continuous. A topological field is a field K equipped with a topology such that
the maps

KxK—K (r,y)—xz+y
KxK—K (r,y)—xy
K* — K~ !

are continuous.

Remark 1.2.2. The additive group of a topological ring is a topological group.
The additive group K and the multiplicative group K* of a topological field K are
topological groups.

Definition 1.2.3. An absolute value on a field K is a group homomorphism
K* - R, x|z,
extended by |0| = 0, satisfying the triangle inequality
|z +y| < [z] + [yl

for z,y € K. An absolute value on K is ultrametric (or non-Archimedean) if it
satisfies the stronger inequality

|z + y| < max{|z], y|}

for z,y € K. A wvalued field (resp. ultrametric valued field) is a field equipped with
an absolute value (resp. ultrametric absolute value).

An absolute value on K defines a metric on K by d(z,y) = |z —y|. The topology
induced by this metric makes K a topological field.

Example 1.2.4. The trivial absolute value

1 e K*
|z| = B
0 =0

defines the discrete topology on K.
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Remark 1.2.5. Let x — |z| be an absolute value on K. For 0 <r < 1, x > |z|"
is an absolute value. This follows from the inequality (a + b)" < a” 4 b" for real
numbers a,b > 0. Moreover, if |—| is ultrametric, then for all » > 0, |—|" is an
ultrametric absolute value.

Definition 1.2.6. Two absolute values on K are equivalent if they define the same
topology on K.

Proposition 1.2.7. Let © — |x|1, x — |z|2 be absolute values on a field K. The
following conditions are equivalent:
(1) There exists a real number r > 0 such that |z|, = |z|5.
(2) The two absolute values are equivalent.
(3) |z)1 <1< |z|s < 1.
Moreover, if x «— ||y is nontrivial, then the following conditions are both equivalent
to the above conditions:
(4) The topology defined by x — |x|y is finer than the topology defined by x — |x|s.
(5) |z)s <1=|z]s < 1.

Proof. We have
(1) =—(2)=—=(4)

L

(3) == (5).
Indeed, the horizontal implications are trivial. For the vertical ones, it suffices to
note that |z|; < 1 < lim, o 2" = 0 in the topology defined by |—|;. If |—|; is
trivial, clearly (3) = (1). It remains to show (5) = (1), in the case when |—|; is
nontrivial. In this case, there exists y € K such that |y|; > 1. It follows by (5) that
lyl1 = |y|4 for some r > 0. Let x € K*. Then |z|; = |y|¢ for some real number a. We
need to show |z]y = |y|3. The idea is to approximate a by rationals. For integers m,n

satisfying n > 0 and @ < m/n, we have |z|; < |y[7"", namely, |z"/y™|; < 1, which
implies by (5) that |z"/y™|s < 1, namely |z|s < |y[3/". Similarly, for a > m/n,
[l > lyl3"". Thus |z]; = [y3 0

For a valued field K and a € K, r > 0, we consider the closed ball B<,(a) = {x |
|z — a] < r} and the open ball B_,.(a) = {z | |z — a|] < r} of center a and radius r.

Ultrametric absolute values

Proposition 1.2.8. An absolute value |—| on K is ultrametric if and only if |—| is
bounded on the image of N in K. In particular, every absolute value on a field of
characteristic > 0 is ultrametric.

Proof. If the absolute value is ultrametric, then
n-1l=1+---+1 <|1| =1

Conversely, assume |n| < C for n € N. Then for a,b € K,

) (”) aipn—
i=0 \*

la+ 0" =|(a+b)"| =

<> Cla[']o]"™" < C(n + 1) max{]al, [b]}".
=0
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Thus |a 4+ b| < CY"(n + 1)""max{|al,|b|}. Taking limit as n — +oo, we get
la + b] < max{|al,|b|}. For the second assertion, it suffices to note that the image
of N in a field of characteristic > 0 is a finite set. O

The ultrametric inequality implies that for |z| # |y|, we have |z+y| = max{|z|, |y|}.
Indeed, |y| = [(x +y) — z| < max{|z|, |z + y|} implies |z + y| > |z| and similarly
|z +y| > [yl

Remark 1.2.9. Let K be an ultrametric valued field. Open balls are closed and
closed balls of positive radius are open. Any point of a ball is a center: b € B<,(a)
implies B<,(a) = B<,(b) and the same holds for open balls. The wvaluation ring
Ok = B<1(0) is an open subring of K and balls containing 0 are precisely the sub-
Og-modules of K. In particular, px = B-1(0) is the unique maximal ideal of Ok.
Balls containing 1 of radius < 1 and B.1(1) are subgroups of Oj.

An (additive) valuation on a field K is a homomorphism v: K* — R, extended
by v(0) = +00, such that v(z + y) > min{v(x),v(y)}. For any real number ¢ > 1,
if we put |2| = ¢~¥®, then v is a valuation if and only if x ~— |2| is an ultrametric
absolute value. A discrete valuation is a valuation v such that v(K*) C R is a
nontrivial discrete subgroup. We usually normalize discrete valuations by v(K*) =
Z. Elements m € K such that v(w) = 1 are called uniformizers of K.

Example 1.2.10. Let K be the fraction field of a Dedekind domain Og. We
define a normalized discrete valuation v, on K for every maximal ideal p of Og by
1O =TI, p»@)  Every nontrivial valuation on K, nonnegative on O, is of the
form rv, for some r > 0 and some maximal ideal p.

Global fields

The ring of rational integers Z and the ring of polynomials k[T] over a field k are both
principal ideal domains. Maximal ideals of Z are in bijection with rational primes.
There are infinitely many of them. Euclid gave the following proof in Elements: for
a nonempty finite set of primes S, 1+ [],cs p has prime factors outside S. Maximal
ideals of k[T'] are in bijection with monic irreducible polynomials. Euclid’s argument
shows that there are infinitely many of them (trivial for & infinite). There are many
other analogies between Z and k[T, as well as between their fraction fields Q and
k(T), especially when k is a finite field.

Definition 1.2.11. A global field is either
(1) a number field, that is, a finite extension of Q, or
(2) a function field (of one variable over a finite field), that is, a finite extension
of F,(T).

Definition 1.2.12. A place of a global field K is an equivalence class of nontrivial
absolute values on K.

Remark 1.2.13. Let k be a field. The nontrivial valuations of k(7'), trivial on k,
are multiples of the following:
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(1) vp: k(T)* — Z for monic irreducible polynomials P, given by Q = c¢[]p P'*(@)
for c € k*.

(2) Voo: k(T)* — Z given by vo(A/B) = deg(B) — deg(A), where A, B € F,[T].
Indeed, if v(T") > 0, then v is nonnegative on F,[T] and we get (1) by Example
If v(T) < 0, we get (2).

In particular, the places of F,(T") are given by the above valuations, since any
valuation on IF, is trivial. More generally, for any smooth projective curve C' over a
finite field, the places of its function field are in bijection with closed points of C.

Remark 1.2.14. By Ostrowski’s theorem [B3, VI.6.3] or [N, Proposition I1.3.7],
the places of Q are the following:
(1) Ultrametric places: given by the p-adic absolute values |—|, for rational primes
p.
(2) Archimedean place: given by the usual absolute value |—|s.
More generally, the places of any number field K can be described as follows:
(1) Ultrametric places: given by v, for maximal ideals p of the ring of integers Ok
of K.
(2) Archimedean places: given by |—|, for embeddings o: K — C. Here |z|, =
|o(x)|c, where |—|c denotes the usual absolute value on C. Two embeddings
o and o’ give the same place if and only if 0/ = 5.
The ultrametric case follows from Example and let us sketch a proof in the
Archimedean case (2). For the first assertion, by Ostrowski’s theorem, it suffices
to show that any extension |—| of |—| to K is given by |—|, for some embedding
o. For this let 0y = 01,...,0,, = Opy, Op 41 F Opjtlyvvs Orpirg 7 Oppary: K — C
be the embeddings. Consider the isomorphism K ®g R ~ R™ x C™ induced by
01y Opyrye BY the universal property of tensor product, the inclusion of K into
its completlon K with respect to |—| induce a homomorphism K ®g R — K, which
must factorize through, the projection from R x C™ onto, say, its i-th factor. Then
|—| = |—]s,- The last assertion follows from the fact that the inclusion K — K ®gR
has dense image.

Classification of complete Archimedean valued fields

Theorem 1.2.15 (Ostrowski). Every complete Archimedean valued field (K,|—|)
is isomorphic to (R, |—|g) or (C,|—|¢) for some 0 < r < 1, where |—|g and |—|c
denote the usual absolute values.

More generally every complete Archimedean valued division ring (K, |—|) is iso-
morphic to (R, |—[g), (C, |=|£), or (H, |Jf) for some 0 < r < 1.

Corollary 1.2.16. Every Archimedean valued field (K,|—|) is isomorphic to a sub-
field of (C,|—|¢) for some 0 <r < 1.

Proof. Indeed, it suffices to apply the theorem to the completion of (K, |—|). O
We will deduce Theorem [1.2.15| from the following theorem of Stanistaw Mazur.

Theorem 1.2.17 (Mazur). The underlying algebra of a real normed division algebra
is isomorphic to R, C, or H.
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Corollary 1.2.18 (Gelfand-Mazur). A complex normed division algebra is isomor-
phic to C.

For a proof of Mazur’s theorem, see [B3, VI.6.4].

Proof of Theorem [1.2.15. Since the absolute value is Archimedean, we have char(K') =
0, namely, Q@ C K. By the classification of absolute values on Q, the restriction of
|—| to Q is |—|%, for r > 0. By triangle inequality, 2" = (1 +1)" < 1"+ 1" = 2, so
that < 1. We claim that |—|*/" is an absolute value of K. The claim follows from a
general criterion for absolute values (Proposition . We give a more direct proof
of the claim as follows. It suffices to check the triangle inequality. For a,b € K, and
n>1,

n

n o\ . n ) . "
|6L + b|” = |(CL + b)"| < Z <Z> |a|l|b|n—z < (Z <Z> |a|2/r|b|(n—2)/r> (n + 1)1—7"
=0 i=0
_ <|a|1/r + |b|1/7‘)nr(n + 1)1—7‘
by Holder’s inequality, so that
‘CL + b’l/r < <|a|1/r + ’b‘l/r)(n+ 1)(1—1”)/717’.

Taking limit as n — 400, we get |a + b|*/" < |a|*/" + [b|/", as claimed.
Then, by the completeness of K, (K,|—|/") is an extension of (R,|—|g). Thus,
by Mazur’s theorem, K is isomorphic as a real algebra to R or C. Since K is a finite-

dimensional real vector space, the topology induced by |—| must be the Euclidean
topology, that is, |—| is equivalent to the usual absolute value. Since the two absolute
values coincide on R, they are equal. O]

Historically Theorem [1.2.15] predates Mazur’s theorem. We refer the reader to
[N, Theorem I1.4.2] or [I, Section II.3.1] for a more direct proof of Theorem [1.2.15]
without using Mazur’s theorem.

Extension of absolute values

Theorem 1.2.19. Let L/K be a field extension of degree n and let |—|x be an
absolute value on K. Then there exists an absolute value |—|; extending |—|x-.
Moreover, if |—|k is complete, then the extension is unique, complete, and given by

1
2l = [Nmp gl
Note that the existence and uniqueness extend to the case of algebraic extensions.

Proof. We give some indications. In the Archimedean case, by Mazur’s Theorem
(K, |—|k) is a subfield of (C, |—|¢) and any K-embedding L — C provides the desired
extension. In the ultrametric case, we may either argue using general valuation rings
[B3, VI.8.7], or reduce to the complete case and verify, using Hensel’s Lemma, that

INm;, K—|}(/n is an ultrametric absolute value [I, Theorem 1.4.4]. The uniqueness

and completeness follows from the lemma below. For the last assertion, let |—| be
the unique extension of |—|x to an algebraic closure of K. The norm Nmy, /KT 18 a
product of conjugates z’ of x. By the uniqueness of |—|, we have |2/| = |z|. Thus

INmp, x| = |z|™ O



1.2. GLOBAL FIELDS, LOCAL FIELDS 11

Lemma 1.2.20. Any pair of norms on a finite-dimensional vector space over a
complete valued field are equivalent and complete.

See [N} Proposition 11.4.9] or [T2, Lemma 8.5.3] for a proof.

Let (K,vk) be a complete discrete valuation field and let (L,v;) be a finite
extension. The ramification index is defined to be the cardinality of vy, (L*)/vk (K*).
Let Ok and Oy, be the valuation rings of K and L, respectively. Let kx and kp be
the residue fields of K and L, respectively.

Proposition 1.2.21. Oy is a free Ok -module with a basis given by omri, 1<i< f,
0<j<e—1, where ay,...,ar € O are elements such that their images in kr,
form a basis over ky (so that f = [k : kk]). In particular, [L : K] = ef.

See [T2, Proposition 9.1.4] for a proof.

Theorem 1.2.22. Let (K,v) be a valued field and let L be a finite separable ez-
tension of K. Then the diagonal embedding L — [1,, Lw induces an isomorphism
L@ Ky >~ Ty Lu-

Here w runs through extensions of v to L and K, denotes the completion of K
with respect to v and similarly for L,,.

Proof. Since L/K is a separable extension, we have L @k K, ~ [] L;, where each
L; is a finite extension of K, hence a complete valued field by Theorem [1.2.19]
Moreover, L is dense in L ® K,, and hence in L;, so that L; = L,, for some w | v.
Similarly to the argument at the end of [1.2.14] the universal property of tensor
product implies that each L,, appears in the product and the density of L in L ® K,
implies that the L,,’s appearing in the product are pairwise distinct. O

Corollary 1.2.23. For all x € L, we have

tI‘L/K(ZE) = ZtI‘Lw/KU(J)), NmL/K(x) = HNme/Kv(fI))

wlv wlv

The theorem implies that the diagonal embedding L — []
More generally, we have the following.

wlv L has dense image.

Theorem 1.2.24 (Approximation). Let K be a field and let |—|q, ..., |—|, be pair-
wise nonequivalent nontrivial absolute values. Then the diagonal embedding K —
[1; K;, where K; denotes the completion of K with respect to |—|;, has dense image.

We refer the reader to [B3, VI.7.3] or [N| II.3.4] for a proof. We will later prove
a stronger result in the case of a number field.

Local fields

Definition 1.2.25. A local field is a locally compact Hausdorff topological field
whose topology is not discrete.

Example 1.2.26. R and C are local fields.
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Example 1.2.27. A non trivial valuation field K is a local field if and only if it is
a complete discrete valuation field with finite residue field is a local field. Indeed,
local compactness implies completeness, which implies that the canonical map O —
hm Ok /B<,(0) is an isomorphism. Note that K is locally compact if and only
if Ok is compact. Since the quotient rings O /B<,(0) are discrete, this is further
equivalent to the finiteness of Ok /B<,(0), which is equivalent to the conditions that
the valuation is discrete and the residue field is finite.
The following are complete discrete valuation fields with finite residue field.

(1) The field of p-adic numbers Q,, equipped with the p-adic valuation v,, and
more generally finite extensions K of Q,, equipped with the valuation z
vp(Nmpg /g, (). ‘

(2) The field of formal Laurent series F (7)) = {>Xis—oo @T" | a; € F,} over a
finite field F,, equipped with the valuation v(3 a;T*) = min{i | a; # 0}.

In particular, the completion of a global field at a place is a local field.

Theorem 1.2.28. A local field is isomorphic to either R, C, a finite extension of
Qp, or Fo((T)).

More generally, a local division ring is isomorphic to either R, C, H, a division
ring of finite rank over Q,, or a division ring of finite rank over its center F,((T)).
We refer to [B3, Section VI.9] or W], Chapter I] for a proof in this generality. We
will give a proof of the theorem in the characteristic 0 case later.

Corollary 1.2.29. FEvery local field is the completion of a global field at one place.

Proof. Indeed, R is a completion of Q, C is a completion of Q(i), and F,((T")) is a
completion of F,(T"). That every finite extension of Q, is a completion of a number
field is a consequence of Krasner’s lemma [T2, Corollary 8.6.3]. [

Product formula

Definition 1.2.30. For an ultrametric local field of residue field F,, we define the
normalized absolute value by |z|, = ¢ @, where v is the normalized valuation.
For R, we define the normalized absolute value to be |—|g. For C, we define the
normalized absolute value to be |—|% (which is not an absolute value).

Remark 1.2.31. Given a finite extension of local fields L, /K, of degree n, |—|.,
extends |—|". This follows from the definition in the Archimedean case and from
n = ef in the ultrametric case. Thus, by Theorem for all x € L,,, we have
|z|w = |NmL, /K, 20

Theorem 1.2.32. Let K be a global field. For x € K*, we have [],|x|, = 1. Here
v runs through all places of K, and |—|, denotes the normalized absolute value on
K,.

Note that |z|, = 1 for all but finitely many v.

Proof. The case of Q and F,(7") follows from the explicit description of the absolute
values. In general, K is a finite separable extension of Ky = Q or Ky = F,(T"). We

have HD‘I|U - Hvo Hv\vo|NmKu/(Ko)uox|vo - Hvo|NmK/K0I|vo =L L
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1.3 Adeéles

Note that infinite products of locally compact groups is not locally compact in
general. However, we can construct a locally compact group in the following case.
Let (Gy)vey be a family of locally compact groups. Assume that for all v € V; =
V — V., where Vo, C V is a finite subset, we are given a compact open (hence
closed) subgroup H, C G,,.

Definition 1.3.1. The restricted product of the G, with respect to the H, is the

subgroup [I, .y Gy — Ilyey Gy consisting of elements (z,)ev, , € G, such that

x, € H, for all but finitely many v. (Note that H, is concealed in the notation.)
For a finite subset S C V' containing V., we equip

GS:HG’UX H H’UQH,G’U

veS veEV -8

with the product topology. We equip [[' G, with the finest topology such that the
inclusions Gg C [’ G, are continuous.

Note that []'G, = UgGs. A fundamental system of neighborhoods of 1 is given
by [I,ev Ny, where N, C G, is a neighborhood of 1, and N, = H, for all but finitely
many v. For any S, Gg is a locally compact group, and is an open subgroup of
[T G,. Moreover, [[' G, is a locally compact group.

Note that the inclusion [[' G, C [[ G, is continuous, but not a homeomorphism
onto its image in general. Moreover, replacing V., by a finite subset of V' containing
V., or changing H, for finitely many v, does not change the restricted product.

Remark 1.3.2. If the G, are topological rings and the H, are subrings, then Gg
and the restricted product are topological rings.

Now let K be a number field. Let V' be the set of places of K. Let V,, be the set
of Archimedean places and let V; be the set of ultrametric places. For v € V, we
let K, denote the completion of K at v. For v € V}, we let O, denote the valuation
ring of K.

Definition 1.3.3. The adéle ring of K is the restricted product Ax = H;ev K, with
respect to the O,, v € V;. Elements of Ax are called adeles (short for “additive
ideles”) of K.

Thus Ak is a locally compact topological ring. For x € K, the image of x in K,
belongs to the valuation ring O, for all but finitely many v. We thus get a diagonal
embedding of rings K — Ag.

Theorem 1.3.4.
(1) K C Ak is a discrete (hence closed) subring.
(2) The quotient group Ay /K is compact.

Proof of (1). Consider the neighborhood U = [lyev,, Uy X Ilyev, Op, where U, =
B.1(0) € K,. For z € U, II,ev|z|s < 1. By product formula, this implies x ¢ K*.
Thus U N K = {0} and consequently K is discrete. O
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We will show later that conversely (1) implies the product formula.
To prove (2), we need the following results on approximation. We let Ok denote
the ring of integers of K.

Lemma 1.3.5. The subring Ok C I[lyev, Oy is dense.
Indeed, this follows from the Chinese remainder theorem.

Proposition 1.3.6. Let Ko = [[,ey, K. Then

AKZK—f—KooX HOU

UEVf

Proof. Let v € Ag. There exists a € Ok, a # 0 such that axz € O, for all v € V.
Let S C V; be the finite set of ultrametric places such that a ¢ O,°. By the lemma,
for any € > 0, there exists b € Ok such that |b — az|, < € for all v € S. Note that
b — ax], < 1for all v € V;. For € small enough, we then have |2 — z|, <1 for all
veVy Thus z =2+ (2 — &) € K+ Ky X [lev, O O

Corollary 1.3.7. We have an isomorphism of topological groups

Ax/K ~ (Ky x [[ 0.)/Ok.

UGVf

Proof. By the proposition, the homomorphism K., X [loev, O, = Ag/K is sur-
jective. Moreover, it is open. The kernel K N (K X [loev, 0,) = Ok, because
ﬂuevf O, = Ok. The assertion then follows from the isomorphism theorem. O

Recall that O ®z R ~ K ®g R ~ K, and equivalently O is a lattice in K.
For a group G and a subgroup H, we say that a subset D C (G is a fundamental
domain for H if the quotient map G — G/H induces a bijection D ~ G/H.

Proof of Theorem (2). For a basis (ai,...,a,) of Ok, D = Y7 [—3,3)a; C
K is a fundamental domain for Q. Thus D x Hvevf O, C Ag is a fundamental

domain for K. The map D X [loev; O = Ag /K is a continuous surjection, and
D x [loev, O, is compact. Therefore, Ax /K is compact. O

Note that by Corollary|[L.3.7, we have a short exact sequence of topological groups
(1.3.1) 0= ] Ov = Ax/K = Ko/Ox — 0,

UEVf

where K, /O and [loev, O, are compact. Thus the compactness of Ax /K also
follows from the following general fact about topological groups.

Proposition 1.3.8. Let G be a topological group and let H be a subgroup. If H and
G/H are compact, then G is compact.

For a proof, see, for example, [H, p. 48].

Remark 1.3.9. Via the diagonal embedding, A g becomes a K-vector space. Thus
Ak /K is a K-vector space, hence a torsion-free abelian group. As K, /Ok has
nonzero torsion elements, the extension (of abelian groups) (|1.3.1]) is non split.
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1.4 Haar measures

For a locally compact Hausdorff topological space X, we let C.(X,R) denote the
vector space of continuous functions X — R with compact support.

Definition 1.4.1. A positive Radon measure on X is a positive linear functional
A: C.(X,R) — R, namely a linear functional such that A(f) > 0 for all f > 0 (here
f >0 means f(z) >0 for all x € X).

Remark 1.4.2. We have C.(X,R) = Ux Ck(X,R), where K runs through compact
subsets of X and Cx(X,R) denotes continuous functions X — R with support in
K. We equip Cx(X,R) C C(K,R) with the topology given by the maximum
norm, and we equip C.(X,R) with the finest topology such that the inclusions
Ck(X,R) C C.(X,R) are continuous. Then a positive Radon measure on X is
a continuous linear functional C.(X,R) — R (real Radon measure) by Urysohn’s
lemma.

Remark 1.4.3. Positive Radon measures on X are stable under addition. Moreover,
if A is a positive Radon measure on X, and g: X — R is a continuous function (not
necessarily with compact support), g > 0, we define a positive Radon measure gA

by (gA)(f) = Algf)-

Remark 1.4.4. For any o-algebra 91 in X containing all Borel subsets, and any
positive measure p (namely, countably additive function 9t — [0, 0o]) satisfying
(1) u(K) < oo for every compact set K C X,

the linear functional f — [y fdu is a positive Radon measure. Conversely, the
Riesz representation theorem (see, for example, [R} 2.14]) states that for any positive
Radon measure A there exists a g-algebra 9 in X containing all Borel subsets, and
a unique positive measure p satisfying (1) above and such that:

o A(f) =[x fdu for every f € C.(X,R).

o 1 is outer reqular: pu(E) =inf{u(V) | E CV, V open} for every E € .

e 1 is inner reqular on open sets: u(E) = sup{u(K) | K C E, K compact} for

every open subset £ C X.

Moreover, p satisfies condition (1) above, and is inner regular on o-finite sets (count-
able union of sets E; € MM with u(E;) < co). (In particular, u is inner regular if X
is o-compact, namely, a countable union of compact subsets.) Furthermore, there
exists a biggest 9 characterized by the following additional properties:

e 1 is complete: if u(E) =0 for £ € M and if A C F, then A € M.

o If ¥ C X is such that EN K € M for every compact subset K C X, then

E e M.

We sometimes identify g and A via the above correspondence. u(X) € [0,00] is
sometimes called the volume of X.

Let G be locally compact group, let f € C.(X,R), and let A be a positive
Radon measure. For g € G, we define the left translation of f by g, L,f, by
(Lyf)(z) = f(9 @) and the left translation of A by g, LyA, by (LyA)(f) = A(Ly-1 f).
Correspondingly, L, = {gE | E € M} and (L,u)(E) = p(g™'E).

Definition 1.4.5. A left Haar measure on G is a nonzero positive Radon measure
p that is left-invariant, namely, L,A = A for all g € G.
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Similarly one defines right Haar measures. For abelian groups, left Haar measures
and right Haar measures are the same and are simply called Haar measures.
A positive scalar multiple of a left Haar measure is a left Haar measure.

Theorem 1.4.6 (Haar). For any locally compact group, there exists a left Haar
measure, unique up to scalar multiple.

See |B2, VII.1.2] or [H, Chapter III] for a proof. We will sketch a proof below in
the case of the additive group of a local field (assuming Theorem [1.2.28)).

Proposition 1.4.7. Let p be a left Haar measure on a locally compact group G.
(1) For any nonempty open subset U C G, u(U) > 0 (may be 00).
(2) For any function f € C.(G,R), f >0, f # 0 (f not identically zero), we have
[ fdu>0.

Proof. (1) Since u # 0 is inner regular on open sets, there exists a compact subset
K C G such that u(K) > 0. Since K C Uyeq gU, K is covered by finitely
many left-translates ¢;U of U. It follows that u(g;U) > 0 for some i. We
conclude by p(U) = p(g:U).

(2) Indeed, there exists € > 0 such that the open subset U = f~1((¢,00)) C G is
nonempty. Then [ fdu > eu(U) > 0.
O

Example 1.4.8. For a discrete group G, the counting measure u(E) = #E, E C G
is a left Haar measure (and a right Haar measure). We have [ fdu = > ¢ f(g). In
this case, the left Haar measure is clearly unique up to scalar.

Example 1.4.9. For G = R"” or G = K an ultrametric local field, let us sketch a
proof for the existence and uniqueness of Haar measure. For G = R™, let Qy = [0, 1)™
and let 2, = {A7(Qo +a) | a € Z"}, where A > 2 is an integer. For G = K,
let Qg = Ok and let €, be the collection of translates of 7" Og. Then for each
m, €1, is a partition of G. Moreover, @)y is the disjoint union of ¢ elements
of Q,,, where ¢ = A" for G = R” and ¢ = #k for G = K of residue field k.
Choose zg € @ for each Q € Q,,. For f € C.(G,R), consider the Riemann sum
Apf = ¢ X oeq,, f(xg) associated to the step function f,, = Ygecq,, [(2g)lg,
where 1¢ denotes the characteristic function of ¢). By uniform continuity, A,,f is a
Cauchy sequence. Let Af = lim,, oo Ay f. It follows from the construction that A
is a Haar measure on G. For G = R", A is the Lebesgue measure.

Conversely, let p is a Haar measure on G. Then u(Q) = ¢ "u(Qo) for each
Q € Q. For f € C.(G,R), by uniform continuity,

[ £du= i [ fod = Jim 5(Qo)Anf = p(Q)AS,

which proves the uniqueness up to scalar multiple.

Note that for G = K in the previous example, the step functions f,, are locally
constant and compactly-supported. Note also that locally constant functions on K
are continuous.
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Definition 1.4.10. Let K be an ultrametric local field. A Schwartz-Bruhat function
on K is a locally constant compactly-supported function on K.

Lemma 1.4.11. Let K be an ultrametric local field. A function is a Schwartz-
Bruhat function if and only if it is a finite sum Y_; ¢;1p,, where each ¢; is a constant
and each B; is an open ball.

Proof. A finite sum of the above form is obviously a Schwartz-Bruhat function.
Conversely, let f be a Schwartz-Bruhat function. Each point a € K admits an open
ball containing @ on which f is constant. The support is covered by a finite family
of such balls (B;). We may assume that there are no inclusions among the family.
Then the family is disjoint and f =Y, f(z;)1p,, where z; € B;. O

Modulus

Let G be a locally compact group, and let ¢ be an automorphism of G (as topological
group). For any left Haar measure p on G, ¢~ 'y defined by (¢~ 'u)(E) = u(é(E))
is a left Haar measure on G, and thus is a scalar multiple of p.

Definition 1.4.12. The real number ¢ > 0 such that ¢!y = cu is called the
modulus of ¢ and is denoted mod(¢).

In other words,

p(O(E)) = mod(@)u(E), [ £(67"(@)) dp(x) = mod(9) [ f(w)du(x).

Note that mod(¢) does not depend on the choice of . If ¢ is another automor-
phism of G, then mod(¢1) = mod(¢)mod(2)).

Proposition 1.4.13. If G is compact or discrete, then mod(¢) = 1.
Proof. We have

p(@) = p(@(G)) = mod(9)u(G), pl{e}) = p(o({e})) = mod(¢)u({e}).
For G' compact, 0 < p(G) < co. For G discrete, 0 < u({e}) < oco. O
Example 1.4.14. For G = R", ¢ is a linear transformation mod(¢) = |det(¢)|.

Example 1.4.15. For G = K a local field, a € K>, multiplication by a provides
an automorphism ¢,: K — K. We write mod(a) for mod(¢,), so that u(aF) =
mod(a)u(E). We obtain thus a homomorphism mod: K* — RZ,, which can be
extended by mod(0) = 0. If K is ultrametric with residue field F,, mod(a) = ¢~*@,
where v is the normalized valuation. If K = R, mod(a) = |a|g. If K = C, mod(a) =
la|%. In other words, mod is the normalized absolute value on K. Note that for

K = C, mod is not an absolute value.
For f € C.(K*,R), E extended by 0 — 0 belongs to C.(K,R). We define a

positive Radon measure p/mod on K* by f +— f — du. We have
f(azx) flaz)
dp(z) = mod /
mod(z) #(z) = mod(a) mod(ax) mod

Thus p/mod is a Haar measure on K*.
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Products

Let X and Y be locally compact Hausdorff spaces. Let u be a positive Radon
measure on X and let v be a positive Radon measure on Y.

Proposition 1.4.16 (Fubini’s Theorem). For f € C.(X x Y,R), we have y —
[ F(2,9) dulz) € CUYR), = > | f(z,y) duly) € Co(X,R), and

[ dn@) [ fay)dviy) = [dv(@) [ flay)duy)

We thus obtain a positive Radon measure on p X v, which we denote by u x v.

The first two assertions follows from uniform continuity of continuous functions
on compact spaces. The last assertion holds trivially for functions of the form f® g
given by (z,y) — f(x)g(y), where f € C.(X,R) and g € C.(Y,R). The general case
follows from the fact that such functions form a dense subspace of C.(X x Y,R).
We refer to [B2, I11.4.1] (or [H, Section III.6] for details.

Remark 1.4.17. If X and Y are locally compact groups and p and v are left Haar
measures, then p X v is a left Haar measure on X x Y. In this case, the last assertion
of the proposition also follows from the fact that both sides of the equation define
left Haar measures on X x Y.

The above extends trivially to products of finitely many measures. For infinite
products, consider a family of compact Hausdorff spaces (X;);cs, and for each ¢ € I,
a positive Radon measure p; on X;. Then X = [],c; X, is a compact Hausdorft
space. For any finite subset J C I, let X; = [[;c; X; and let pr;: X — X be the
projection. We let 11; denote the positive Radon measure [];c; p; defined above.

Proposition 1.4.18. Assume that [[;c; pi(X;) converges (to a positive real number).
Then there exists a unique positive Radon measure p on X such that for every finite
subset J C I and every f; € C(X;,R),

/fJOPTJdM = H Mi(Xi)/deﬁLJ-
iel—J
We let [[;c; pti denote the measure p in the proposition. If the X;’s are compact
groups and the p;’s are left Haar measures, then [[;c; 1 is a left Haar measure on
X.

Proof. Let F C C(X,R) be the space of functions of the form f; o pr; for some
finite subset J C I. Note that F' is stable under addition. Indeed,

Jropry+ fpopry = fiur oprym,

where f;; = frop+ frop, and p: Xup — X, p': Xjup — X are projections.
Similarly, F' is stable under multiplication. Thus F' is a real subalgebra of C(X,R).
Let = # y be distinct points in X. Then there exists ¢ € [ such that z; # ;.
For any f; € C(X;,R) such that f;(x;) # fi(y:), fi o pr; separates = and y, where
pr; = prgy: X — X;. Therefore, by the theorem below, F' is dense in C(X,R).
The equation in the proposition defines a positive linear functional A on F. The
assumption assures that A is continuous. Thus A extends uniquely to a positive
linear functional on C'(X,R). O
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Theorem 1.4.19 (Stone-Weierstrass). Let X be a compact Hausdorff space. Then
any real subalgebra of C(X,R) that separates points is dense.

For a proof, see [B1], X.4.2].

Remark 1.4.20. Let (G,)vev, H, C Gy, v € V} be as in the beginning of Section
. Recall that the restricted product G = [[' G, = UGg, where Gs = [[,e5 G, X
[l,ev_g Hy, S runs through finite subsets of V' containing V... Since Gg C G is
open, extension by zero provides an inclusion C.(Gg,R) C C.(G,R). We have
C.(G,R) = UC.(Gg,R). For each v € V, let p, be a positive Radon measure on
G,. Assume that [T,ey_v. po(H,) converges. Then we have product measures pg
on Gg, compatible with the inclusions C.(Gg,R) C C.(Gg/,R) for S C S’. Thus we
obtain a positive Radon measure 1 =[]} oy, tt, on G. Functions of the form fs®1ys,
where fs € C.([I,es Go, R) and H® =[],y _g H,, form a dense subset of C.(G,R).
If the u,’s are left Haar measures, then pu is a left Haar measure.

Example 1.4.21. Let K be an number field. For v ultrametric, we take the Haar
measure g, normalized by puk, (O,) = 1. We take ug to be the Lebesgue measure,
and pc to be twice the Lebesgue measure (via the isomorphism R x R ~ C given
by (z,y) — = + yi). We obtain a Haar measure [[,cy px, on Ag.

Quotients

Let G be a locally compact group and let H be a closed subgroup. Let v be a left
Haar measure on H. For f € C.(G,R), the function z — [ f(xzh)dh on G defines a
function of G//H, that we denote by f°.

Lemma 1.4.22. We have f° € C.(G/H,R) and the map C.(G,R) — C.(G/H,R)
given by f — f° is surjective.

Proof. The first assertion follows from uniform continuity. For the second assertion,
let g € C.(G/H,R) and let K C G be a compact subset such that the support of
g is contained in KH. Let u € C.(G,R) be such that v > 0 and u(z) > 0 for
x € K. Then v’(y) > 0 for y € KH/H. The function h = g/u’, extended by zero
outside K H/H, belongs to C.(G/H). Let m: G — G/H be the projection. Then
f=ulhon) € C(G,R) and f> = g. ]

The following is an immediate consequence of the lemma.

Proposition 1.4.23. For a positive Radon measure X\ on G/H,

/fcm:/f%u

defines a positive Radon measure N on G. Conversely, given a positive Radon
measure i on G, there exists at most one positive Radon measure X on G/H such
that 1 = N¥.

In the situation of the proposition, X is called the quotient measure of ;1 = A\* by
v, and is denoted by pu/v.
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Remark 1.4.24. Assume that H is a normal subgroup of G. If X is a left Haar
measure on G/H, then p in the above proposition is a left Haar measure on G.
Conversely, if p is a Haar measure on G, then u/v exists and is a Haar measure on

G/H.

Example 1.4.25. If H' is a locally compact group such that G = H x H’', and /
is a positive Radon measure on H’, then (v x V') /v =1/

Proposition 1.4.26. Let H be a normal subgroup of a locally compact group G.
Let ¢ be an automorphism of G (as topological group) such that ¢(H) = H and
let ¢r, ¢pcyu be the induced automorphisms of H and of G/H. Then mod(¢) =

mod(¢x)mod(¢a/m).
Proof. Let u, v, A be left Haar measures on G, H, G/H, respectively. Then

[ #o7 @) duta) = [ax@) [ 16 @h)) dvin)
— mod(¢n) [ dA(@) [ F(6™ (2)h) dv(h) = mod(6x)mod(dcym) [ f(x) du(w),
where £ = xH. O

Corollary 1.4.27. Let H be a discrete normal subgroup of a locally compact group
G such that G/H is compact. For any automorphism ¢ of G such that ¢(H) = H,
mod(¢) = 1.

Proof. This follows from the above proposition and Proposition [1.4.13 [

Definition 1.4.28. The content of an adéle x € Ak is defined to be |z| = [Tyey oo >
0, where |—[, denotes the normalized absolute value on K.

For z,y € Ak, we have |xy| = |z||y|. Note however that triangle inequality does
not hold. The function z — |z| on Ak is not continuous, since every neighborhood
of 1 € Ag contains an adele of content 0.

Remark 1.4.29. For x € Ay, |z| is the modulus of the automorphism Ax — Ag
given by y +— zy. Since Ag /K is compact, Corollary implies the product
formula: for € K, |x| = 1. In other words, the product formula is equivalent to
the discreteness of K C Ag.

Example 1.4.30. Let L = Zey & --- & Ze, C R™ be a lattice and let p be the
quotient of the Lebesgue measure on R™ by the counting measure on L. Then
p(R™/L) = |det(eq, ..., en)l|

Example 1.4.31. Let K be a number field. We consider the quotient of the Haar
measure on Ay in Example by the counting measure on K. We have

vol(Ag /K) = vol(Kne /O vol( [ Ou) = vol(Kwo/Ok) = /| Ak,

UEVf

where Ak is the discriminant of K. For the last identity, recall that Ay = det(o;(a;))?,
where (aq, ..., q,) is an integral basis of Ok and oy, ..., 0, are the embeddings of



1.4. HAAR MEASURES 21

K into C. Let \: K - K, = R"™ x C™ ~ R" be the embedding induced by the
isomorphism C ~ R? given by taking real and imaginary parts. Under a suitable
ordering of the o;, we have

L, 0 0 0
T P I VA T
o) = = (Maq),..., May)),
7)) 0 0 0 1
0 0 o0 !

so that det(o;(c;)) = (24) det(A(ev), ..., A(av,)). Thus
vol(Ko/Ok) = 2"vol(R"/N(Ok)) = |det(o(a;))| = \/|Ak],

where R™ is equipped with the Lebesgue measure.

Application: Strong approximation

Let K be a number field.

Theorem 1.4.32 (Minkowski). For constants (¢,)vev, ¢v € | Ko, ¢o < 1 for all
but finitely many v, satisfying

HCU 2/7’(’ ‘AK|,

veV

there exists a € K* such that |a|l, < ¢, for all v € V. Here |—|, denotes the
normalized absolute value on K,, and ry is the number of complex places.

Proof. Let B, = B<.,(0) C K, for v € V}, let B, = B<,,/2(0) C R for v real and
let B, = {2 € C| |z| < /¢,/2} (where || denotes the usual absolute value) for v
complex. Let X =[],cy B, € Ag. Let p, be the normalized Haar measure on kK,
and let 4 = [T,cy pto- Then p,(B,) = ¢, for v € V} or v real, and pu,(B,) = S¢, for
v complex. Thus pu(X) = (7/2)" [Tyey ¢ > vol(Ag/K). Tt follows that there exist
x,y € X, x # y such that x —y € K. It then suffices to take a = x — y. m

Minkowski’s theorem is more frequently stated in the following form.

Corollary 1.4.33. Let I be a fractional ideal of Ok . For constants (¢y)vev,, Satis-
fying

II ¢ > (2/7)\/|Ak|Nm(I),

veV
there ezists a € I, a # 0 such that |a|, < ¢, for allv € V.

Here the norm of an ideal is defined to be Nm(a) = #(Ok/a) and this definition
extends to fractional ideals by multiplicativity.

The corollary is equivalent to the theorem. Indeed, for I =[], p;' it suffices to
take ¢, = ¢, ™ for v € Vj.

We refer the reader to |N, Theorem 1.5.3] for a more direct proof of Corollary
L.4.33
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Corollary 1.4.34. Let vy € V. For positive constants (cy)vev—{u}, o = 1 for all
but finitely many 1, there exists a € K* such that |a|, < ¢, for all v # vy.

Proof. Indeed, we may assume that ¢, € |K|, for all v # vy. In this case, we apply
the proposition by taking c,, large enough. O

Theorem 1.4.35 (Strong approximation). Let vg € V. Then the diagonal embed-
ding K — TTyev_(u) Ko has dense image. In other words, K + K, is dense in
Ag.

Corollary 1.4.36. Ax /K is connected.
Proof. For vy € V., the theorem implies that the image of K, in Ay /K is dense. [

Proof of Theorem[1.4.35 The assertion is equivalent to saying that for all x € A,
and positive constants (€,)ycv—fvo} such that €, = 1 for all but finitely many v,
there exists a € K such that |a — x|, < €, for all v € V — {vg}. We have seen in
the construction of fundamental domain (proof of Theorem that there exist
positive constants (¢,)vev, ¢, = 1 for all v € V such that every y € Ak is of the
form y = b+ y with b € K and |y}|, < ¢, for all v € V. By Corollary [1.4.34] there
exist « € K* such that |a|, < €,/¢, for all v # vg. Taking y = a™'x (extended to
an element of Ak ), we get © = ab+ ay’, with ab € K and |ay/|, < e,. O

1.5 Idéles

Ideles were introduced by Chevalley first under the name “élément idéal” (ideal
element), then abbreviated by him to “idele”.

Let K be a number field. We use the notation of [1.3] Note that O is compact
for v € V5.

Definition 1.5.1. The idéle group of K is the restricted product I = [], ¢y K
with respect to O for v € V. Elements of [ are called idéles of K.

Remark 1.5.2. As groups Iy = A%. The inclusion map Iy — Ay is continuous,
but not a homeomorphism onto its image. The map [x — Ax X Ag carrying x to
(x,271) identifies Tx with a subspace of Ax x Ag. In other words, the topology
on I is the coarsest topology such that the inclusion I — A and the inversion
I, — Ix are continuous.

The diagonal embedding K — A induces the diagonal embedding K* — I.
Lemma 1.5.3. K* C Ik is a discrete subgroup.

Proof. This follows from the facts that K C A is discrete and the topology of Ix
is finer than the subspace topology induced from the topology of Ag. O

Images of the embedding K* — I are called principal ideles of K and the
(locally compact) quotient group Ix/K* is called the idéle class group.

Recall the content of © € Ak is defined to be |z| = [1,|%y|,. Note that z € [ if
and only if z, € K* for all v and |x,|, = 1 for all but finitely many v. In this case
|z| is essentially a finite product.
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Lemma 1.5.4. For x € Ag, |z| > 0 if and only if v € I.

Proof. The “if” part is clear. Conversely, |z| > 0 trivially implies x, € K. More-
over, for v € V, |z,|, & (1/2,1), so |z| > 0 also implies that |z,|, = 1 for all but
finitely many v. O]

Lemma 1.5.5. The map Iy — Roq carrying x to |x|, is an open homomorphism
admitting continuous sections.

Proof. The map is clearly a continuous homomorphism. The map R.y = K2 C I
carrying t to (V/t,..., V/t), where n = [K: Q], is a continuous section. For v real
(resp. complex), the map Ryy — KX C I carrying t to t (resp. v/t) is also a
continuous section. The openness follows from this. O

We let Ik denote the kernel of the homomorphism |—| and equip it with the
subspace topology induced from the topology of 1. We thus obtain an isomorphism
of topological groups I /T ~ R.,. Moreover the continuous sections of |—| (not
unique for n > 1) induce isomorphisms of topological groups Ix ~ T} x Ry.

By product formula, the image of the diagonal embedding K* — [ is contained
in T
Theorem 1.5.6. The quotient I}, /K> is compact.

Lemma 1.5.7. Let ¢ > 1. For all but finitely many v € V, |[K}| N (1,¢) = 0.

Proof. Indeed, the equality holds for all v € V; with residue field of cardinality
q > ¢, and in particular, for v € V; above a rational prime p > c. O

Proposition 1.5.8. T}, C A is a closed subset and the topology on Ik coincides
with the subspace topology induced from Ag.

Proof. For © € Ak, consider the neighborhood Ug(z) C Ak, set of adeéles y such
that |y, — @y|y < € for v € S and |y,|, <1forveV —S. Heree >0and S CV is
a finite subset containing V., and such that |z,|, <1 forallve V — .

For the first assertion, we need to show that for x & T}, there exists such a
neighborhood that does not meet I};. There are two cases.

(1) |x|] < 1 (may be zero). Then there exists S satisfying the above and such
that [T,eg|Tu|o < 1. It then suffices to take e sufficiently small such that for
y € Uge(z), we have |y| = [Tyes|yolo < 1.

(2) |z| > 1. By Lemma [1.5.4] = € Ix. By Lemma [1.5.7 there exists a finite
subset S C V containing V,, such that |z,|, = 1 for v € V — S and such that
| K, N (ﬁ, 1) =0 for v € V — S. It then suffices to take e sufficiently small
such that for y € Ug(z), we have 1 < [[,cs|tolo < 2[1yes|Tole = 2|2z|. It
follows that either |y| = [T,es|tolo > 1, or |y| < 3 [Toes|yole < 1.

The topology on Ik is clearly finer than the topology induced from Ag. To show
the converse, let # € Tk and let W be a neighborhood of x in I. We need to find
a neighborhood U of z in A such that U N1}, C W NTL. We may assume that W
is the set of ideles y such that |y, — x,|, < € for v € S and |y,|, =1 forv e V — S,
where S C V is a finite subset containing V,, and such that |z,|, =1 forv € V —§.
We may further assume that e is sufficiently small such that for z € Ug.(x), we
have [Tyes|zolo < 2[Tyes|Tole = 2. If, moreover, |z| = 1, then |z,|, > 1/2 for all
v e V;— 5, so that |z,], =1 for such v. Thus Ug.(z) NI} =V NIk. O
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Proof of Theorem [1.5.6. By the proposition, it suffices to find a compact B C Ay
such that the map BNIL — T}, /K* is surjective. By Theorem , there exists a
constant C' such that for every idele x € Ik satisfying |z| > C|, there exists a € K*
such that |a|, < |z,|, for all v € V. Choose such an x and let B be the set of adeles
y such that |y,|, < ||, for all v € V. Let z € Tk.. Then |27 'z| > C, so that there
exists @ € K* such that |a|, < |z, 'z,|, for all v € V. Thus z = a"'(az), with
az € BN, as required. O

Ideéles and ideals

Recall that every fractional ideal of Ok can be uniquely factorized as a finite product
[1; pi"**, where the p; are distinct maximal ideals of Q. Fractional ideals of Oy form
a free abelian group Zx with basis given by the set of maximal ideals of Og. We
let Pg denote the set of principal fractional ideals of O, namely, fractional ideals
of the form zOf, where z € K*. We let Clx = Zx /Px denote the ideal class group
of K.

For every idele (z,),ev € Ik, m, = v(z,) equals 0 for all but finitely many
v € Vi, so that ey, py™ is a fractional ideal. Here p, denotes the maximal ideal
corresponding to v. This defines a homomorphism Iy — Zx, which is clearly sur-
jective, and the kernel is an open subgroup Ux = K2 X [loev, Oy Clk. Thus we
get an isomorphism

HK/UK EIK,

which induces an isomorphism

Ix/K*Ug ~Clg.
Restricting to ideles of content 1, we get

I /KU ~ Clg,

where U, = U NI} = K1 x [lev, OF, and K is the kernel of the homomorphism
KX — RZ, carrying (2,)veva. t0 [Tyevs, |Zo]o. Here we have used I Ux = Ik.

Theorem 1.5.9. The ideal class group Clyx of any number field is a finite abelian
group.

Proof. Since Uj; is an open subgroup of I}, the quotient is discrete. Since I} /K>
is compact (Theorem [1.5.6)), I}, /K*U} is also compact, hence finite. O]

The theorem holds more generally for ray class groups, defined as follows.

Definition 1.5.10. A modulus for K is a function m: V' — N carrying v to m,,
satisfying the following conditions:

e m, = 0 for v complex.

e m, =0 or 1 for v real.

e m, = 0 for all but finitely many v.
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We can identify moduli with pairs (I, (m.,)vevz ), where I = ] ey, pi** is an ideal
of Ok. Here Vi denotes the set of real places of K.

For a modulus m, we let Zx(m) C Zx denote the subgroup of fractional ideals
generated by p, with m, = 0. We let Pg(m) C Pk denote the group of principal
fractional ideals Ok, x € K* such that v(x —1) > m, for v € V; with m, > 0 and
ou(x) > 0 for real places v with m, = 1. Here o, denotes the embedding K — R
corresponding to v € Vk.

Definition 1.5.11. The ray class group of K for m is Clg(m) = Zx(m)/Px(m).
Example 1.5.12. If m is constant of value 0, then Clx(m) = Clg.

Example 1.5.13. If m is the characteristic function of Vg, then Py (m) = Pi is
the set of principal fractional ideals generated by totally positive elements, namely
r € K* such that o(z) > 0 for all real embeddings o: K — R. In this case,
Clx(m) = I )P} is called the narrow class group of K.

Example 1.5.14. Let n > 1 be an integer. Then m = ((n),1) is a modulus for
K = Q. In other words, m, = v,(n) and my = 1. The map Zy(m) — (Z/nZ)*
carrying $7Z, a,b € N, (a,n) = (b,n) = 1, to a/b, where @ and b denote the images
of a and b in Z/nZ, respectively, induces an isomorphism Clg(m) ~ (Z/nZ)*.

For a modulus m of K, we let Ix,, C Ix denote the open subgroup of ideles
(2y)vey such that v(z, — 1) > m, for v € V; with m,, > 1 and z, > 0 for v € Vi
with m, = 1. Note that Pg(m) is the group of principal fractional ideals zOf,
z € Ig,m N K*. The homomorphism [k, — Zx(m) carrying (z,)yev to [oev, P

is surjective, and the kernel is Uk ,, = Ux NIk ,. In other words Ug,, = [I, Ulgmv),
where U{®) = F* for v Archimedean, U{!) = RX, for v real, U(?) = U, = OX for v
finite, and U{™ = 1 + 77O, for v finite and n > 1. We get an isomorphism

I[I(,rrz/lj[(,171 =~ IK(m)v
which induces an isomorphism
(151) ]IK/KXUKJWI ~ ]IK,m/(]IK,m N KX)UKym ~ CZK(m)

Here we have used the equality K *I ,, = Ik, which follows from the approximation
theorem. Restricting to ideles of content 1, we get an isomorphism

T/ KUk g == Clic(m),
where U, = Ug.m N1j. By the compactness of I} /K>, we get the following.

Theorem 1.5.15. The ray class group Clx(m) of any number field K for any mod-
ulus m is a finite abelian group.
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Dirichlet unit theorem

We let g denote the group of roots of unity of K.

Lemma 1.5.16. Let C' = [[,cy C, C Ik, where C, = {x € K} | |z|, = 1}. Then
wr = K*NC is a finite cyclic group.

Proof. Tt is clear that ux € K* N C. Since C C I is compact and K* C lg is
discrete, K* N C' is finite. Thus every element of K* N C' has finite order, so that
K*NC C pug. We have shown that ux = K>* N C' is a finite group. Since there are
at most n roots of unity of order n, the exponent of ux is necessarily equal to the
order of ug, so that ug is a finite cyclic group. m

We refer the reader to [T2, Lemma 4.2.1] for a proof without using idéles.

Definition 1.5.17. Let S C V be a finite set of places of K containing V.. We
say that x € K is an S-integer (resp. S-unit) if |x|, < 1 (resp. |z|, = 1) for all
veV —S. Welet Ok denote the ring of S-integers of K. The group Of g is the
group of S-units of K.

Theorem 1.5.18. We have Ok 5 = jug x L, where L is a free Abelian group of rank
#S —1.

Since O = Of ., we obtain the following.

Corollary 1.5.19. We have O = ux X L, where L is a free Abelian group of rank
r1+719—1, vy and ro being the number of real and complex places of K, respectively.

Let AK“S’ = HUES Kv X HUEV—S OU7 ]IK7S = A;(,S = HvES Kj X H’UEV—S Oqf Recaﬂ
that Ak g is an open subring of Ax and Ik s is an open subgroup of Ix. We have
OK,S =K QAK,S, OIX{’S =K*nN HK,S-

Proof of Theorem[1.5.18 Consider the continuous homomorphism A: Ix ¢ — R?
carrying (z,)yev to (10g|zy|ys)ves. We have Ker(\) = O, A(Ix ) = RY= XITvev, log(qw)Z,
and X induces an isomorphism of topological groups I s/C ~ A(Iks). Let I g =
Ix,s NI. Then A(I ) = A(Ik,s) N H, where H is the kernel of the map R¥ — R
carrying (z,)yes t0 Y cg . Note that H is a Euclidean space of dimension #5 — 1.
Moreover A(Of ) is discrete by the properness of A. Indeed, A~*([3,2]%) is com-
pact, hence has finite intersection with the discrete subgroup O g of Ik . Now
pr =lIgsNOkg, 80 L =NOgs) ~ Ok s/px. We get a short exact sequence

1 — C/ux — L 5/ Ok s = M 5)/L — 0.

Note that I ¢/Ok s = I g/K* NI g is isomorphic to an open subgroup of
I}/ K*, hence is compact. It follows that A(I} ¢)/L is compact. Since H/A(I ¢) ~
R /NI s) ~ (R/Z)V> is compact, so is H/L. Therefore, L is a lattice in
H, hence a free Abelian group of rank #S — 1. It follows that the extension
1 — pg — Ok g — L — 1 splits. O
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Haar measures

Recall that for any Haar measure dz on K,, dz/|z|, is a Haar measure on K. For
v € Vy, the volume of O, under dz/|z|, is 1 — q% times the volume of O, under dz.
Note that [T,ev, (1 — q%) = 0.

For v € V}, we take the Haar measure ji;x normalized by i~ (O)) = 1. For
v € Vi, we take ppx = dXx = dx/|z|,, where dz is the Haar measure on K,
normalized as in Example . We obtain a Haar measure []) .y pt, on Ir. This,
combined with the Haar measure dz/|z| on RZ,, induces a Haar measure I}, =
Ker(Ix iR Z0). We equip K* with the counting measure.

We equip H = Ker(R"> 22N R) with the Haar measure induced by the Lebesgue
measures on RY> and R. We have seen in the proof of the Dirichlet unit theorem
that L = {(log(xy))vev,, | © € Of} is a lattice in H. We equip L with the counting
measure.

Definition 1.5.20. The regulator R of K is the volume of H/L.

Remark 1.5.21. (1) The Haar measure on H is 1/4/r + 1 times the usual mea-
sure, where r + 1 = #V_ = r; + r9. It is also the measure induced via the
isomorphism H C R"> — R" given by any of the r + 1 projections from the
Lebesgue measure on R".

(2) Let (u3)1<i<r be a basis of Ok /px. Consider the r x (r+1) matrix M = (|u;|,,),
where vy, ...,v,41 is an enumeration of V.. Then R is the absolute value of
any r X r minor of M.

Proposition 1.5.22. We have
vol(I/K™) = 2" (27)*hR /w,

where ry, ro are the number of real and complex places of K, respectively, h is the
class number of K, R 1is the requlator of K, and w is the number of roots of unity

of K.
Proof. We have exact sequences

1= Ug/OF =T} /K™ = Clg — 1,
1—Clug — Up /O — H/L — 0.

Thus

vol(I}. /K*) = vol(Uj, ] O5)vol(Clg) = vol(C/ g )vol(H/L)vol (Cly)
=vol(C)hR/w = [] vol(Cy)hR/w.

V€V
Consider the short exact sequence

1—=C, %KX&R—)O
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For v real, C, = {£1}, dz/|x| = £dlog|z| is compatible with the counting measure
on C, and the Lebesgue measure on R, so that vol(C,,) = 2. For v complex, C, = S*,

_ 2dxzNdy  d(r?)

d*z = A df = dlog(r?) A df

RN

for z = x + iy = re?, compatible with the measure df on C, and the Lebesgue

measure on R, so that vol(C,) = 2. O

1.6 Appendix: Classification of local fields of char-
acteristic 0

The goal of this section is to prove the following case of Theorem [1.2.2§| (assuming
the existence of a Haar measure on K).

Theorem 1.6.1. A local field K of characteristic 0 is isomorphic to either R, C,
or a finite extension of Q,.

Generalized absolute values

Let |—| be an absolute value on a field K. For 0 < r < 1, |—|" is an absolute value.
However, for r > 1, |—|" does not satisfy the triangle inequality in general. For
example, the normalized absolute value |—|¢ does not satisfy the triangle inequality.

Definition 1.6.2. A generalized absolute value on a field K is a homomorphism
f: K* — RZ,, extended by f(0) = 0, satisfying the inequality (Uc):

flz+y) < Cmax{f(x), f(y)},

x,y € K, for some constant C' > 0.

Takingz =1,y = 0, we get C' > 1. For C' = 1, (U,) is the ultrametric inequality.
If f is a generalized absolute value satisfying (Uc), then f7 is a generalized absolute
value satisfying (Ucr).

Proposition 1.6.3. Let f: K* — R%, be a homomorphism extended by f(0) = 0.
Then f is a generalized absolute value on K if and only if f(1 4+ x) is bounded on
the set B<; = {x € K | f(x) < 1}. More precisely, f satisfies (Uc) if and only if
f(l+2z) <C forallx € B<.

Proof. Taking y = 1 in (Ug), we get f(1+ ) < Cmax{f(1), f(z)} < C for z €
B<;. Conversely, assume f(1 + ) < C for all z € B<;. To show (Ug), we may
assume f(z) < f(y), and y # 0, so that f(z+y) = f(y)f(1 +3) < Cf(y) =
Cmax{f(z), f(y)} O

Proposition 1.6.4. Let f: K* — R%, be a homomorphism extended by f(0) = 0.
The following conditions are equivalent.
(1) f is an absolute value on K.
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(2) f satisfies (Us).
(3) f is a generalized absolute value on K and there exists a constant A such that
f(n-1) < An for allm € N.

Proof. (1) = (2). Indeed, f(z +y) < f(z) + f(y) < 2max{f(z), f(y)}-

(2) = (3). By induction, (Us) implies f(x;+---+zom) < 2" max;<j<om{ f(x;)}.
For n > 0, let m be the smallest integer such that 2™ > n. Then f(n-1) < 2™ < 2n.

(3) = (1). By induction, (Ug) implies f (@14 - -+xom) < C™ maX frmfo]——tei<om L f (i) }-
Let n =2" — 1. Then

J )y = f( ") = 1 (z (”) xy> < 0" { ; ((n) w)}

=0

< a0m 3 (") @1 = ACT ) + )

i=0
so that f(x+y) < VAC™(f(x)+ f(y)). Let m — +o0. We get < f(z)+ f(y). O

Corollary 1.6.5. Every generalized absolute value f on K has the form f(x) = |z|,
where |—| is an absolute value on K and r > 0.

Proof. Indeed, for s > 0 sufficiently small, f* satisfies (U,), hence is an absolute
value by the proposition. O]

Modulus of a local field

Let K be a local field. For the moment we make no assumption on the characteristic
of K. Let mod: K — Rx( be the modulus of K. By definition, for any Haar measure
pon K, any measurable set £ C K, and any a € K, p(aF) = mod(a)u(E) (here
0- 00 =0). The function mod induces a group homomorphism K* — RZ,,.

Proposition 1.6.6. The function mod: K — R s continuous.

Proof. Let V be a compact neighborhood of 0 in K. Then u(V) € Ryg. Let a € K.
By the outer regularity of u, for any € > 0, there exists an open subset U D aV
such that u(U) < p(aV') + €. By the continuity of multiplication in K, there exists
a neighborhood W of a such that WV C U. For z € W, pu(zV) < p(U) <
p(aV) +e. Thus mod(z) < mod(a) + ¢/u(V). This inequality shows that mod is
upper continuous, hence continuous at 0. For ¢ € K*, mod(a) = 1/mod(1/a). It
follows that mod is also lower continuous at any a € K*. O

Proposition 1.6.7. Forr >0, B<, = {x € K | mod(z) < r} is compact.

Let V' be a compact neighborhood of 0 in K. By the continuity of mod, B, is
closed in K, so it suffices to show that B<, is contained in a compact set of the form
aV,a e K.

Lemma 1.6.8. There exists m € K* such that ™ — 0 as n — +oo0 and 7V C V.



30 CHAPTER 1. ADELES, IDELES

Proof. Since 0 -V C V', there exists a neighborhood U of 0 such that UV C V. By
the continuity of mod, since K is not discrete, there exists m € U NV such that
0 < mod(w) < 1. Thus 7V C V. By induction, 7"V C V for n > 0, so that 7" €
7"V C V for n > 1. Since V is compact, the sequence 7™ has a cluster point. For
any cluster point x of the sequence, mod(x) is a cluster point of mod(#") = mod(7)"
by the continuity of mod, hence mod(z) = 0, which implies + = 0. Thus 0 is the
only cluster point of 7n”. In other words, 7™ — 0 as n — 4o00. O]

Proof of Proposition[I.6.7. Let 7 be as in the lemma. Let X be the closure of
V — 7V in K. We have 0 ¢ X, so that p = min,ex{mod(z)} > 0. Choose N > 0
such that mod(m)¥r < p. We claim that B<, C 7=NV. To see this, let a € B,.
To show a € 7NV, we may assume a € V. Since 7"a — 0, there exists n > 1 such
that 7a € V, but 7" la € V. In other words, 7"a € V — wV. Thus

mod(m)Vr < p < mod(7"a) < mod(m)"r,
sothat n < N. Thus a € 7"V C 7~ NV. m

Corollary 1.6.9. The subsets B, C K, r > 0 form a fundamental system of
neighborhoods of 0 in K. In particular, for a € K, a" — 0 as n — +oo if and only
if mod(a) < 1.

Proof. Let V' be any neighborhood of 0 in K. We show that B<, C V for some
r > 0. We may assume that V' does not contain B<p for some R > 0. Let X be the
closure of B<g\V in K. We have 0 ¢ X, so that p = min,ex{mod(x)} > 0. For
O0<r<p, B, CV. O

Corollary 1.6.10. Any discrete subfield F' of K 1is finite.

Proof. For any a € F*, asa™"™ # 0, we have mod(a) < 1. Thus F' C B, is compact
and discrete, hence finite. O

Proof of Theorem[1.6.1 By Propositions[1.6.6|land[1.6.7, x — mod(1+4x) is bounded
on B<;. By Proposition [1.6.3, mod is a generalized absolute value. By Corollary
1.6.5 we obtain an absolute value on K, which defines the topology on K by Corol-
lary [1.6.9] By Corollary[1.6.10] the restriction of this absolute value to Q is nontriv-
ial, thus is equivalent to either |—|, or |—|,. Thus there exists an absolute value on
K extending |—| or |—|,. Since K is complete, K as a valued field contains either

R or Q,. We conclude by the following. O]
Proposition 1.6.11. Let W be a locally compact normed vector space over a com-
plete valued field K with nontrivial absolute value |—|. Then the dimension of W is
finite.

Proof. Let V' be a compact neighborhood of 0 in W. Let 7 € K with 0 < |r| < 1.
Then there exist x1, ..., 2z, € W such that V C U(z; + V). Let L =Y Ka; CW.
Then L is a finite-dimensional K-vector subspace of W, hence complete (Lemma
, therefore closed. Let A be the image of V in W/L, which is a compact
neighborhood of 0 in W/L. We have A C 7A. For any y € W/L, 7"y — 0 as
n — +oo. Thus W/L C Un ™A = A, so that W/L = A is compact. Note that K
is not compact, so that /L must be zero. It follows that W = L. O
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One can show using Haar measures that any locally compact Hausdorff topolog-
ical vector space over a local field is finite-dimensional [W| Section 1.2, Corollary 2
to Theorem 3].
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Chapter 2

Tate’s thesis

2.1 Pontryagin duality

Let G be a topological abelian group. We write the group law multiplicatively.

Definition 2.1.1. A unitary character of G is a continuous homomorphism G —
S' = {z € C||z| = 1}. The Pontryagin dual of G is the abelian group G of unitary
characters of G with multiplication defined by (xx’)(z) = x(z)x'(x), equipped with
the compact-open topology (also known as topology of compact convergence): A base
of the topology is given by W(K,U) = {x € G | x(K) C U}, K C G compact,
U C S* open.

The compact-open topology is finer than the topology of pointwise convergence
(namely, the weakest topology such that for all x € G, the function x — x(x)
is continuous on é) A fundamental system of neighborhoods of 1 € G is given
by W(K,U) = {x € G | x(K) C U}, K ¢ G compact and U running through
neighborhoods of 1 € S*. To analyze the topology of G , we consider the open neigh-
borhood N(e) = e((—£,5)) € S' of 1, for 0 < e < 1. Here e(x) = exp(2miz). Note
that N (1) does not contain any nontrivial subgroup of S'. We have the following
refinement.

Lemma 2.1.2. Let m > 1 be an integer and let 0 < e < 1. If x € S' is such that
z, 2% ..., 2™ € N(e), then x € N(e/m).

It follows that for any subset X C G containing 1 € GG and any homomorphism
x: G — S, not necessarily continuous, such that (X)) C N(¢), we have y(X) C
N(e/m). Here X" = {2 | 21,..., 20 € X} CG.

Proof. We proceed by induction. The case m = 1 is trivial. For m > 2, we
have © € N(e/(m — 1)) by induction hypothesis, so that = = e(a), |a| < T
Since 2™ € N(¢), we have ma € (—5 + 7,5 + 1) for an integer . In particular,
—<+ 71 <ma < mg——, so that r < 2m—1- < 1. Similarly, r > —1. Thus r = 0,

3(m—1)> 3(m—1)
a€e( ,and z € N(1/m). O

~3m 3m)
Proposition 2.1.3. A group homomorphism x: G — S! is continuous if and only
if x H(N(1)) is a neighborhood of 1 € G.

33
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Proof. The “only if” part is trivial. Conversely, if x~'(N(1)) is a neighborhood of
1 € G, then for any integer m > 1, there exists a neighborhood U of 1 € G such
that U™ C x~1(N(1)), so that x(U) € N(1/m) by the lemma. O

Proposition 2.1.4. A fundamental system of neighborhoods of 1 € G is given by
W(K,N(1)), K C G compact.

Proof. 1t suffices to show that for every K and m > 1, W(K', N(1)) C W(K, N(1/m))
for some compact subset K’ C G. We may assume 1 € K. By the lemma, we may
take K/ = K™ O

Proposition 2.1.5. (1) G is Hausdorff.
(2) If G is discrete, then G is compact.
(8) If G is compact, then G is discrete.
(4) If G is locally compact, then G is locally compact.

Proof. (1) Indeed, {1} = N,eq g+, where g+ = {x € G| x(g) = 1} is closed in G.

(2) G is a closed subgroup of the compact group (S1)¢ = [Tyeq S Indeed, G =

Ng.nec Vons where Vg, = {x: G — S* | x(g9)x(h) = x(gh)} € (") is closed.

(3) For any xy € W(G,N(1)), x(G) € N(1) is a subgroup of N(1), hence x(G) =
{1}. Thus W (G, N(1)) = {1}.

(4) Let V be a compact neighborhood of 1 € G. We show that W = W (V, N(1/3))

is a compact neighborhood of 1 € G. Here the bar denotes closure. Clearly

W 2 W(V,N(1/3)) is a neighborhood of 1 € G. Let Gy be G equipped with

the discrete topology Then G C Gy. The latter is compact by (2). Let

Wy = {x € Go | x(V) C N(1/3)}, so that W = W, N G. Note that every

X € Wy is continuous on G by Proposition 2.1.3] so that W = W,. As W,

is closed in Gg, Wy is compact for the topology 7y induced from GO The

topology 7 on W induced from G is finer than 79, and it suffices to show the

converse. For x € W and K C G compact, let X = (W (K,N(1))) nW. By

Proposition it suffices to show that X is a 7p-neighborhood of y. By

the compactness of K, there exists a finite subset /' C G such that K C FV.

Then Xy = (x\W(F, N(1/3))) "W is a mo-neighborhood of y, and it suffices to

show that Xq C X. Let xo € Xy. Then yg = xu for some pu € Go such that

F) C N(1/3). Since pp = x"'xo € W@, u(V) € N(2/3). By Proposition

ﬁ, p is continuous on G. Moreover, u(K) C u(F)u(V) € N(1/3)N(2/3) =

N(1). Thus p € X.

]

We say that an element a of an abelian group A is divisible, if for each integer
n > 1, nx = a admits a solution in A. We say that A is divisible, if every a € A is
divisible.
Remark 2.1.6. If G is divisible, then G is torsion-free. Indeed, if y € é[n], then
x(G) C S'[n] is divisible, so that x = 1.

Let f: G — G’ be a continuous homomorphism of topologlcal abelian groups.
Composition with f induces a continuous homomorphlsm f: G = G. Indeed,
FYW(K,U)) = W(f(K),U). For a sequence G Iy ¢ Ly G” of continuous homo-
morphisms, (f' o f)"= fo f.
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Proposition 2.1.7. Let H be a subgroup of G and let i: H — G be the inclusion.

Then A A A
H*={xeG|x(H) ={1}} =Ker(i: G — H)

s a closed subgroup of G. Moreover, p, where p is the quotient map p: G — G/H,

induces a continuous isomorphism (G/H)~ = H*, which is an isomorphism of

topological groups if G is locally compact.

Proof. For the first assertion is obvious. The map (G/H)~ = H* is clearly a
continuous isomorphism. For every compact K C G/H, there exists a compact
K' C G such that K C p(K’). Thus the map is a homeomorphism. H

Example 2.1.8. The map Z~— S! carrying x to x(1) is an isomorphism of topo-
logical groups.

Example 2.1.9. For n > 1, the map (Z/nZ)~— p, = S*[n] carrying x to x(1) is
an isomorphism of topological groups. Choosing a primitive n-root of unity ¢, € S1,
we obtain an isomorphism Z/nZ = (Z/nZ)" carrying £ to x +— (2. It follows that
for every finite abelian group G, there exists a (noncanonical) isomorphism G ~ G.
Let V' be a finite-dimensional [F,-vector space. Then we have an isomorphism
Homg, (V,F,) = VY = V" carrying ¢ to  — C;f’(‘”). For V =TF,, ¢ = p/, compos-
ing with the isomorphism F, = V" carrying & to @ +— trg_sr,({2), we obtain an
isomorphism F, — F carrying § to = — C;rFq/ r (&E).
Example 2.1.10. Consider the isomorphisms Z/p"Z = (p~"Z/Z)" carrying & to
x +— e(&x), where £x € p"Z/Z. For m < n, the isomorphisms are compatible
with the projection Z/p"Z — Z/p™Z and the inclusion p~"Z/Z C p~"Z/Z for m <
n. Taking limit, we obtain an isomorphism of topological groups Z, = (Q,/Z,)"
carrying & to x — e(§x), where éx € Q,/Z, C Q/Z C R/Z. Note that Q,/Z, =
Zlp™1)7 = U, p"Z]Z is discrete.

Example 2.1.11. The isomorphisms p~"Z, = (Q,/p"Z,)" carrying £ to z + e({x)
are compatible with the inclusion p~"Z, C p~"Z, and the projection Q,/p"Z, —
Q,/p™Z, for m < n. Note that Q, = U,p "Z,. Moreover, for every unitary
character x of Q,, x(p"Z,) C N(1) for some n, so that x is trivial on p"Z,. Taking
union, we obtain an isomorphism of topological groups Q, ~ Q carrying & to
x> e(A(x)), where A\: Q, = Q,/Z, is the projection.

Example 2.1.12. Let V' be a finite-dimensional Q,-vector space. Then we have an
isomorphism Homg, (V,Q,) =V = V carrying ¢ to x — e(A(¢(z))). For V =K a
finite field extension of Q,, composing with the isomorphism K = V'V carrying & to
tri /g, (&), we obtain an isomorphism K = K~ carrying £ to z — e(A(trg g, (£2))).

Example 2.1.13. Let V be a finite-dimensional real vector space. Then we have
an isomorphism Homg (V,R) = V¥ 5 V carrying ¢ to x — e(¢(z)). For V = K is
either R or C, composing with the isomorphism K — V'V carrying £ to trg r(£x),
we obtain an isomorphism K = K~ carrying £ to « — e(trg/r({x)).

We have proved the following.
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Proposition 2.1.14. Let K be a local field of characteristic O and let 1) be a nonzero
additive character of K. Then the map K — K™ carrying £ to v¢ is an isomorphism

of topological groups. Here )¢ is defined by e(x) = (Ex).

For g € G, the map G — St carrying y to x(g) is a unitary character. We

obtain a homomorphism n: G — G carrying ¢ to x — x(g), which is continuous
if G is locally compact. To see the continuity, let K C G be a compact subset,

and let W = {¢ € G | (K) C N(1)}. Let V be a compact neighborhood of
1 € G. Then there exists a finite subset F' C K such that K C FW(V,N(1/2)).
Let U=V NNyerx H(N(1/2)). Then n(U) C W.

Theorem 2.1.15 (Pontryagin). Let G be a locally compact abelian group. The map

n:G— G is an isomorphism of topological groups.

Corollary 2.1.16. Let H be a closed subgroup of G. Then the short exact sequence
1= HS5 G G/H — 1 induces a short exact sequence

1 — (G/H)“i GLHa— 1,
identifying H with the quotient ofé by the closed subgroup H*.

Proof. We have seen that p induces an isomorphism of topological groups (G/H)™ =
H+ = Ker(z). It remains to show that ¢ is a quotient map. Let L be the Pontryagin

dual of G/H*, so that L = G/H*. We have i = 1) o ¢, where G N
corresponding to H % L% G. Since Yoo =1, (L) D H. Since ¥ o p factors
through {1}, p o ¥ factors through {1}, so that ¢/(L) C H. Thus ¢(L) = H, hence
¥ induces an isomorphism of topological groups L = H. It follows that ¢ is an

isomorphism of topological groups. Therefore, ¢ is an isomorphism of topological
groups. O

Corollary 2.1.17. Let H be a subgroup of G. Then (H+)* = H.

Proof. Since H+ = H™*, we may assume that H is closed. Then the assertion follows

Corollary [2.1.16} O

We refer the reader to [B4, Section II.1] for a proof of the Pontryagin duality.
The proof makes use of Fourier transformation. Let us recall the definition and a
few facts.

We fix a Haar measure dx on G. For 1 < p < oo, let LP(G) be the completion
of C.(G,C) with respect to the LP-norm. For f € L'(G), we define its Fourier
transform Ff: G — C by (Ff)(x) = [ f(z)x(z) dx. Then Ff € C(G,C) and
IFflle < IIflli. The convolution product f x g for f,g € L'(G) is defined by
(f xg)(x) = Jo f(zyHg(y)dy. This makes L'(G) into a commutative Banach
algebra. We have F(f % g) = F(f)F(g). In other words, for Y € G, the map
LYG) — C, f— (Ff)(x) is a character of L'(G), in the following sense.

'Bourbaki |[B4} Section II.1] calls F the Fourier cotransform and defines the Fourier transform
by x = [ fl@)x(a™1) d.
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Remark 2.1.18. Let A be a (non-unital) commutative complex algebra. We define
a character of A to be a homomorphism A — C of complex algebras. We let X (A)
denote the set of nonzero characters of A. We equip X (A) with the topology of
pointwise convergence. Then X (A) is a Hausdorff space. The Gelfand transform
Gf € C(X(A),C) of f € A is defined by (Gf)(x) = x(f). If Ais a commutative
Banach algebra, every character is continuous of norm < 1 [B4, 1.3.1], so that
X (A) U {0} is a closed subset of the closed unit ball B of A*, the dual of the
Banach space A consisting of continuous linear functionals on A, equipped with the
topology of pointwise convergence (also known as the weak-* topology). By the
Banach-Alaoglu theorem, B is compact (indeed, B is a closed subset of the compact
set [1rea B<|js)(0), where B<,.(0) € C denotes the closed disc of radius ), hence
X(A) U {0} is compact, so that X(A) is locally compact. Moreover, y +— Ker(x)
defines a bijection from X (A) to the set of maximal regular ideals of A (an ideal
I of A is regular if the quotient A/l admits a multiplicative identity 1). One can
show that x — (f — (Ff)(x)) defines a homeomorphism G = X (L'(G)). Via this
homeomorphism F f can be identified with G f.

Theorem 2.1.19 (Plancherel). There exists a unique Haar measure di: on G such
that [o|FfI?dz = [g|f)? dz for all f € C.(X,C). The map F: Co(X,C) — L*(G)
extends uniquely to an isometry F: L*(G) — L2(@).

The Haar measure d2 on G is called the dual measure of dz. Note that for ¢ > 0,
the dual measure of cdx is ¢! d3.

Theorem 2.1.20 (Fourier inversion). Via the isomorphism n: G = é, dx can be
identified with dz, and (FFf)(nz) = f(z™') for f € L*(G) and z € G.

Definition 2.1.21. A quasi-character of a topological abelian group G is a contin-
uous homomorphism G — C*.

2.2 Local zeta integrals

Duality of the additive group

Let k be a local field of characteristic 0 and let 1) be a nontrivial additive character
of k. For every Haar measure dx on the additive group of k, the dual measure d can
be regarded as a Haar measure on k via the isomorphism k¥ = k™ carrying £ to .
There exists a unique Haar measure dz on k, depending only on v, that is self-dual,
namely dx = dZ. Indeed, if dZ = cdz, then /cdz is self-dual. For a function f on
k, we write f for Ff, regarded as a function on k by f(&) = [ f(z)v(&x) du.

In the sequel we fix an additive character ¢ by ¥(x) = e(—tryr(z)) for k = R
or k = C and ¢(z) = e(A(trg/q,())) if k is p-adic. Let dz be the self-dual measure
determined by 1. For k = R, dz is the usual Lebesgue measure. For k£ = C, dx
is twice the usual Lebesgue measure. If k is p-adic, let O be the ring of integers
of k. Recall that the different 0 of k is an ideal of O defined by the following
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condition: For z € k, € 97! if and only if tryq,(zy) € Z, for all y € O. We have
Jodx = (N0)~Y/2, where No = #(0/0).

We let S(k) denote the space of Schwartz-Bruhat functions. In the Archimedean
case, this is the space of Schwartz functions. Recall that a Schwartz function on R"
is a function such that sup,g.|2*D? f(z)| < oo for all a, B € Z2,. For 1 < p < oo,
S(k) is dense in LP(k,C). -

Proposition 2.2.1. For f € S(k), we have f € S(k).

In the Archimedean case all the above facts are classical and our proof of Theorem
below also implies that dz is as described above. We give proofs in the p-adic
case. The following lemma applies to all cases.

Lemma 2.2.2. Let a € Fk, g(x) = f(z —a), h(z) = Y(azx)f(x). Then §(z) =
Y(ax)f(x) and h(z) = f(z + a).
Proof. Indeed,
x) = [ Sty aypley)dy = [ Sty + ) dy = élaa) )
ha) = [ wlay) f@)o(ay) do = [ F@)0((x + ay) dy

I
=
8
+
&

Lemma 2.2.3. Let G be a compact abelian group and let dg be a Haar measure on
G. Let x: G — S' be a character. Then

_Jvol(G) x =1,
/Gng_{O YL

Proof. The case x = 1 is trivial. For every g € G, x(9) Jo x(h)dh = [, x(gh)dh =
Jo x(h) dh. The case x # 1 follows. O

Assume now that k is p-adic.
Lemma 2.2.4. Let a be a fractional ideal. Then 1, = (N9)~V/2(Na) "1y 14-1.

Proof. We have 14(x) = [, ¢(zy) dy. Note that € 0~ 'a~" if and only if y — ¢ (zy)
is a trivial character of a. The assertion then follows from the preceding lemma and
the fact that vol(a) = (N0)~¥/2(Na)~". O

By Lemma [1.4.11} the proposition reduces to the case f = 1p for some ball
B = a+ a. By Lemma 2.2.2] we reduce to Lemma [2.2.4]

The space S(k) is dense in C.(k,C) = Ux C(k,C) equipped with the topol-
ogy defined similarly to Remark [1.4.2] which is stronger than the LP-topology for
1 < p < oo. Indeed, the density follows from the density of S(k) N Ck(k,C) in
Ck(k,C), which is a consequence of uniform continuity. It follows that S(k) is
dense in LP(k,C).

2In view of our convention for v, our convention for f differs from that of Tate [T1] by a sign.
In the Archimedean case, our convention coincides with that of the classical Fourier transform.
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To show Fourier inversion, we are thus reduced to the case f € S(k), and then

to f = 1 by Lemma[1.4.11] and finally to f = 1, by Lemma [2.2.2] In this case, we
have

Flx) = (NO)"V2(Na)  Tyans = (NO)~Y2(Na) " (N0) Y2(N (0 'a~1)) 1, = L.

Local zeta integrals

Let k be a local field of characteristic 0. We let X (k*) denote the abelian group of
quasi-characters of £* with group law defined by pointwise multiplication. We have
a short exact sequence

1—>C—>k:xﬂ>|kx|—>1.

Note that C' is compact. We say x is unramified if x(C) = [1|. In this case x
factors through |k*|, so that y = |—|° for some s € C. In the Archimedean case,
|k*| = Rsg so that s is unique. In the p-adic case, we have |k*| = |[Np|% so that
C/2milog(Np)Z. Here p is the maximal ideal of O.

The sequence is split. In the p-adic case the splitting depends on the choice
of a uniformizer 7. In all cases the sequence induces a split short exact sequence
1 — X™(k*) - X(k*) — C — 1, which equips X (k*) with the structure of a
complex Lie group of dimension 1 (that does not depend on the choice of a splitting),
with ¢ being the group of connected components.

For k =R, C' = {£1}, so that every quasi-character can be uniquely written as
X = |—|* or x = sgn|—|* for s € C. For k = C, C = S, so that every quasi-character
can be uniquely written as y = x,|—|® for n € Z, s € C, where Y, is the unitary
character x,(z) = (z/|z|c)". For k p-adic, C = O*, so that every quasi-character
can be uniquely written as x = xo|—|°, where X is a unitary character satisfying
Xo(m) =1, and s € C/2wilog(Np)Z. Since the subgroups 1+p™, n > 1 of O* form a
fundamental system of neighborhoods of 1, there exists n such that x(1+p") = {1}.
If x is ramified, the conductor is defined to be p”, where n is the least integer such
that x(14p") = {1}. For x unramified, we define the conductor to be O.Note that
C' = U, (0% /(1 + p™))is countable.

In all cases o(x) = Re(s) is well-defined.

For fix a Haar measure d*x = §(k) dx/|x| on k* as follows. For k Archimedean,

we take d(k) = 1. For k p-adic, we take d(k) = N]ZL'%, so that [y« d*z = (N?)"2.

Definition 2.2.5. For f € S(k) and x € X (k*), we define the local zeta integral by

() = [ fax@da.
Lemma 2.2.6. ((f,x) converges absolutely to a holomorphic function for o(x) > 0.

Proof. This follows from the fact that [« f(x)x(z)d*z and [« f(x)x(z)log(|z|)d*x
converge absolutely and uniformly on any compact in o(x) > 0. O

Recall that the Gamma function is defined by I'(s) = [5°2° ‘e ® dz, which
converges absolutely to a holomorphic function for Re(s) > 0. It extends to a
meromorphic function on C without zeroes.
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Definition 2.2.7. For a quasi-character x of k*, we define the local L-factor L(x)
as follows.

(1) For k =R,
L(|-]") = r(s), L(sgn||*) = I'r(s + 1),
where
Ta(s) = 73T (;)
(2) For k =C,
L) =Te (s+ ).
and

Ie(s) = (27) T (s).
(3) Assume that k is p-adic. For x = |-|® unramified,
1 1
L= (Np)= 1= x(n)’
where 7 is a uniformizer of k, and for y ramified,

L(x)=1.

We note that L(x) is a meromorphic function on X (k*) with no poles for o(y) >
0 and no zeros for all x.

L() =

Theorem 2.2.8. For any f € S(k), the function x — ((f,x) extends to a mero-
morphic function on the space of all quasi-characters, such that ((f,x)/L(x) is
holomorphic and satisfies the functional equation

¢(f,x B
( )E(X): ¢(f X ).
L(x) L(x")
where X" = x7'|—|, and €(x) is a holomorphic function of x with no zeros, inde-
pendent of f, given as follows.
(1) For k =R,

e(l-1") =1, elsenl") = —i.
(2) Fork =C,
el %) = (=),
where X, is the unitary character x,(z) = (z/|z])™.

(8) If k is p-adic, then

e(l%) = (N9)27%,  e(xol[*) = (N(2f))2~*n0(x0),

where xo is unitary, ramified of conductor § satisfying xo(w) =1, and

w(%) = (V)7 St ()

ﬂ-m

is the normalized Gauss sum, x running through a set of representatives of

O* /(1 +¥), with of = p™.
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Moreover, for each connected component X of X (k*), there exists a f € S(k) such
that ¢(f,x) = L(x) for x € X.

In some sense, L(x) is the greatest common divisor of ((f,x), f € S(k). The
proof of the theorem relies on the following.

Lemma 2.2.9. For all f,g € S(k) and x € X(k*) with 0 < o(x) < 1, we have

A

C(f )€, xY) = C(f. x )¢9, %)-

Proof. We have

CCEX) = [ [ S Syl drdy
(y—ray) =] /k ry)X " (xy)lry| d*z d*y
st [ ( / / F@)glz)(ayz) dodz ) x(y ™)yl dy.
which is symmetric in f and g. O

Proof of Theorem [2.2.8. We will show for each connected component X of X (k*)
that there exists one choice of f such that ((f,x) = L(x) for x € X, o(x) > 0 and
C(f,xY) = e(x)L(x") holds for xy € X, o(x) < 1. In particular, the functional equa-
tion holds for this f and ((f, x) is not identically zero on any component. By the
lemma, for 0 < o(x) < 1, multiplying by (g, x) and dividing by ((f, x), we see that
the functional equation holds for all f (more informally, C(f, x¥)/¢(f, x) is indepen-
dent of f). Since ¢(f,x)/L(x) is homomorphic for o(x) > 0 and ¢(f,x")/L(x")
is holomorphic for o(x) < 1, {(f, x)/L(x) admits a holomorphic continuation to
X (k™).
(1) Assume k = R. For y = |-|*, we take f(z) = e ™. Then

LMY = [ el @a =2 [T e e da
RX 0
(221)  (y=m?)  =x7F [TewyiTidy =Ta(s) = L( ).
Moreover,

f(y) = / e~y (o oY / e~ (@ )? g
R R

By contour integral and Gaussian integral,
/ e @Y gy = / e ™ dr = 1.
R R
Thus
(2.2.2) f=r
so that ((f,x¥) = ¢(f,x") = L(x")-
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For x = sgn||*, we take f(z) = ze~™". By (2.2.1)), we have
C(fx) =2 [ e et de = Tals +1) = L(v)
Moreover, taking derivative in (2.2.2)), we get —2mi f = —2rf, so that f = —if.
Thus ¢(f,x") = ¢(=if,x") = e(x)L(x").

(2) Assume k = C. We take f,(2) = z"e 2™ for n > 0 and f,(z) = z e 2"**
for n < 0. We have

il 1) = [ Fulehxn(2)(2)" a2

2 00 2 d d(g
(dedy=rdrdy) = [ [" ety 20
=0 Jr=0 r
— 4r /OO e—?ﬂr2r2s+|n|—l dr
0
(t=2m?) = (2w)1*(8+%l)/0 5 dt = Lixal °).
We have
%(2) _ / o= 2w ,—2mi(zw+3D) g,
C
(z=2+1y, w=u+iv) =2 /OO /OO e~ 2wt Hv?) o —dmi(uz—vy) gy, o)
_ 26_2ﬂ(x2+y2) /OO e—27r(u-&-i:z:)2 du /Oo 6—27r(v—iy)2 dv
= fo(2).

Regarding z and z as independent variables and taking derivatives with respect to
2 and (%nﬁ, we get (2mi)"f,, = (2m)"f_,, and (2mi)"f_,, = (2m)" f,, for n > 0. Thus
for all n, f, = (=)™ f_,.. For x = xu|*>, XY = Xx_n||' %, so that

C(funx) = CU=)" fps x¥) = €O L(XY).

(3) Assume that k is p-adic. For y = |-|* unramified, we take f = (N0)21o.
Then f = 1,-1. We have

)=o)k [l

r n X 1 ns X 1
©—{0} = [["0) =) Yl [ d*a = —— = L(v),
n=0 n=0 Ox |7T|
and
(= [ alraa
o-1-{0}
-1 r n ryx S n(l—s) X -1 |7T|_d(1_5)
O —{0}= [[ ="0*) =3 || /de:(Nb) g e
n=—d n=—d o ’7T|

= (N0):*L(|-['*) = e(x)L(x").
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For x = xol|-|* ramified of conductor f with xo(7) = 1, we take f = ¢ 1145,
where ¢ = [} ;d*x. Then ((f,x) =1 = L(x) and f = C_I(ND)’%(Nf)‘lwl(af)fl.
We have

(Wlop-x) = [ @@ e = 3 w0,

(of)—li{o} n=—m

where I, = [px ¥(7"x)Xo(z)d*z. For n > —d, we have n"x € 0! for x € O, so
that ¢(m"z) = 1 and I, = [ox Xo(z)d*x = 0. Assume —m < n < —d. For y €
1+p 0!, we have (7 zy) = 1(7"x). Thus, if S denotes a set of representatives
of O%/(1+p~"0~ 1), we have

=Y @) [ %) dy.

€S I+p—mot

For n > —m, 1+ p~"0~! strictly contains 1 + f, or, in other words, y is nontrivial
on 1+ p~"07 !, so that the integral is zero. For n = —m, we have

L= 500 ") [y = o(Nf) i (x0).

z€S

Therefore,

A

C(foxY) = (N(OF)F*70(x0) = e(x)L(x").

Remark 2.2.10. We have

(2.2.3) e(e(x”) = x(=1), e(x) = x(=1e(x).

Indeed, the first equality follows from

ety = ey = SR <oy

where we used f(z) = f(—z) in the last equality. The second equality of (2.2.3) can

be shown similarly using the fact that f(z) = f(—2). The equalities (2.2.3)) also
follow from the explicit formulas for e. For o(x) = 3, x¥ = X, so that |e(x)| = 1.

>

2.3 Global zeta integrals

Let K be a number field.

Duality on Ay

We fix a character ¢: Ax — C* by ¥(z) = [Iyev ¥o(2y), where 9, is the additive
character of K, in the previous section. For & € Ag, ¢¢(z) = ¢ (&x) defines a
character ¥¢: Ag — C*.
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Proposition 2.3.1. The map Ax — Ay carrying £ to ¢ is an isomorphism of
topological groups.

Proposition 2.3.2. The character i factorizes through Ak /K if and only if € € K.
In particular, § — ¢ induces an isomorphism K — (Ag/K)™

The local self-dual measures dz, on K, with respect to 1, induce a self-dual
measure dr on A with respect to 1. The volume of the quotient Ax/K with
respect to the self-dual measure on A and the counting measure on K is 1. This is
consistent with our computation in Example by the product formula |Ag| =
Hv Nav

For a function on Ag, we write f for Ff, considered as a function on Ag by
f(e) = Ja, f(@)¥(§x) dx. The space S(Agk) of Schwartz functions on Ak is the
space of finite linear combinations of functions of the form f = ®,f,, where each
fo € S(K,) and f, = 1p, for all but finitely many v. Note that for f as above, we
have f = ®,f, €S (Ak). We obtained the following proposition.

Proposition 2.3.3. The Fourier transform f — f preserves S(Ak) and f(a:) =
f(=xz) for f € S(Ak).

Proposition 2.3.4 (Poisson summation formula). For f € S(Ak), Y .cx f(x) con-

verges absolutely and A
> fl@) =3 (9

zeK 135719

Corollary 2.3.5. Let f € S(Ak) and x € Ix. Then

Zf(wi)szZf(i)-

EEK ¢eK

In the function field case, this formula implies the Riemann-Roch theorem. See
[RV], Section 7.2].

Proof. This is the Poisson summation formula applied to the function g € S(Ag)
given by g(y) = f(xy). Indeed, §(y) = 4 (£). O

Global zeta integrals

A Hecke character of K is a quasi-character Ix/K* — C*. We let X denote the
space of Hecke characters of K. We have a split exact sequence

1> I /K" — I /K R — 1,
which induces a split exact sequence 1 — X" — X — (I /K*)~— 1. This equips
X with the structure of a complex Lie group of dimension 1, with (T} /K*)" being
the group of connected components. For any Hecke character y, there exists a unique

real number o(y) such that |x(z)| = |z|7™).
The local Haar measures d*x, on K induce a Haar measure d*x on I, which

is 1/|v/Ak| times the measure used in Proposition |1.5.22
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Definition 2.3.6. Let f € S(Ak) and let x: Ix/K* — C* be a Hecke character.
We define the global zeta integral by

qﬂx»—AKﬂmX@m&u

Lemma 2.3.7. The zeta integral {(f, x) converges absolutely to a holomorphic func-
tion for o(x) > 1.

Theorem 2.3.8 (Tate, Iwasawa). Let f € S(Ak). The function x — ((f,Xx)
extends to a meromorphic function on the space of all Hecke characters of K, holo-

morphic except for simple poles at x = 1 and x = ||, satisfying the functional

equation

(2.3.1) C(f.x) = ¢(fxY).

Moreover, the residues of C(f,x) are —f(0)vol at x = 1 and f(0)vol at y = |-|. Here
2" (2m)"2hR

vol = vol(I}, /K*) =
wy/|Ak]

where ry, ro, h, R, and w are as in Proposition |1.5.22,

Proof. We have e = I UTZ', where I and T denote the sets of ideles of content
< 1 and > 1, respectively. We have

) = [ fan@da= [ fax@da+ [ f@x@d.

Ix 3
Moreover,
Lo fax@a = [ ¥ fagxe)da
I TSR S
1 N f 1 A
by Corollary [2.3.5|) :/ — f(3)x(x)d*z + —f(0) — f(0))x(x)d*x
( e 1 2 FO@ e [ (70 = 0@
=A+B.
Putting y = 1/x, we get
A=, fwon iy = [, FuOx .
1% /KX CEK X I%
We choose a splitting I /K> ~ I /K* x RZ, and write x = xo|—|*. Then
‘s cigp [l = 1) ==k
B= Dz [(F0) = fO) e = T ’
Ik /KX Xo(2) 0 (tf( )= /() {0 X ramified.
In summary, we have
A vol(f@ 1Oy s,
) = [ S+ [ fan @y (O T =
12 2 X ramified.

The two integrals converge absolutely to holomorphic functions on X. The func-
tional equation follows. n
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Definition 2.3.9. For a Hecke character y of K, we define the Hecke L-function
by
L(x) = [ L(xw)-
veV

Let S be the finite set of places v € V; for which Y, is ramified. Note that
L(s,x) = L(x|-|*) is a product of gamma factors and the Dirichlet series

1
Ly(s,x) = Ly(x|-]") =
d d vel\/_f[S 11— Xv<7rv)|7rv|f;

=>_ x(a)(Na)™,

where a runs through ideals of Ok prime to S and x(ITp%) denotes IT x.(m,)*.
This notation is justified by the fact that y,(m,) does not depend on the choice of
To-

L(x) converges absolutely to a holomorphic function without zeros for o(x) > 1.

Remark 2.3.10. We have seen in Theorem that for each connected component
of X(K)), L(xv) = ((fv, xv) for some f, € S(K,). Moreover, f, = 1o, for all but
finitely many v. Thus for each connected component of X, L(x) = ((f,x) with

f= Quev fo € S(AK)'
Example 2.3.11. We have

L(|-]") = Zk(s) = Tr(s)" T'c(s)Ck (),

where
1

(k(s)=|| ————— = Na)™®
is the Dedekind zeta function of K.

Example 2.3.12. Let x: (Z/NZ)* — C* be a Dirichlet character. There exists a
unique Hecke character yp: Ip/Q* — C* such that x1(pr) = x(p) for all p N, where
pr is the image of p under the embedding Q, — Ig. Note that for z € RZ, x ZX,
xi(x) = x(x(x)), where 7: Z* — (Z/NZ)* is the projection. Thus 1 = y;(—1) =
X1r(—1)x(—1), so that xyr = sgn®, where a = 0,1 satisfies x(—1) = (—1)®. Then

LOal-1*) = Als; x) = Tr(s + a) L(s, x),

where

L(s,x) = l;ll_lp)p_s = iX(”)”_S

X(

is the Dirichlet L-function. Here x is extended to a function x: Z/mZ — C where
m is the conductor of y and x(n) = 0 for n & (Z/mZ)*.

Corollary 2.3.13 (Hecke). Let K be a number field. The Hecke L-function L(x)
extends to a meromorphic function on the space of Hecke characters, holomorphic
except for simple poles at x = 1 and x = |-|, satisfying the functional equation
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where

e(x) = II e(xv)

veV

in a holomorphic function without zeros, €(x,) being defined in Theorem . In
particular, Zi(s) can be analytically continued to a meromorphic function on the
complex plane, holomorphic except for simple poles at s = 0 and s = 1, satisfying
the functional equation

Zx(s) = |Ax|Z ™ Zx(1 - 5).
Moreover, the residues of Zk(s) are —\/|Ak|vol at s =0 and vol at s = 1.

Note that €(x,) = 1 for all but finitely many v. It follows from the functional
equation that L() has no zeros for o(x) < 0.

Proof. Let f be as in Remark [2.3.10l The assertion on meromorphic continuation
follows from Theorem [2.3.8 The assertion on € is obvious. By Theorem [2.2.§]

L(x))e(xo) = C(for X))
Taking product and applying (2.3.1]), we get
L(x")e(x) = ¢(f,x") = ¢(f.x) = L(x).
For the residues, it suffices to note that f(0) = /|Ag| and f(0) = 1. O

Corollary 2.3.14. The Dedekind zeta function (x(s) extends to a meromorphic
function on the complex place, holomorphic except for a simple pole at s = 1 with

residue vol. Moreover (k(s) has a zero of order r =r;+19—1 at s = 0 with leading
term —hR/w.

Proof. Indeed, Tg(1) = Tc(1) = 1, ress—ol'r(s) = 2, res—ol'c(s) = 2. O

Corollary 2.3.15. Let x: (Z/NZ)* — C* be a primitive Dirichlet character of con-
ductor N > 1. Then A(s, x) extends to an entire function, satisfying the functional
equation

A(s, x) = ()" N7 (x)A(1 — s, %),
where

Tx)= > x(@e(z/N)

2€(Z/NZ)*

1s the Gauss sum.

Proof. We put N =I[,p". For p| N, we have x1, = x,|-[\, with x,(p) = 1, so that
Xx1p(p) = p~". Moreover, 1 = x1(p) = x1,(p) [gn/pm» Xq(p). Thus

el ) = @) '7(%) = (") T(Xp) | 1/1 Xqe(P)™,

where

0 = > X(@)elx/pp).

€ (Z/pP )



48 CHAPTER 2. TATE’S THESIS

Therefore,
s NanaT—s TT~— N
ebal®) = (—i)*N pr(pT)T(x )
For x € Z/NZ, we write z = ¥, 2 —ar Lp. Then
N 7
)= > x@e@/N)= > = xQ_-zp)ed x,/p")
z€(Z/NZ)* 2p€(Z/pP L) p"

= Z H Xp Je(zp/p"™) H Xp

zp€(Z/p"PL)* P

Class number formula

Let K be an abelian extension of Q. Let G = Gal(K/Q). In the next chapter, as
a consequence of class field theory, we will prove the Kronecker-Weber Theorem,
which says that K is contained in a cyclotomic field Q((y). Recall that we have an
isomorphism (Z/NZ)* ~ Gal(Q({yx)/Q) carrying a to (y + (%. Via this isomor-
phism, characters of the quotient G of Gal(Q((x)/Q) can be viewed as Dirichlet
characters.

Proposition 2.3.16. We have (x(s) = I1,cqa L(s, X)-

Proof. 1t suffices to show that for every rational p, we have

[T = p) =) =TT (1 = x(pp™),

plp xeG

where p runs through prime ideals of O above p.

The left-hand side is (1 — p~/*)9, where g is the number of primes above p and
f is the degree of the residue field extension.

Let N = p*m with p t m. Note that Q({,) is the maximal sub-extension of
Q(¢n)/Q in which p is unramified. Let Ky = K NQ((y,). Then Ky is the maximal
sub-extension of K/Q in which p is unramified. For x € G, we have x(p) # 0 if
and only if y is a Dirichlet character of modulo m, or equivalently, if it x factorizes
through Gy := Gal(K,/Q). Thus

[T —=xpr) = 11 0 =x(@)p~®).
XEG er‘B

The decomposition group D, < Gy is generated by the Frobenius o, which is the
image of p under the isomorphism (Z/mZ)* ~ Gal(Q({»)/Q). We have a short

exact sequence 0 — Go/D, — Gy — D, — 0. Since [Gy: D,] = g, each character of
D, lifts to g characters of Gy, so that we have

[T O =xp~) =TI (0 = x(op)p™)" = l;[(l —&p )Y =1 —p Y)Y,

where £ runs through the f-th roots of unity. m
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Corollary 2.3.17. We have

T1 T2
2" (2m)"2hR [T L.
w |AK| x€G
x#1
Proof. This follows from the proposition by taking residue at s = 1. Indeed, by
Corollary [2.3.14] the residue of (x(s) at s = 1 is the left hand side and the residue
of L(s,1) =((s) at s =11is 1. O

The value L(1, x) can be expressed explicitly.

Proposition 2.3.18. Let x: (Z/NZ)* — C* be a primitive Dirichlet character of
conductor N > 1. Then

— 5 Zac@nox X(a)log|l = ¢ x(=1) =1,

L(1,x) = { X

_NT&) Zfz\f:ﬁll X(a)a x(—1)=-1,
where
)= >, X))y
a€(Z/NZ)*

1s the Gauss sum.
Proof. For N 1 a, the sum

o) an co N ]%b oo N , 1 1

Py SP S T SPIL L R

converges (conditionally) to a homomorphic function on Re(s) > 0. We have

RO —il( Y ) 5@") — (03 M )L ).

S S S
a€(Z/NZ)* n=1 1 n=1"" \ae@/Nz)* n=1 T

Here we used the fact 3 ,¢z/nz) X(a)Ci = 0 for (n, N) > 1. Letting s — 1%, we get

o0 an

> xla) Y2 =1L, ).

a€(Z/NT)* n=1 "

Note that for 1 <a < N — 1, we have

00 an . . a 1
ngl g :_1Og<1_CN):_10g|1_CN|_7”(N_§)'

Thus

S N—1

_ _ N ) _

—t(X)L(L,x)= > x(a)logll — x|+ N > x(a)a.
a€(Z/NZ)* a=1

The first (resp. second) term of the right-hand side vanishes if y(—1) = —1 (resp.
x(=1) =1). O
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Chapter 3

Class field theory

3.1 Main statements

Theorem 3.1.1. Let F' be a local field of characteristic zero. Then E + Ng/p(E*)
induces a bijection from the set of isomorphism classes of finite abelian extensions
of F' to the set of open subgroups of F'* of finite indices. Moreover, for each E, we
have a canonical isomorphism

TE/F: Gal(E/F) :> FX/NE/F(EX)

Note that subgroups of F* of finite exponents are automatically open (exercise).
This fails however for local fields of positive characteristic.

Theorem 3.1.2. Let F' be a number field. Then E +— Ng;p(Ig)F*/F* induces
a bijection from the set of isomorphism classes of finite abelian extensions of F' to
the set of open subgroups of 1rp/F*. Moreover, for each E, we have a canonical
isomorphism

By the compactness of IL/F*, open subgroups of Ir/F* are of finite indices.
Equivalently, £ +— F* Ng,p(Ig) induces a bijection to the set of open subgroups of
I (of finite indices) containing F'*.

The local and global theories are compatible.

Absolute Galois groups

Let G be a Hausdorff topological group. The abelianization G** of G is the maximal
Hausdorff quotient group, or equivalently, the quotient of G by the closure of [G, G].
The profinite completion G of G is the limit lim G /H of finite discrete quotients of
G, where H runs through open subgroups of G of finite indices. For any field F' of
separable closure F', the abelianization of the absolute Galois group Gal(F/F) of
F can be identified with Gal(F*"/F), where F®" is the maximal abelian extension
of F.

Corollary 3.1.3. Let F be a local field of characteristic zero. Then we have a

canonical isomorphism -
Gal(F* /F) ~ Fx.

51



52 CHAPTER 3. CLASS FIELD THEORY

If F'is a finite extension of QQ,, we have split short exact sequences

1 Up Fx 2.7 0
1 Ur Fx 7 0.

Corollary 3.1.4. Let F' be a number field. Then we have a canonical isomorphism
Qal(F™ /F) ~ I,/ FX.

The profinite completion of C' = I/ F* can be identified with the quotient C'/ D,
where D denotes the identity component of C'.

Local class field theory

For Archimedean local fields, the statement is trivial. Indeed, the only nontrivial
extension in this case is C/R and Gal(C/R) ~ {£1} ~ R*/N¢/r(C*).

Let F' be a finite extension of Q,. We let kp denote the residue field of F'. Let
7 be a uniformizer of F. We have F'* = 7% x Up, where Up = OF.

For any integer f > 1, there exists an unramified extension E of F' of degree f,
unique up to isomorphisms. Recall that E is a cyclic extension of F'. Indeed, E is
the splitting field of the polynomial X 4% 1 over F , where g = #kp. The canonical
map Gal(E/F) — Gal(kg/kr) is an isomorphism and Gal(kg/kF) is a cyclic group
of order f generated by the Frobenius substitution x + z9". The corresponding
element of Gal(E/F) is also called the Frobenius substitution and denoted Frobg,p.
Note that 75 is also a uniformizer of E. Thus E* = 7% x Ug. Since Ng/r(Ug) = Up
(exercise), Ng/p(E*) = 7% % Up. Therefore, F*/Ng,p(E*) is a cyclic group of
order f generated by the image of 7z, which does not depend on the choice of 7.

More generally, for a finite extension E of F', Ng/p(E*) is an open subgroup of
F* (exercise) of finite index. We have a morphism of short exact sequences

1 Ug Ex .7 0

o | e

1 Ur 2.7 0.

where f = [kg : kp]. Indeed, vg(Ng/p(1g)) = d = [E : F], so that vp(Ng/p(1g)) =
f. By the snake lemma, we obtain a short exact sequence

1 — Ur/Ng/p(Ug) = F*/Ng/p(E*) ~5 Z/ fZ — 0.
If E/F is a Galois extension, we have a short exact sequence
1 —1— Gal(E/F) — Gal(kg/kr) — 1,

where [ is the inertia group.
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Theorem 3.1.5 (Reciprocity). There exists a unique way to define, for every finite
Galois extension E/F of local fields of characteristic zero, an isomorphism

TE/F: Gal(E/F)™ = — F*/Ng/p(E™),

satisfying the following properties.
(1) (Normalization) For E/F unramified and F' non-Archimedean, rg,p(Frobg/r) =
WFNE/F(EX ) .
(2) (Functoriality) For finite Galois extensions E/F and E'/F' and an embedding
7: E — E' such that 7(F) C F', the diagram

Gal(E')F')™ 2L Frx Ny o (E'¥)

| o

Gal(E/F)™ —2% F* /Ny p(EX)

commutes. Here the left vertical arrow is induced by the homomorphism Gal(E'/F') —

Gal(E/F) given by restriction by .
Notation 3.1.6. For x € F*, the norm residue symbol is defined to be

Example 3.1.7. The following three special cases of Property (2) above will be of
use.
(a) Assume that 7: E = FE’ is an isomorphism of local fields, and F' = 7(F).
Then the diagram

Gal(E/F)™ —2% F* [Ng)p(E*)
Gal(E’/F’)ab F’X/NE//F/(E )
commutes. Here the left vertical arrow is induced by the isomorphism
Gal(E/F) = Gal(E'/F') ow 1ot

(b) Case E = E', 7 = idg. Then Gal(E/F') C Gal(E/F) and the following
diagram commutes

Gal(E/F") 2L FrX [Np i (EX)

e

E/F

(c) Case where F' = F’ and 7 is an inclusion F C E’. Then the diagram

Gal(E'/F) —Z45 X IN gy p(E')

| |

TE/F

Gal(E/F)*™ —= F* /Np/p(E¥)
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commutes. Here the left vertical arrow is induced by the surjection Gal(E'/F) —
Gal(E/F) given by restriction, and the right vertical arrow is induced by idg.
The vertical arrows are surjections.

Proof of the uniqueness in Theorem[3.1.5 The Archimedean case is trivial. In the
non-Archimedean case, let 0 € G' = Gal(£/F). We want to show that rg/r(c[G, G])
is uniquely determined by (1) and (2). Let E’ be a finite unramified extension of F.
Then E'/F is a Galois extension and we have a morphism of short exact sequences
of groups

l— 1] ——=Gal(F'/F) — Gal(kg [krp) —1

| |
11— ——=Gal(E/F) —= Gal(kp/kp) — 1.

It follows that Gal(E'/F) ~ Gal(kg/kr) XGai(kp/kr) Gal(E/F). The order of the
image ¢ € Gal(kg/kr) of o divides the order m of . We may choose E’ so that there
exists a lifting ¢’ € Gal(kg/kp) of ¢ of order m. Then ¢’ = (¢',0) € Gal(E£'/F)
has order m, so that E’ is unramified over £ = {z € E' | ¢/(z) = 2}. By (2),
re/F(0]G, G]) = Npio' ) p (T o (07)), where 1, por (07) is determined by (1). O

Let F be a local field of characteristic zero. For a finite extension E/F, we let
Ng = Ng/p(E*) C F*. For an extension £’ of E such that E'/F is a finite abelian
extension, Nz 2 Ng. Theorem has the following consequence.

Corollary 3.1.8. Let E and E' be finite abelian extensions of F. Then
Nee = Ng NN
Recall that for Galois extensions K and K’ of F',
Gal(KK'/F) = Gal(K/F) Xgakni/ry Gal(K'/F).
Thus KK'/F is abelian if and only if K/F and K'/F are both abelian.

Proof. This follows from the above description of the Galois group as a fiber product
and the functoriality of reciprocity. More precisely, we have Nggp € Ng N Ng.
Conversely, for x € Ng N Ny, we want to show that its image © € F*/Ngg is
trivial. We have a commutative diagram

Gal(E/F)<— Gal(EE'/F) — Gal(E'/F)

TE/F\L: TEE’/F\LZ 7“E’/Fl:

FX/NE FX/NEE/ FX/NE/.

Let 0 = r5p (). Then the restriction og of o to E is the identity, because
rg/r(0g) = 1. Similarly, the restriction o of o to £ is the identity. It follows that
g = idEE/, so that z = 1. ]

Corollary 3.1.9. For E and E' as above, Ng O Ng/ if and only if E' is an extension
of E. Moreover, Ng = N/ if and only if E/F and E'/F are isomorphic.
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Proof. The “if” part if the first assertion is trivial. Conversely, Ny 2 Ng/ implies
Nggp = Ng N Ng: = Ng/, which implies [FE’ : F] = [E’ : F], which implies
EFE'" = E', which means that E’ is an extension of £. The second assertion follows

from the first one. O
Remark 3.1.10. For any finite extension E/F of finite extensions of Q,, if F'/F
is the maximal unramified sub-extension, then kp = kg, so that Nm = UpNg.

Indeed, we have N 2 UpNg, and both groups have index f = [kg : k| in F*.
Thus, by Corollary , a finite abelian extension E/F of finite extensions of

Q, is unramified if and only if N D Up. More generally, for E/F finite abelian, the

compatibility of 7g/r and 7, provides an isomorphism of short exact sequences

(3.1.1) 1 I Gal(E/F) Gal(ky /kp) —— 1

~ :iTE/F J{:

1 ——>Up/Ng/p(Up) — F* /Ng/p(E*) -~ 7] fZ

0,
where the vertical arrow on the right carries Frobenius to the class of 1.

Example 3.1.11 (Cyclotomic extensions of Q,). Let F' = Q,. Let m = p’n,
(p,n) = 1. We have Qp(¢m) = Qp(¢pa)Qp(Cn), s0 that N, ¢,y = Naycn) NN, a)-
Note that Q,({,«) is totally ramified of degree ¢(p?) over Q,, and NQP(Cg) = p%(1 +
p?Z,) for d > 1 (exercise). Moreover, Q,(¢,) is unramified of degree a over Q,,
where « is the order of p modulo n, so that Ng(,) = paZZ;. Note that every open
subgroup of Q) of finite index contains N, (,,) for some m. By Corollary [3.1.9} we
obtain the following.

Theorem 3.1.12. Every finite abelian extension of Q, is contained in Q,((y,) for
some m.

Corollary implies that the map E +— N is injective. The surjectivity can
be stated as follows.

Theorem 3.1.13 (Existence). Let F' be a local field of characteristic zero. Ev-
ery open subgroup of finite index of F* is of the form Ng for some finite abelian
extension E of F.

Corollary 3.1.14. For finite abelian extensions E and E' of F,
Nenp = NeNp.

Proof. Clearly Ngng 2 NgNg. By the existence theorem, there exists K such that
NeNg = Ng. Then K is an extension of ENE'. But Nxg DO Ng and Nxg 2 Ng, so
that F and E’ are extensions of K. Therefore, K ~ ENE’, so that Nx = Ngag. O

Remark 3.1.15. Taking limit in (3.1.1]), we obtain an isomorphism of short exact
sequences

(3.1.2) 1 —— Gal(F?* /) ——= Gal(F**/F) — Gal(kp/kp) — 1

|k

A

1 Ur Fx 7 0,
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where [ is the maximal unramified extension of F', and the vertical arrow on the
right carries Frobenius to 1.

Global class field theory
Let F' be a number field. Let E be a finite extension of F'. For any place v of F,

(3.1.3) F,®p E ~ ][ E..
wlv
We have

Trace and norm maps trg/p: £ — F, Ng/p: EX — F* induce via (3.1.4)) trg/p: Ap —
Ap, Ng/p: g — Ip, fitting into the commutative diagrams

EHAE .E>< HHE
tl”E/Fl ltrE/F NE/F\L J{NE/F
FHAF F* *>]IF,

where the horizontal arrows are diagonal embeddings. We have

(treyr(2)e = D tre,/p(Tw),  (Neg/p(2)y = [[ Newre, ().

wlv wlv

Note that Ng/r(Ig) 2 [, Uy, v running through finite places of F' unramified in F,
thus Ng/r(Ig) is an open subgroup of Ip. It follows that F*Ng/p(Ig) is an open
subgroup of I (of finite index) containing F*.

Let E be a finite Galois extension of I’ of group G. Then G acts on the set of
places w of E: |2|y@) := |0 ()|, Note that w|p = cw|p. Let v = w|p. The
decomposition group D(w/v) C G is by definition the stabilizer of w. We have
D(w/v) ~ Gal(E,/F,) and D(cw/v) = cD(w/v)oc~t. The isomorphisms
and are G-equivariant. On the right hand side, G acts as follows. For o € G,
(0%)gw = OwTy, where o, E, — E,,. Comparing G-invariants on both sides, we
see that G acts transitively on the set of places of E above v. If v is a finite place
unramified in F, then we have Frobg, ,r, € G, whose conjugacy class Frob, does
not depend on w.

Let E be a finite Galois extension of F'. For a place v of F' and a place w of E
above v, the homomorphism

s Gal(E,/F,)™ — Gal(E/F)™

(3.1.5) FY = F) [Ng,r, (Ef) S22

does not depend on the choice of w. Moreover, if v is a finite place unramified in
E/F and x, € Up,, its image in Gal(E/F) is trivial. We thus obtain a continuous
homomorphism

(3.1.6) Ir — Gal(E/F)™,

trivial on N, p(Ig), such that the composition with the inclusion F) — I is (3.1.5).
We let (z, E/F) denote the image of x under (3.1.6) and we call it the norm residue
symbol.
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Theorem 3.1.16 (Artin reciprocity). Let E/F be a finite Galois extension of num-
ber fields. The homomorphism (3.1.6)) is trivial on F* and induces an isomorphism

Ip/F*Ng/p(lp) = Gal(E/F)™.

Remark 3.1.17. (1) It follows from the functoriality of local reciprocity that
Artin reciprocity also satisfies functoriality.
(2) Note that the map is uniquely determined by the fact that it is a
continuous homomorphism trivial on F* and U,, and sending 7, to the image
of Frob,, for all (or all but finitely many) unramified finite places v of F.

For a finite extension E of F', we write Ny = F* Ng/p(Ig). Corollary holds
with the same proof. More precisely, for E/F and E'/F abelian, Npg = Ng NN,
so that E’ is an extension of F if and only if N O Ng. In particular, F/F and
E'/F are isomorphic if and only if Nz = Ng.

Remark 3.1.18. For E/F abelian, the map Gal(E,/F,) — Gal(E/F) is injec-
tive. In this case, the first assertion of Theorem can be stated as follows:
for x € F*, [1,(z, Ey/F,) = 1, where v runs through all places of v. Moreover,
this implies, for every place v of F, the injectivity of the map F;/Ng, r, (Ey) —
Ip/F*Ng/p(Ig). In other words,

FYNF*Ngp(lg) = Ng,/r,(Ey).
It follows that a finite place v of F' is unramified in F if and only if Nz D Up,.

Theorem 3.1.19 (Existence). Let F' be a number field. Every open subgroup of Ip
(of finite index) containing F* is of the form Ng for some finite abelian extension
E of F.

E is called the class field of N.
Corollary [3.1.14] holds with the same proof. More precisely, for finite abelian
extensions E/F and E'/F, we have Ngng = NpNg.

Ideal-theoretic formulation

We can reformulate global class field theory in terms of ideals via the isomorphism
. Let F' be a number field and let E be a finite Galois extension of F'. Let m
be a modulus for F' such that v is unramified in E for every finite place satisfying
m(v) = 0. We consider the homomorphism

(3.1.7) Ir(m) — Gal(E/F)*

carrying p, for m(v) = 0 to the image of Frob,,,, for a place w of E above v. We
let (ET/‘F) denote the image of a under this homomorphism and we call it the Artin

symbol. We let Zg(m) C Zg denote the subgroup of fractional ideals generated by
p., such that m(w|p) = 0. The homomorphism ({3.1.7)) is trivial on Ng/p(Zg(m)).
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Theorem 3.1.20 (Artin reciprocity). Let E/F be a finite Galois extension of num-
ber fields. There exists a modulus m for F' such that v is unramified in E for every
finite place satisfying m(v) = 0, and such that (3.1.7)) is trivial on Prp(m) and in-

duces an isomorphism
Zr(m)/Pr(m)Ng/p(Zp(m)) = Gal(E/F)™.

Proof. Note that for m = (a,(m,),), we may equip E with the modulus m' =
(aOg, (My)|p )w)- Since the isomorphism (1.5.1)) is compatible with Ng,p, we have

The open subgroup Ng,r(Ig) of Ip contains Ug,,, for m big enough, and we conclude
by Theorem (3.1.16 O

Definition 3.1.21. Let m be a modulus for F'. The ray class field of F' modulo m,
denoted by F™, is the class field of F*Up,,. The Hilbert class field Hp is the ray
class field modulo m = (Op,0) (in other words, m constant of value 0).

Artin reciprocity provides isomorphisms
Clp(m) = Gal(F™/F), Clp = Gal(Hp/F).

Recall that Up,, = [T, U™, where U®) = F* for v Archimedean, U) = RZ,
for v real, U(Y) = U, for v finite, and U™ = 1 + 77O, for v finite and n > 1. For
m < m' (namely m, < m] for all places v of F'), Up; 2 Uppy, so that F ™ s an
extension of F™.

Theorem 3.1.22. FEvery finite abelian extension E of F' is contained in a ray class
field F™. Moreover, there exists a smallest modulus § for F' such that E is contained
in F7.

Proof. Indeed, E is contained in F™ if and only if Ug,, C Ng. The first assertion
then follows from the fact that every open subgroup of Iy contains Up,, for some
m. The second assertion is obvious, with f, being the least integer n such that

U C Np. O

Definition 3.1.23. Let E/F be a finite abelian extension. The smallest modulus f
such that E is contained in F7 is called the conductor of E/F.

For E/F finite abelian, the conclusion of Theorem [3.1.20| holds for every m > f.
By Remark [3.1.18] we have the following.
Proposition 3.1.24. Let E/F be a finite abelian extension of conductor §. Then
for every place v of F', §, is the least integer n such that Uz(;,j) C Ng,/r,(E}), where
w is a place of E above v. In particular, v ramifies in E if and only if §, > 0.

For Archimedean places, we use the convention that C is ramified over R. For a
real place v of F, §, = 0 if and only if v splits in w.
One can show that the finite part of f(£/F) divides the discriminant d(E/F).
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Corollary 3.1.25. The Hilbert class field Hr is the maximal unramified abelian
extension of F.

The proof of the following theorem uses transfer, and will be given later.
Theorem 3.1.26 (Principal ideal). For every ideal a of Op, aOpy,. is principal.

Remark 3.1.27. Let m be a modulus for F. By the above, a place v of F' is
ramified in £ if and only if m, > 0. Now let v be a finite place with m, = 0, hence
unramified. By Artin reciprocity, the degree f(w/v) of the residue field extension
of a place w of F™ above v equals the order of p, in the ray class group Clg(m). In
particular, p, splits in £ if and only if p, € Pr(m).

We note that §f(F™/F) < m. Equality does not always hold, because it may
happen that F™ = F™ for m < m/, as shown by the following.

Example 3.1.28. Let F' = Q and let n > 1 be an integer. We consider the modulus
m = ((n),1) for Q. We have Ny,) 2 Q*Ugm, where Ugm = R [Ty Z)f Tpjn (1 +
pr™Z,). Thus Q((,) € Q™. Since Gal(Q(¢,)/Q) ~ (Z/nZ)* =~ Clg(m), we get
Q™ = Q(¢,). Note that Q = Q(¢1) = Q(&).

Since any modulus is of the form ((n),0) or ((n), 1), Theorem [3.1.22]in this case

takes the following form.

Theorem 3.1.29 (Kronecker-Weber). Every finite abelian extension of Q is con-
tained in Q((,) for some n.

The problem of explicit construction of abelian extensions of number fields is
known as Kronecker’s Jugendtraum or Hilbert’s 12th problem. The theory of com-
plex multiplication solves this for imaginary quadratic fields and more generally CM
fields. The problem for more general number fields remains open.

Let us give a direct proof of the Kronecker-Weber theorem for quadratic fields.

Proposition 3.1.30. Let m # 0,1 be a square-free integer and let n = |A|, where
A is the discriminant of Q(y/m). Then Q(yv/m) C Q((,)-

Recall
A {m m=1 mod 4

4dm m=2,3 mod 4.

Proof. We write A = 2"m’ with m’ odd. We define a primitive Dirichlet char-
acter x: (Z/nZ)* — {£1} by x(a) = x2(a) [pmw (1%) (note that any primitive
Dirichlet character of order 2 has this form), where p runs through odd primes
and xo: (Z/2"Z)* — {£1} is a primitive Dirichlet character defined as follows. For
m =1 mod 4, we have r = 0 and Y is trivial. For m = 3 mod 4, we have r = 2
and y, is the unique isomorphism 0: (Z/4Z)* = {+1}. We have 6(a) = (—1)"z .
For m even, we have r = 3 and we take

(a) 1 a=1,1—m mod38
a =
X2 —1 otherwise.
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In all cases xo(—1) = 0(m’), so that x(—=1) = xa(=1) [T (%) = 0(m') [T 0(p) =
o(m'|m’|) = sgn(m). Consider the Gauss sum G(x) = >,ez/mz)x X(a)¢;. Since
n=G(x)G(x) = x(=1)G(x)?, we have G(x)?> = m or 4m. Thus

Q(vm) = Q(G(x) € Q(¢n)-

The character x in the proof is determined by the commutative diagram

(Z/nZ)* —— Gal(Q(¢.)/Q)

| i

{1} —— Gal(Q(vm)/Q),

where the upper horizontal arrow carries a to o, defined by 0,(¢,) = (¢ and the
vertical arrow on the right is the restriction. Recall that the simple case where n is
prime implies quadratic reciprocity.

Theorem 3.1.31 (Quadratic reciprocity). Let p and q be distinct odd primes. Then
(B0 ==

Proof. Take m = p* = (—1)7)7_1]) =1 (mod 4), so that n = p. Then (%) =1 <
p* has a square root in Q, <= ¢ splits in Q(\/p*) <= the restriction oy|q/m)

(which is the Frobenius element at ¢) is trivial <= x(q) =1 <~ (1%) =1. O

Remark 3.1.32. The character x(a) in the proof of Proposition [3.1.30| can be
identified with the Kronecker symbol (%) Indeed, x is the unique primitive Dirichlet
character (Z/nZ)* — C* such that x(—1) = sgn(m).

3.2 The power reciprocity law

First cohomology of groups

Let G be a group. By a (left) G-module, we mean an abelian group equipped with
a (left) G-action, or equivalently, a (left) Z[G]-module. The functor carrying an
abelian group A to A equipped with trivial G-action admits a right adjoint (—)¢ and
a left adjoint (—)g, which can be described as follows. For a G-module M, M€ is the
maximal G-invariant subgroup of M, which is the set of G-invariant elements of M.
Moreover, M is the group of G-coinvariants of M, namely the maximal G-invariant
quotient group of M. Note that Mg = M/IgM, where I = Ker(Z[G] — Z) (the
map given - cq g9 — > ay) is the augmentation ideal. In other words, Mg is the
cokernel of the map

(3.2.1) P MM (mg)gear Y, gmg—my.

geG geG
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Definition 3.2.1. A crossed homomorphism is a map f: G — M such that f(gh) =
f(g) +gf(h) for all g,h € G. For m € M, let d°(m): G — M be the g — gm — m,
which is clearly a crossed homomorphism. Indeed, ghm—m = (gm—m)+g(hm—m).
A crossed homomorphism of the form d°(m) for some m € M is called a principal
crossed homomorphism. We let Z'(G, M) and B*(G, M) denote the abelian groups
of crossed homomorphisms and principal crossed homomorphisms, respectively. We
define the first cohomology of G with coefficients in M to be

HY(G,M)=ZG,M)/B*(G,M).
Note that M“ and H'(G, M) are cohomology groups of the sequence
0— M % Map(G, M) % Map(G2, M),
where d'(f): (g,h) — f(g9) + gf(h) — f(gh). Indeed, we have M = Ker(d’), and
HY(G, M) = Ker(d")/Im(d°), with Ker(d') = Z'(G, M), Im(d°) = B(G, M).
The functor H'(G, —) commutes with arbitrary products. If G is a finite group,

H'(G, —) also commutes with filtered colimits.

Proposition 3.2.2. Let 0 - M’ — M — M"” — 0 be a short exact sequence of
G-modules. Then we have exact sequences

M{ — Mg — M} — 0,
0— MY — MY — M~ H(G,M'") - H (G, M) = H' (G, M").

Proof. The first exact sequence follows from snake lemma applied to the diagram

00— By M —= Byee M —= Bye M —0

i | |

0 M’ M M" 0

with exact rows, where the vertical arrows are (3.2.1). Applying the snake lemma
to a similar diagram with vertical arrows given by d*, we obtain a diagram

0 M’ M M 0

J

0——= ZYG, M) —= ZY(G, M) —= Z}(G, M")

with exact rows. Applying the snake lemma to the diagram, we obtain the long
exact sequence. OJ

Example 3.2.3. If M is a trivial G-module, then B(G, M) =0 and H'(G, M) =
ZYG, M) = Hom(G, M) = Hom(G?", M).

Theorem 3.2.4. Let E/F be a finite Galois extension of arbitrary fields of Galois
group G. Then H'(G,E*) = 1.
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Kummer theory

Let F be a field and let E be a finite Galois extension of F' of group G. Let n > 1
and let p, g be the group of n-th roots of unity in £. We have a G-equivariant short
exact sequence

1—>un,E—>EXﬂ>EX”—>1,

which induces the long exact sequence
1= pir — F* 2 B X H(G, ) — HY(G,E) = 1.

We get an isomorphism E*" N F*/F*" = HY(G, p, ) carrying the class of 2" to
the class of g — gz /x. Assume now that p, g = p,r. Then G acts trivially on
pin., S0 that HY(G, . ) = Hom(G, . ).

Theorem 3.2.5 (Kummer). Let n > 1 be an integer and let F' be a field containing
n distinct n-th roots of unity. Then we have a bijection from the set of isomorphism
classes of finite abelian extensions of F' of exponent dividing n, to the set of subgroups
of F* containing F*™ as a subgroup of finite index, carrying E to E*"™ N F*, with
inverse carrying A to F(\VK) If A is the image of E under the above bijection,
then the pairing Gal(E/F) x AJF*™ — p, carrying (g,7) to g3/y/ /y is perfect and
[E: F]=[A: F*"].

Proof. The second assertion follows from the computation preceding the theorem
and (Pontryagin) duality of finite abelian groups of exponent n.

Let F*™ < A < F* such that [A : F*"] < oo. It is easy to check that
Ex = F(/A) is a finite abelian extension of F' of exponent dividing n. Taking a
composition series, we see that [Ea : F| < [A: F*"]. Wehave Ap, = EX"NF* 2D A
and [Ag, : F*"] = [Ea : F] < [A : F*"], which implies that Ag, = A and
[Ea: F| =[A: F*.

Let E be a finite abelian extensions of F' of exponent dividing n and Ag
EX" N F*. We have En, = F({/Ap) CE and [Ea, : F| = [Ap : FX"| = [E: F
which implies that Ea, = E.

=

We can remove the finiteness assumptions by passing to limits.

Corollary 3.2.6. We have a bijection from the set of isomorphism classes of abelian
extensions of F' of exponent dividing n to the set of subgroups of F'* containing F*",
carrying E to EX" N F*, with inverse carrying A to F({L/Z) If A is the image of
E under the above bijection, then the pairing Gal(E/F) x AJF*™ — u, carrying
(9.9) to g3/y/ /y identifies Gal(E/F) with the Pontryagin dual of the discrete group
AJF*™,

Corollary 3.2.7. If E— A and E' — A’ under the bijection above, then ENE' +—
ANA" and EE — AA'.

Proof. The first assertion is trivial. The second assertion follows from the construc-
tion of the inverse of the bijection. m
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Hilbert symbol

Let F' be a local field of characteristic zero containing all n-th roots of unity. Let
E = F(VF*) be the maximal abelian extension of F' of exponent dividing n. Since
F*™ has finite index in F'*, E/F is a finite extension.

Proposition 3.2.8. We have Ng/pE* = F*".

Proof. Let Ng = Ng/pE*. By reciprocity F* /Ny ~ Gal(E/F') has exponent n, so
that Nz O F*™. Moreover, [F* : Ng] = [E : F] = [F* : F*"] by Kummer theory.
Therefore, N = F*", O

Via reciprocity F*/F*™ = Gal(E/F), the pairing in Kummer theory takes the
following form.
Definition 3.2.9 (Hilbert symbol). The n-th Hilbert symbol over F' is the perfect
pairing
FX/FXTLXFX/Fxn—)ILLn
given by (x,y)/y = (x, E/F) /y, where (z, E/F) € Gal(E/F) is the norm residue
symbol.

By the functoriality of norm residue symbol, we have

(z,9) ¢y = (z, F(3/y)/ F) /Y.
Note that (z,y) determines (x, F'(3/y)/F). Thus (z,y) = 1 if and only if z €

Nr () r(F(/9))-
By definition, Hilbert symbol is bimultiplicative: (zz',y) = (z,y)(z',y) and

(z,yy') = (z,y)(z,y).
Proposition 3.2.10. (1) Fory € F* and z € F such that z" —y # 0, we have
(z" —y,y) = 1. In particular, (1 —y,y) =1 (ify #1) and (—y,y) = 1.
(2) (skew-symmetry) For x,y € F*, we have (z,y) = (y,z)~".

Proof. (1) The conjugates of {/y over F are (Y ¢/y for some m | n. Thus

n—1 m—1
2 —y=[(z =G = Necygyr 11 (2 = G /W),
=0 =0

so that (2™ —y,y) = 1 by definition. The second assertion follows immediately z = 0
and z = 1.
(2) By (1), we have

(z, )y, ) = (x,9)(y,2)(~z,2)(~y,y) = (—vy, 2)(~2y,y) = (—vy, 7y) = L.
0

For F = C we have (z,y) = 1.

For F' = R, the assumption that R contains all n-th roots of unity implies
that n = 1 orn = 2. If n — 1, we have (z,y) = 1. If n = 2, we have (z,y) =
max{sgn(z), sgn(y)}.

Assume that F' is non-Archimedean of residue field F, of characteristic p { n.
Note that F is a cyclic group of order ¢ — 1 and p, r, is a subgroup of order n. We

have p, = fin,r — fnF,-
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Definition 3.2.11 (n-th power residue symbol). For x € Ug, we let (%) € Unp

denote the n-th root of unity congruent to 2(9~5/" modulo the maximal ideal py of

Or.
Note that (%) =1 if and only if z is an n-th power modulo pp.

Proposition 3.2.12. For x,y € F'*, we have
_ (=g
(:U,y) - ( F )

where i = vp(z) and j = vp(y).

Proof. Since both sides are bimultiplicative, we are reduced to two cases: (a) z € Up
ory € Up; (b) x = m, y = —7 for some uniformizer 7. Case (b) is trivial. For
case (a), since both sides are skew-symmetric, we may assume that y € Up. The
extension F({/y)/F is unramified by Hensel’s lemma. Then (z, F({/y)/F) = Frob'.

Since Frob(/y)/ vy = /Y ' = (%) mod pr, we have Frob({/y)//y = (%), SO
that (z,y) = (z, F(y/5)/F) v/ 5 = (%)- O

Corollary 3.2.13. Let w be a uniformizer. Then for all y € Up, we have (mw,y) =
(#)
Z).

Notation 3.2.14. We define (5) for z,y € F* satisfying v € Up or y € Uyp as
follows. For x € Up, we put (g) = (%)UF(y). For y € Up, we put (7) =1.

y

Corollary 3.2.15. For z,y € F* satisfying x € Up ory € Up, we have (x,y) =
—1

z y

) @)
The determination of the Hilbert symbol for p | n is more subtle. We consider

the special case F' = Q; and n = 2, which will be used to deduce Gauss’s quadratic
reciprocity from the product formula (Corollary 3.2.20| below).

Proposition 3.2.16. Let F = Q, and n = 2. Then for x,y € 1 + 27y, we have

z—1y—1 z2-1

(:v,y) = (_1) 27, (5572) = (2,1‘) = <_1) 5, (272) =1

We adopt the convention that (—1)* = 1 for a € 2Zy and (—1)* = —1 for
a €1+ 2Zs,.

Proof. Note that (1 + 2Z5)* = 1+ 8Z,, and 1 + 2Z,/1 + 8Z, is generated by —1
and 5. For z € QF, (2,—1) = 1 if and only if 2 is a norm for Qy(1/—1)/Qy, or
in other words, z = a® 4+ b* for a,b € Q3. We have 2 =1+ 1 and 5 = 1 + 22, so
that (2,—1) = (5,—1) = 1. It follows that (—1,—1) = —1; otherwise (z,—1) =1
for all z, which would imply —1 € (Q3)?. Moreover (2,2) = (5,5) = 1. Finally
(2,5) = —1; otherwise (2, z) = 1 for all z, which would imply 2 € (Q3 ). O
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The power reciprocity law

Let F' be a number field containing all n-th roots of unity.

Theorem 3.2.17. For x,y € F*, we have [[,(z,y), = 1, where v runs through all
places of F.

Note that for all but finitely many places v, we have x,y € U, so that (z,y), = 1.
Proof. This follows immediately from Artin reciprocity [1,(z, F,(/y)/F,) = 1. O

Notation 3.2.18. Let y € F'* be prime to n and let z € F'* be prime to y. We

write
- 100"
Y vev-s \Y/y  vev_g \V ’

v(z)=0
where S denotes the set of places that are either Archimedean or dividing n.

Note that (£) = (%) for all u € OF.
Applying the theorem and Corollary [3.2.15] we get the following.

Corollary 3.2.19. Let y € F* be prime to n. For x € F* prime to y and n, we

have (:;) (z) B _ vgg(:c, Y)o-

For x € F* which is a unit outside S, we have

<x> = 1 v)..

Y vES

For ' = Q and n = 2, the above notation extends the Jacobi symbol. Applying
the corollary and Proposition [3.2.16] we obtain Gauss’s quadratic reciprocity.

Corollary 3.2.20. Let F' = Q and n = 2. Let x and y be relatively prime odd
integers. Then

()(2) = mxtsemo)smtn}-0= 07 (2) = 0

Yy X

Remark 3.2.21. The Hilbert symbol can be interpreted as a cup product. Let F'
be a field of characteristic not dividing n. We have F*/F*" = H'(Gp, jin), where
Gr = Gal(F/F). Cup product provides a bimultiplicative map

F*/F*™" x F*|F*" — H*(Gp, u2?)

called the Galois symbol, satisfying the Steinberg identity (z,1 — z) = 1 for = #
0,1. (Recall that Ky(F) can be defined as the quotient F'* ® F* by the subgroup
generated by x ® (1 — z), z # 0,1. The Galois symbol induces a homomorphism
Ko(F)/nKy(F) — H*(Gp, p£?), which is in fact an isomorphism by the Merkurjev-
Suslin Theorem.)
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For any field K of separable closure K*P, the Brauer group Brx = H*(Gf, (K5P)*)
is defined. We have Brp[n] = H?(GFp, ). If F contains pu,, then H?(Gp, u2?) ~
tn, @ Bre[n]. If F is a local field containing p,,, then the Hilbert symbol is the Galois
symbol composed with the injection p, ® Brp — u, ® Q/Z ~ u, induced by inv
(see below).

Remark 3.2.22. For any non-Archimedean local field K, Hasse invariant provides
an isomorphism inv: Brg = Q/Z. Morcover, we have inv: Brg = 1Z/Z and
inv: Bre = 0. For a global field K, the Brauer group fits into a short exact sequence

0 — Brg — @D Brg, DN /A

The fact that the composition of the two nontrivial arrows above is zero implies the
product formula of Hilbert symbols.

The norm residue symbol can also be interpreted as a cup product. For any local
field K, the cup product

K* x H¥Gg,Z) — H*(Gg, (K*?)*) = Brg % Q/Z

carries (a, x) to x((a, K**?/K)). Here we used the isomorphism Hom(Gg,Q/Z) =
HY (Gk,Q/Z) = H*(Gk,Z). A similar interpretation holds for global fields K,
after replacing K* by Ix/K*.

3.3 The first inequality

Let ' be a number field, and let Sg be the set of maximal ideals of Op.

Definition 3.3.1. Let S C Sr be a subset. The arithmetic density (or natural
density) of § is the limit

oy FRES|Np< X}
X—oo #{p € Sp | Np < X}

if the limit exists. The analytic density of a subset is the limit

ZpeS(Np)_s

0(S) = lim —/4————
( ) s—1t ZpeSF(Np)is

if the limit exists.

The sums in the definition of analytic density converges, since >,cs,.(Np)~*
converges absolutely for Re(s) > 1.

Remark 3.3.2. One can show that if S has arithmetic density d, then it has analytic
density 6. However, the set of rational primes whose first decimal digit is 1 has
analytic density log,,(2) but no arithmetic density.

We will only use analytic density. The results of this section also holds for
arithmetic density, but additional arguments are needed to prove this.
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Remark 3.3.3. (1) If S = S'[1S”, then 6(S) = §(S") +0(S”) (if two of the three
exist then so does the third one).

(2) TS C S CS” and 6(S) =0(S”) =6, then §(S') = 0.
Proposition 3.3.4. We have Y s, (Np)~* =log(-) + O(1) as s — 1T.
Proof. For Re(s) > 1

log Cr (s Z Z

PESE 7‘L>1

Since (r(s) has a simple pole at s = 1, it suffices to show that

DI

peSpn>2 1t
converges absolutely in a neighborhood of s = 1. Indeed, for ¢ > %
> Z (Np)™ <2 ) Z p) 2" =log (#(20) < o0,
peSpn>2 T pESF m>1
where we have set n = 2m and n = 2m + 1. O
Corollary 3.3.5. A finite subset of Sp has analytic density zero.

Proposition 3.3.6. Let S be the set of maximal ideals of F' whose norms are not
primes. Then S has analytic density zero.

Proof. Let d = [F' : Q. For each rational prime p, there are at most d maximal
ideals of F' above p. Thus, for ¢ > 1/2,

Y (Np)™7<d) p ™ <oo

peS

]

Theorem 3.3.7. Let E/F be a finite Galois extension of number fields of degree d.
Let S be the set of maximal ideals of F' that split in E. Then 6(S) = 1/d.

Proof. Let T be the set of maximal ideals q of Sg such that qN F € S. Then
Yqer(Na) ™ = dXpes(Ng)~°. It thus suffices to show that d(7) = 1. Note that
Sg—T C T'UT", where T is the set of maximal ideals of £ whose norms are
not primes, and 7" is the finite set of maximal ideals of E, ramified over F. Since

5(T") = 8(T") =0, 6(T) = L. O

Corollary 3.3.8. Let E/F be a finite Galois extension of number fields and let
S C Sr be a finite set of maximal ideals containing all the ramified maximal ideals.

Then the Artin homomorphism (3.1.7))
Tp — Gal(E/F)*

is surjective. Here Ty denotes the group of fractional ideals of F' generated by maz-
imal ideals not in S.
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Proof. Let G = Gal(E/F) and let H C G be the pullback of the image of the
Artin homomorphism. For any prime p € Sp — S, the conjugacy class of Frobg, is
contained in H, so that Frob) )/, = 1, hence p splits in EH. Here q € Sg is a
lifting of p. Therefore [EblfiF} =§(Sp—S)=1,sothat ¥ = F, H =G. m
Theorem 3.3.9 (The first inequality). Let E/F be a finite Galois extension of
number fields. Then

(33.1) #(Lp/F* Niyp(Ip)) < #Gal(E/F).

Historically this inequality was proven earlier than the second inequality, using
analytic methods as in these notes. However, it is possible to deduce (or
more precisely that the left-hand side divides the right-hand side) from the second
inequality without analytic methods. For this reason, some authors, notably Artin

and Tate |AT], call (3.3.1]) the second inequality.

Proof. Let H =1p/F*Ng/p(lg). A character x: H — C* induces a Hecke charac-
ter on F', that we still denote by x. For Re(s) > 1, we have

logLi(s) = 3 3 Sx(my)"(Np) ™

peSp—Syn>1 1

where S, is the set of maximal ideals of Op such that x, is ramified. As before,
D peSp—S, 2on>2 Lx(my) (Np)™"* converges absolutely for Re(s) > 1/2. By the mero-
morphic continuation of L¢(s, x), we have

(3.3.2) > X(m)(Np) = —a, log
peESF—S

S_1+O(1)

as s — 17. Here S is the set of maximal ideals of O ramified in £ and «, is the
order of L¢(s,x) at s = 1. We have a; = —1 and «,, > 0 for x # 1. Summing over
all y, we get
. 1
#HY (Np)™>=(1-3 ay) logs_il +0(1),
peT x#1

where T C Sp — S is the set of maximal ideals p such that 7, € F*Ng,p(Ig). Note
that every maximal ideal of Op split in E belongs to 7. Thus, by Theorem [3.3.7]

1 1
<HT)=—=(1-> a,).
[E: F] 4H );1 x
It follows that o, = 0 for all x # 1 and #H < [E : F]. O

Remark 3.3.10. The proof shows that L¢(x,1) # 0 for x # 1. In fact, this holds
more generally for every unitary Hecke character x: Ip/F* — C* |RV, Theorem
7.28).

Theorem [3.3.7 has the following generalization.
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Theorem 3.3.11 (Chebotarev’s density). Let E/F be a finite Galois extension of
number fields of group G. Let C C G be a conjugacy class. Then the set S of
mazimal ideals p of Op, unramified in E, such that Frobg, € C, where q is a
maximal ideal of O above p, has analytic density #C'/#G.

For F = Qand E = Q((n), we have an isomorphism Gal(Q(¢,,)/Q) = (Z/mZ)*
carrying the automorphism defined by ¢, > (', to the class of i. Moreover, a prime p
ramifies in Q((y,) if and only if p | m/(2, m), and for p { m, the image of Frob, g(c,.)/0
in (Z/mZ)* is the class of p. Chebotarev’s density theorem thus takes the followmg
form.

Corollary 3.3.12 (Dirichlet’s density theorem). For (n,m) = 1, the set of primes
congruent to n modulo m has analytic density 1/¢(m).

Proof of Chebotarev’s theorem, assuming Artin reciprocity for cyclic extensions. Let
o € C and let K = E“). We assume the existence of a bijection

H =I5 /K* Npx(Ip) = Gal(E/K) ~ (o),

carrying the class of m, to Frobg i/ for all but finitely many maximal ideals p of K.
A character x of (o) induces a character xyy of H.

Let 8’ C Sk be the set of maximal ideals p’ such that p’ N OF is unramified in £
and Froby g/p = 0. We have

#o) D (Np) = > > x(o) " x(Froby ) (Np')~*

p'esS’ p'eSK—S X

=2 x(0) >0 xu(m)(N') ™ + O(1) = log(~

p/GSKfS

o)
as s — 11 by the proof of Theorem Here S C Sk denotes the set of maximal
ideals p’ such that p’NOp is ramified in £, and x runs through characters (o) — C*.

Let T C Sg be the set of maximal ideals q such that p = q N OF is unramified
in £ and Froby, = 0. The map 7 — &', q — p’ = qN Ok is a bijection. Indeed,
D(q/y') = (o) = Gal(E/K). The map T — S, q — p = q N Op is surjective. For
7 € G, Frob,q, = 7Froby,,7~! = 7077, so that 7q € T if and only if 7 belongs
to the centralizer Centg (o). Moreover, 7q = q if and only if 7 € D(q/p) = (o).
Therefore, the fibers of the map 7 — S have cardinality #Centg(0)/#(o). Since

f(a/p) = f(q/p") = #(o), we have

#(o) 1 5 1
';S(Np) ~ #Centg(0) pgg,(Np ) #Centg( ) log s—1 +O(1).
Therefore, §(S) = 1/#Centg(0) = #C/#G. O

3.4 Cohomology of groups

Induced modules

Let ¢: H — G be group homomorphism. For a G-module A4, we let res% A denote
the underlying H-module. The functor res$ admits a left adjoint indfl and a right
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adjoint coindfl, which can be described as follows. For an H-module B, we have
coind$; B = Homy (Z[G], B), ind%B = Z[G) @z B,

with the G-module structure given respectively by right and left multiplication. Note
that coind% B can be identified with the set of maps f: G — B such that f(hg) =
hf(g) for all h € H, with the G-module structure given by (¢f)(¢') = f(¢'g). The
adjunctions

Homgm (resfy A, B) =~ Homyzjq (A, coind% B),

Homyp (B, res§ A) ~ Homyg (ind% B, A)
are called Frobenius reciprocity. From the sequence H — G — {1}, we get
B ~ (coind$B)Y, By ~ (ind$B)g.

If H is a subgroup of G, then coind$ is an exact functor (with exact left adjoint),
so that

(3.4.1) HY(G,coindGB) ~ H'(H, B).
This holds for all H", and is known as Shapiro’s lemma. The map (3.4.1) is the

composition
HY(G,coind$ B) — H'(H,resGcoind% B) — H'(H, B),

where the second map is induced by adjunction. The restriction map res: H'(G, A) —
HY(H,res%A) can be identified with the map induced by the adjunction map A —
coindresG A composed with the (3.4.1)).

Lemma 3.4.1. Assume H has finite index in G, then the homomorphism of G-
modules «: inng — Coinng carrying g @ b to

'gb ¢ € gH
PN 990 g 9‘
0 otherwise

is an isomorphism.

Proof. The inverse is given by 3(f) = Y ,cq/m 9 ® f(g7"), where g runs through a
set of representatives of G/H. O

The map cor: H'(H, A) — H'(G, A) induced by the adjunction map ind%res@ A —
A, B, and the inverse of ([3.4.1)) is called the corestriction map. The composite

A — coindGresG A % indSres% A — A
is multiplication by [G : H]. It follows that the composite
HY (G, A) ™= HY(H,res§A) <5 HY(G, A)

is multiplication by [G : H]. Taking H = {1}, we see that H'(G, A) is killed by
#G.
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Example 3.4.2. Let H be a subgroup of G. Then ind$Z = Z[G//H]. Here H acts
trivially on Z and G acts on Z[G/H]| by left multiplication.

Example 3.4.3. Let E/F be a finite Galois extension of arbitrary fields of group
G. By the normal basis theorem, there exists © € E such that £ = @yecqg(z)F. In
other words, E ~ ind{},F. Therefore, H'(G,E) ~ H'({1},F) = 1.

Example 3.4.4. Let E/F be a finite Galois extension of number fields of group G.
Let v be a place of E and let wy be a place of E above v. Let D = D(wg/v) C G be
the decomposition group. Then [, £ =~ indgEgo and, if v is ultrametric, then
[ujo Uw = indGU,,.

Proposition 3.4.5. Let E/F be a finite Galois extension of number fields of group G.
Then 1S =1 and HY(G,1g) = 1.

Proof. The first assertion follows from the example above. For a finite set of places
S of F' containing the set S,, of Archimedean places, we let Sg denote the set
of places above E, and we write Ips = Igs, = [lyes, Fy X [lwgs, Us,. We
have I = Ugllgs. Let wy be a place of E above v and let H = D(w, | v).
We have H'(G,[1,, E}) ~ H'(H,E} ) = 1. For v ultrametric and unramified

wlv Hw
in E, we have H'(G,[1,, Uw) ~ H'(H,Uy,,) = 1 by the following lemma. Thus
H'(G,Igs) =1 for any S O S, containing all places ramified in E. It follows that
HY(G,Ig) =0. L

Lemma 3.4.6. For any finite extension L/K of group H of ultrametric local fields
of ramification index e, we have H'(H,Uy) = Z/eZ.

Proof. The short exact sequence of H-modules
1—-U,—=L*37Z—0
induces an exact sequence
K* %7 — H'(H,U,) — H' (H,L*) = 1.
Thus HY(H,Ur) ~ Z/w(K*) = Z/eZ. O

Tate cohomology of finite groups

Let G be a finite group. For a G-module M, we define the norm map N: M — M
by Nm =3 cq gm. We have IcM C Ker(N) and Im(N) € M€,

Definition 3.4.7. The i-th Tate cohomology groups, i = —1,0, 1 are defined by
HY(G, M) =Ker(N)/IcM, H(G,M)=M%/Im(N), HYG,M)=H(G,M).

In other words, H~'(G, M) and H°(G, M) are respectively the kernel and cok-
ernel of the map Mg — M induced by N.

Note that for H (G, M) = Ker(d)/Im(d'"!), i = —1,0,1, are the cohomology
groups of the complex

B M 5 M M D Map(G, M) 5 Map(G2, M),

geG
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where d~2 is the map and d~! = N.

The functors H @G, -), i = —1,0,1, commute with arbitrary products and fil-
tered colimits (hence arbitrary coproducts). Applying the snake lemma as before,
we obtain the following.

Proposition 3.4.8. Let 0 - M' — M — M" — 0 be a short exact sequence of
G-modules. Then we have a long exact sequence

HYG, M) — HYG, M) - HYG,M") - H(G, M)
— H(G, M) — H(G,M") - H'(G,M") — H (G, M) — H'(G, M").
Example 3.4.9. For a trivial G-module M, (G, M) = Ker(#G: M — M) and

f]o(q, M) = Coker(#G: M — M). In particular, H' ({1}, M) = 0 for i = —1,0, 1,
and H Y(G,Z) = H'(G,Z) = 0, where G acts trivially on Z.

Example 3.4.10. Let E/F be a finite Galois extension of arbitrary fields of group G.
Then H(G, E*) = F* /Ng,pE*.

Example 3.4.11. Let E/F be a finite Galois extension of number fields of group G.
Then HO(G, ]IE) = ]IF/NE/F(]IE)

Proposition 3.4.12. Let E/F be a finite Galois extension of number fields of
group G. Then (Ip/E*)¢ ~1p/F* and H*(G,1g/E*) ~1p/F*Ng/r(Lg).

Proof. The long exact sequences associated to the short exact sequence of G-modules
1— E* = 1g—Ig/E* —1are

1= F* = 1p — (Ig/E*)° - H(G,EX) =1
F*/Ng/p(E*) = Ip/Ng/p(lg) — H(G,1g/EX) — HY(G, EX) = 1.
O

Remark 3.4.13. For a subgroup H of G, and an H-module B, H'(H,B) ~
H(G,ind$B) for i = —1,0,1. Indeed, for A = ind% B, via the isomorphisms
Ag ~ By and A® ~ BF_ the maps Ng: Aq — A% and By: By — BY can be
identified: Ng(b) = > eq/m 9Nu(b).

Cohomology of finite cyclic groups

Let G be a finite cyclic group. Let g be a generator of G. Then Iz = (1 — g), so
that

H G, M) = Ker(N)/Im(1 — g), H°(G, M) = Ker(1 — g)/Im(N)

are cohomology groups of the sequence



3.4. COHOMOLOGY OF GROUPS 73

Moreover, the map Z'(G, M) — M carrying f to f(g) induces an isomorphism
HY (G, M) = H 4G, M),

functorial in M.
Theorem has the following consequence.

Corollary 3.4.14 (Hilbert 90). Let E/F be a finite cyclic extension of arbitrary
fields of Galois group G' and let g be a generator of G. Then, forx € E*, Ng/p(x) =
1 if and only if x = gy/y for some y € E*.

Proof. Indeed, by the theorem, H-Y(G, EX) ~ HY(G, E*) = 1, so that Ker(N) =
Im(1 —g). O

Proposition takes the following form.

Proposition 3.4.15 (Hexagon). Let 0 — M' — M — M" — 0 be a short exact
sequence of G-modules. Then we have an exact sequence

HY(G, M) —— H°(G, M) —— H°(G, M")

| l

HYG,M")~——HYG,M)<~— H (G, M').
Definition 3.4.16. The Herbrand quotient of a G-module M is
QM) = Qa(M) = #H°(G, M)/#H (G, M)
if it exists.

Corollary 3.4.17. Let 0 - M’ — M — M"” — 0 be a short exact sequence of
G-modules. Then Q(M) = Q(M"Q(M") (if two of the Herbrand quotients exist,
then so does the third one).

Remark 3.4.18. If the underlying set of M is finite, then Q(M) = 1.
Example 3.4.19. Q(Z) = #G, where G acts trivially on Z.

Proposition 3.4.20. Let V' be a finite-dimensional real vector space equipped with
an action of G by linear automorphisms. Let L and L’ be two G-stable lattices of V.
If Q(L) is well-defined, then Q(L') is as well and Q(L) = Q(L').

Proof. By a general result on linear representations of finite groups [S, Section 12.1],
we have L ®z Q ~ L' ®; Q. (This also follows from the Zariski density of V' =
Endgje)(L®Q, L'®Q) in V ®gR, since automorphisms form a Zariski open subset.)
Thus we may assume that L and L’ are commensurable: L ®; Q = L' ®; Q. Then
since L N L’ has finite indices in L and L', we have Q(L) = Q(LNL)=Q(L). O
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3.5 The second inequality
Let E'/F be a finite cyclic extension of number fields.

Theorem 3.5.1 (The second inequality). We have
#(Ip/F* Ngr(Ip)) > #Gal(E/F).

In fact, equality holds by thei first inequality:.
Let G = Gal(E/F). Recall H(G,Ig/E*) ~1p/F*Ng/p(lg).

Theorem 3.5.2. The Herbrand quotient Q(Ig/E*) = [E : F].

This implies the second inequality: #H® = Q#H ' > Q = [E : F]. Moreover,
equality holds by the first inequality, so that H “YG,1g/E*) = 1, where G =
Gal(E/F). This can be extended to Galois extensions as follows, which will not be
used in the rest of these notes.

Corollary 3.5.3. Let E/F by a finite Galois extension of number fields of group G.
We have H'(G,Ig/E*) = 1.

Of course this implies H'(G,Ig) = 1.

Proof. Let G, be a p-Sylow of G. If H'(G,,1g/E*) = 1, then H'(G,1g/E*) is
killed by [G : G,]). That this holds for all p implies H'(G,Ig/E*) = 1. Thus we
may assume that G is a p-group. We proceed by induction on #G. Let H be a
nontrivial normal subgroup of G. Then by the following lemma, we have an exact
sequence

1 — HY(G/H,Ix/K*) — H (G, 1p/E*) — H (H,1z/E*),

where K = EH. We conclude by the induction hypothesis applied to G/H and
to H. O

Lemma 3.5.4. Let G be a group and let H be a normal subgroup. Let A be a
G-module. Then we have an exact sequence

1 — HY(G/H, A" 2 gY@, A) X H'(H, A),

where inf is the inflation map induced by the map Z*(G/H, A") — Z1(G, A) carry-
ing f to the composite G — G/H ENY/ SNy
Proof. This is a routine verification. One can also derive it from the general exact

sequence

0— (R'V)R'® — RY(VU®) - ROUR'®

for derived functors of the composition of two additive functors between abelian
categories with enough injectives. We take ® = coind$ /g and ¥ = (—)G/H, O

In the cyclic case, H (G,1g/E*) = 1 implies the following local-global principle.
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Theorem 3.5.5 (Hasse’s norm theorem). Let E/F by a finite cyclic extension of
number fields. Let a € F* such that for each place v of F', a is a local norm,
namely, for one, or equivalently, for every place w above v, a = Ng, /r,(Ty) for
some x,, € EY. Then a is a global norm, namely, there exists y € E* such that

Proof. The short exact sequence 1 — E* — Ip — Ig/E* — 1 induces the long
exact sequence

A (G 15/E*) = F*/Ng/pE* % 1 /Ny plg.
Since H~1(G, 15 /E*) = 1, ¢ is injective. By assumption ¢(a) = 1, sothata = 1. [

Remark 3.5.6. The second inequality holds for general finite abelian extensions.
On the other hand, Theorem does not hold for general finite abelian extensions
(exercise).

Proof of the second inequality

We now proceed to prove Theorem @ We use the notation Iy ¢ from the proof
of Proposition . Note that Ig/E*lgs, ~ Clg and the image of Ig ¢ in Clg is
generated by the prime ideals above places of S — S,,. Since Clg is finite, we may
take S such that the map Ip s — Ig/E™ is a surjection. We have a short exact
sequence

1— Opg = lps —1Ip/E* —1,

where O ¢ = E* N g s. We will compute Q(Ig,s) and Q(OF 5).

Let v be a place of F' and let wy be a place of E above v. Let H = D(w/v).
Then H'(G, 1y, EX) = H'(H,E,) and Qc(ITu EX) = Qu(E},) = #H, by the
following proposition. If v is non-Archimedean, then Qg (I, Uw) = Qu(Uw,) = 1.
If, moreover, v is unramified in E, then H'(G, [T Uw) = Hi(H,U,,) = 1 by Lemma
B.4.6l Thus

Qc(lgs) = [[[Eu, : F.

vES

Proposition 3.5.7. For any finite cyclic extension L/K of group H of local fields
of characteristic 0, then #H°(H,L*) = Qg (L*) = #H. If moreover, K is non-
Archimedean, then Qg (Ur) = 1.

Proof. Since HY(H,L*) = 1, #H°(H,L*) = Qy(L*). The Archimedean case is
then obvious. Assume that K is ultrametric. We have an H-equivariant short exact
sequence 1 — U, — L* & 7 — 1, so that Qu(L*) = Qu(UL)Qu(Z). Since
Qu(Z) = #H, it suffices to show Qg (Ur) = 1.

The series exp(z) = Y ,502"/n! and log(1 + z) = ¥ ,51(—1)"'2"/n converge
for vr(z) > vp(p)/(p — 1) and v (x) > 0, respectively. They induce H-equivariant
isomorphisms between m¢ and 1+4+m¢$ for some @ > 1. By the normal basis theorem,
there exists a € L such that h(a), a € H form a linear basis for L/K. We may
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assume that & € m¢. Then M = Py Oxh(a) ~ indﬁ}OK is an H-submodule of
m¢ of finite index. Therefore,

Qu(Ur) =Qu(1+m}) =Qpu(m}) = Qu(M) = Qy(Ok) = 1.
O

To compute Q¢ (O g), consider the G-equivariant homomorphism A: Of ¢ —
V =R carrying (7y)w to (10g]|w|w)wes, Here G acts on V via its action on Sg.
Then Ker()\) = pg is a finite group and L = A\(Of ¢) is a lattice in the hyperplane
S wesy @w = 0. Let e = (1,...,1) € VY Then L ¢ Ze is a G-stable lattice of V.
Another G-stable lattice of V is Z%#. By Proposition [3.4.20]

#GQa(L) = Qa(L)Qe(Z) = Qa(L & Ze) = Qa(Z°7)
= 1 @oawon)(Z) = [] #D(wo/v).

vES vES

Thus Q¢(Of ) = Qa(L) = [1,[Eu, : Fu]/[E : F]. Therefore,

Qo(lz/E") = Qc(lps)/Qc(OFs) = [E: F].

Hasse-Minkowski Theorem

Let V be a finite-dimensional vector space over a field K. Recall that a quadratic
form on V is amap f: V — K such that f(ax) = a®f(x) foralla € K and z € V
and (z,y) — f(z +vy) — f(z) — f(y) is a (symmetric) bilinear form. Assume that
the characteristic of K is different from 2. We put z.y = $(f(z +y) — f(z) — f(y)),
so that Q(x) = z.x.

Let a € K. We say that a quadratic form f represents a if there exists nonzero
x € V such that f(z) = a. Quadratic spaces (V, f) such that f represents 0 (resp.
f =0) is called isotropic (resp. totally isotropic). (Some authors use “isotropic” for

f=0)

Theorem 3.5.8. Let F' be a number field. Then a quadratic form f over F repre-
sents 0 if and only if the quadratic form f, over F, induced by f represents O for
every place v of F.

The case F' = Q is due to Minkowski and the general case is due to Hasse.

Corollary 3.5.9. Let F' be a number field and let a € F. Then a quadratic form
f over F represents a if and only if the quadratic form f, over F, induced by f
represents a for every place v of F.

This follows from the theorem and a general result on quadratic forms. See

Corollary |3.5.11] below.

Proposition 3.5.10. Let f be an isotropic nondegenerate quadratic form over a
field K of characteristic # 2. Then f has the form f(X,Y,Wy,...,W,) = XY +
g(Wh,...,W,). In particular, f represents every a € K.
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Proof. Let x # 0 be an isotropic vector. Since f is nondegenerate, there exists z € V
such that .2 = 1. Then y = z — %(z.z)x is an isotropic vector and z.y = 1. Then
f has the desired form under the basis which is the union of {z,y} and a basis of

(zK + yK)*. O

Corollary 3.5.11. Let g be a nondegenerate quadratic form and let a € K. Then
g represents a if and only if g(Y1,...,Y,) — aX? represents 0.

Proof. The “only if” part is trivial by taking X = 1. For the “if” part, assume
g(y)—az® = 0. If x = 0, then g represents 0, hence g represents a by the proposition.
If x # 0, then we may assume x = 1 so that g(y) = a. O

The “only if” part of Theorem is trivial. For the “if” part, we have f =
ale 4+ anX,QL, a; € F* under an orthogonal basis. We may assume a; = 1 and
f is nondegenerate.

Remark 3.5.12. Let K be a field of characteristic # 2 and a € K*. Then X?—aY?
represents 0 if and only if a is a square in K.

For n = 2, f = X? — aY?. Since f, represents 0, a is a square in F,. Thus
Np(ya)r(Ip(yay) = Ip. By the second inequality, [F'(y/a) : F] < 1, so that a is a
square. One may also use a density argument instead of the second inequality.

For n = 3, the theorem follows from the following algebraic result and Hasse’s
norm theorem.

Lemma 3.5.13. Let K be a field of characteristic # 2 and a,b € K*. Then
X% —aY? — bZ? represents 0 if and only if a € NK(\/E)/K(K(\/E)X).

Proof. 1f b = 3% is a square, both conditions are automatic, with (3,0,1) being an
isotropic vector. Assume that b is not a square. For the “only if” part, note that if
a= N x(@— Vbz) = 2% — bz?, then (z,1, 2) is an isotropic vector. For the “if”
part, if 22 — ay? — bz% = 0, then y # 0, so that a = (x/y)? — b(z/y)? is a norm. []

Remark 3.5.14. If K = F), is a local field of characteristic 0, the last condition
means that the Hilbert symbol (a,b), = 1. Thus if f is a quadratic form in 3
variables over a number field F', then f represents 0 in F), for all but a finite and
even number of places v. It follows that if f is a quadratic form of at least 3 variables
over F', then f represents 0 in F,, for all but finitely many places v. Indeed, we may
assume f nondegenerate, and if f(Xy,...,X,) = g(X1,..., X3) + h(Xy, ..., X,)
with g representing 0 in F,, then f represents every element of F,, and so does f.

For n = 4, the theorem follows from the following algebraic result either by
reducing to the case n = 3 or by Hasse’s norm theorem.

Proposition 3.5.15. Let K be a field of characteristic # 2 and a,b,c € K*. The
following conditions are equivalent:

(1) X? —bY? — cZ? + acW? represents 0 in K;

(2) ce NK(\/E)/K(K(\/a>X)NK(\/E)/K<K<\/Z_))X>;

(3) ¢ € Npvan L™, where L = K(y/a,Vb);
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(4) X? = bY? — cZ? represents 0 in K (v/ab).

Proof. If a or b is a square in K, then the conditions are all automatic. Assume
that neither a nor b is a square. In this case (1) and (2) are clearly equivalent.
By the lemma, (3) and (4) are equivalent, because L = K(v/ab,v/b). If ab is a
square in K, then L = K(y/a) = K(v/b), and (2) and (3) are clearly equivalent.
Assume that ab is not a square in K. Then L/K is a biquadratic extension. Let
Gal(L/K(vb)) = {1,¢} and Gal(L/K(y/a)) = {1,h}. Then Gal(L/K(\/ab)) =
{1, gh}. Note that (2) means that there exists © € K(y/a)* and y € K(v/b)* such
that ¢ = z(gz)y(hy) = zy((gh)(zy)). Thus (2) implies (3). Conversely, assume (3).
We have ¢ = z(ghz) for some z € L*. Take u = gz/z = gz(hgz)/c. Then hu = u,
namely u € K(y/a). Moreover, u(gu) = 1, and by Hilbert 90, we have u = gz /x
for some z € K(y/a). Let y = z/z. Then gy/y = 1, namely y € K(v/b), and
¢ = zy((gh)(zy)), which is (2). O

For n > 5, we proceed by induction. Let f(Xi,...,X,) = aX? + bX3 —
9(Xs,...,X,). Since g has at least 3 variables, g represents 0 in F, for all places v
outside a finite set S by Remark [3.5.14] For such v, g represents every element of
F,. For each v € S, there exist by assumption z; ,, 22, € F, such that g represents
¢y = axi, + bxj, in F,. By weak approximation, there exist x1, 25 € K such that
¢ = ar? + bx3 € ¢,(FX)?. Then g represents ¢ in F, for all v. Thus g represents c in
F by induction hypothesis. It follows that f represents 0 in F.

Remark 3.5.16. One can show that a quadratic form over a local field of charac-
teristic 0 in at least 5 variables represents 0 unless the field is R and the form is
definite. It follows then from the Hasse-Minkowski theorem that a quadratic form
f over a number field F' in at least 5 variables represents 0 unless there exists a real
place of F' at which f is definite.

A field K is called C} if every homogeneous polynomial over K of degree d in
more than d* variables has a nontrivial zero. Thus a field is Cj if and only if it is
algebraically closed. Artin conjectured that p-adic fields are Cy, namely that every
homogeneous polynomial of degree d over such fields in more than d? variables has
a nontrivial zero. Lewis proved the case d = 3 but Terjanian disproved the general
case. On the other hand the field F,((7)) is Cs, and model theory implies the Ax-
Kochen theorem: every homogeneous polynomial over a p-adic field K in more than
d? variables has a nontrivial zero for p large enough (depending on d and [K : Q,]).

Remark 3.5.17. Theorem fails for homogeneous polynomials of degree > 3.
For example, Selmer showed that C': 3X3 +4Y3 + 523 = 0 has a nontrivial solution
in each Q, but not in Q. This example gives a nontrivial element (of order 3) of
the Tate-Shafarevich group of the elliptic curve £: X3 + Y3 46022 = 0 over Q. In
general, the Jacobian of C': aX?+bY3+cZ3 = 0 over a field F of characteristic zero
is B: X®+Y?+dZ% =0 with [1: —1: 0] as the origin, where a,b,c € F*, d = abc.
Choosing a® = a, 3% = b, we get an isomorphism f: Cz — Ep carrying [z : y : 2] to
[az : By : a”'B712]. For 0 € G = Gal(F/F),

@)y 2] =[x Gay : (oG5 2l = flo iy 2]+ [Cp/Cat =12 0],
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Here (, = o(a)/a, (s = o(B)/B are cube roots of unity. Thus the substraction map
C x C — F carrying (P,Q) to f(P) — f(Q) is defined over F'. Any genus 1 curve
C'is a torsor under its Jacobian E with substraction C' x C' — E carrying (P, Q) to
the class of the divisor P — ().

The Tate-Shafarevich group of an abelian variety A over a number field F is

HI(A/F) : ﬂKer YGp,A) — HY(GE,, A)).

The Weil-Chatelet group WC(A/F) is the group of isomorphism classes of A-torsors.
It can be identified with H(GF, A), an A-torsor M corresponding to the class of the
crossed homomorphism o + 0P — P, where P € M(F). An A-torsor is trivial if and
only if it has rational point. Thus III(A/F) measures the failure of the local-global
principle for the existence of rational points on A-torsors. The Tate-Sharafevich
conjecture states that III(A/F) is finite.

Remark 3.5.18. For homogeneous polynomials f in two variables of degree > 2
over a number field, a density argument shows that if f has a nontrivial zero in F}, for
all but finitely many v, then f is reducible in F' (exercise) and, if deg(f) < 4, then
f has a nontrivial zero in F'. Indeed, if f is a product of two irreducible quadratic
polynomials, then the density of places v of F' such that f has a nontrivial zero in
F, is at most 3/4. For d > 5, there are homogeneous polynomials of degree d in
two variables over Q that have nontrivial zeroes in Q, for all p and in R but not
in Q: (X%+43Y%)™(X3 —19Y3) (if p =1 mod 3 the first factor has a nontrivial
zero, otherwise the second factor does), (X% + Y?)™(X? — 17Y?)(X? 4+ 17Y?).

In particular, for n < 4, if a € F is an n-th power in F, for all but finitely
many v, then a is an n-th power in F'. This also holds for more general n-th powers,
with a few exceptional cases, as follows.

Let F be a number field. Let 1, = (or + (' Then

N =2+, G =G + 1,
so that there exists a unique integer s > 2 such that 7y € F but 7,1 ¢ F.

Theorem 3.5.19 (Grunwald-Wang). Let S be a finite set of places of F, and let
P(n,S) C F* be the subgroup consisting of a € F* such that a is an n-th power in
F, for allv ¢ S. Then P(n,S) = F*", except under the following conditions:

(1) 2571 | n.

(2) —1, 2+ ns, and —(2 +ns) are non-squares in F.

(3) S 2 Sy, where Sy is the set of places v | 2 such that —1, 2+ n,, and —(2+ ns)

are non-squares in F,.

Under these conditions, P(n,S) = F*™Unp  F*".

We refer to [AT], Chapter X] for a proof.

For F' = Q, we have s = 2 and condition (2) is satisfied. Moreover, Sy = {2},
so the theorem implies that if a € Q is an n-th power in Q; and in Q, for all but
finitely many p, then a in an n-th power in Q. One cannot omit Qy if 8 | n:

16 = (1+1)°=(1-14)° = (vV2)* = (V=-2)°
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is an 8-th power in R and in Q, for all p odd (because at least one of —1, 2, and —2
is a square in Q,), but 16 is not an 8-th power in Q, or Q.

For F = Q(v/d) with d a square-free integer satisfying d = —1 mod 8 and
d # —1 (for example d = 7), we have s = 2 and condition (2) is satisfied. Since —d
is a square in Q,, —1 is a square in Qy(v/d) and Sy = (. The number 16 is an 8-th
power in every F),, but not an 8-th power in F'.

3.6 Artin reciprocity

Let E/F be a finite Galois extension of number fields and let S be a finite set
of maximal ideals of O containing those ramified in £. We have homomorphisms
I3 — 1p/F*Ng/r(lg) and A%/F: 72 — G (3.1.7)), where G = Gal(E/F), carrying
p to the class of m, and Froby g/, respectively. Note that Zp — Ip/F* Npg/p(Ig) is
a surjection. We will prove the following form of Artin reciprocity.

Theorem 3.6.1. The Artin homomorphism A%/F factorizes into
Ty — Ip/F*Ng/p(lp) = G*.

Remark 3.6.2. The Artin map is functorial in the following sense: For finite Galois
extensions of number fields E/F and E’'/F’ and a homomorphism 7: E — E’ such
that 7(F) C F’, the diagram

A ! !
7or ZE Gal(E F)P
ol

A
75— Gal(E/F)™®

commutes. Here the right vertical arrow is induced by the homomorphism Gal(E'/F’) —
Gal(E/F) given by restriction by 7. Indeed, (%)\F = (ET/F)f, where f = f(p'/p)
is the degree of the residue field extension.

It follows that the reciprocity isomorphism also satisfies functoriality: The dia-
gram

]IF//F/XNE//F/ (HE’) = Gal(E’/F’)ab

o) |

]IF/FXNE/F(]IE) EEAEE G&l(E/F)ab
commutes.

In the rest of this section we assume that E/F is an abelian extension. The

general case will follow from the existence theorem (Remark [3.7.7]).

Remark 3.6.3. It suffices to show that there exists a modulus m for F' such that
S = supp(m) N V; and such that Ag/F is trivial on Pr(m). Indeed, since Ag/F is
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trivial on Np/p(Zp(m)), this implies that A%, factorizes into

Zi(m) Zr(m)/Pr(m)Ng p(Zp(m))

| -

I/ F* Ngp(Ip) —— I/ F*Upp Ny (Ip) —2—= G.

By the surjectivity of A3 s (Corollary 3.3.8), ¢¢ is a surjection. By the first in-
equality,

#p/F*Ng/p(lp) < #G.

Therefore, 1¢ is an isomorphism.

We omit the superscript from the notation and write Ag/r when no confusion
arises.

Example 3.6.4. Let F' = Q, E' = Q((,), m = ((n),1). Then Ag,)/q: Zg — G =
(Z/nZ)* carries p to p mod n for primes p { n, hence is trivial on Pg(m).

Remark 3.6.5. We have the following reductions.
(1) Let K/F be a finite extension. Then we have a commutative diagram
Sk

EK/K

S A
I35 2L Gal(EK/K)

NK/F‘i j
AS

75— Gal(E/F).

Since Ng/p(Pk(mg)) € Pr(m), if Ag/p is trivial on Pp(m), then Apg/k is
trivial on Pg(mg). Here mg = (aOk, (My)| )w) for m = (a, (my)w).
(2) Let F C E' C E. Then A%,/F is the composite

S

A
77 =5 Gal(E/F) — Gal(E'/F).

Thus if Ag/p is trivial on Pp(m), then Ap//p is trivial on Pp(m) as well.
(3) Let G = [I;G;. Then the i-th component of A%/F is A%/Fa where F; =

BlLzC Thus if A, p s trivial on Pp(m;,), then A3 is trivial on Pp(m),
where m,, = max; m; ,.
By (1), (2) and Example [3.6.4, Ag/p is trivial on Pp(m) for m = (nOp,1) if
ECF(G).

By (3), we may assume that F/F is a cyclic extension. For v ¢ S, U, C
Ng/p(Ig). Thus we can take m so that Up,, € Ng/p(Ig). By the second inequality,
#lr/F*Ng/r(lp) = #G, so that Ker(Ag, r) and Pp(m)Ng/r(Zp(mp)) have the
same index in Zp(m). Therefore, Ker(A p) 2 Prp(m)Ng/r(Ze(mp)) if and only
if Ker(A% r) € Pr(m)Ng/r(Zp(mp)). Let a = pi*---p € Ker(Af p). We want
a € Pp(m)Ng/p(Zg(mg)). The strategy, roughly speaking, is to reduce to the
known case of an extension contained in a cyclotomic extension, by the commutative
diagram in (1) applied backwards. The actual proof will consist of constructing one
K; for each p;. We need the following lemma.
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Lemma 3.6.6. Let E/F be a finite cyclic extension of number fields of degree d.
Let p be a maximal ideal of O and let t be a rational integer in p. Then there exist
an integer n prime to t and T € Gal(F((,)/F) of order a multiple of d such that
ENQ(¢,) = Q, Froby, p,)/r has order a multiple of d, and (Frob, p.y/r) N (1) =

{1}

Note that (n,t) = 1 implies that the prime factors of ¢ are unramified in Q(¢,),
so that p is unramified in F({,). Moreover, ENQ((,) = Q implies EN F((,) = F,

Fn Q(Cn) =Q,
Gal(E(Gn)/E) =~ Gal(F(Ga)/F) = Gal(Q(C,)/Q) ~ (Z/nZ)*,

and Gal(E((,)/F) ~ Gal(E/F) x Gal(F((,)/F).
The proof of Lemma |3.6.6| makes use of the following technical lemma, which we
leave as an exercise.

Lemma 3.6.7. Let a > 1, d > 0 be integers and let s be a multiple of a. Then there
exist an integer n prime to s and b € (Z/nZ)* of order a multiple of d, such that
the image a of a in (Z/nZ)* has order a multiple of d, and (a) N (b) = {1}.

Proof of Lemma[3.6.6. We apply the lemma to a = Np and s the product of at with
all rational primes ramified in E. Since no rational prime ramifies in £ N Q(¢,), we
have ENQ(¢,) = Q. (Recall that Q has no nontrivial extension unramified at every
p by the bound /|Ak| > (5)%2d?/d! |N| Proposition I11.2.14] for every number field
K of degree d.) Then Frobmp(gn y/F corresponds to a. We take 7 € Gal(F'((,)/F) to
be the element corresponding to b. O]

Applying Lemma successively to py,...,p,, we obtain pairwise coprime
integers ni,...,n,, prime to pq,...,p, and to maximal ideals in the support of m,
and 7; € Gal(F((,,)/F). Let g be a generator of G and let K; C F((,,) be the
subfield fixed by (g, 7;) and Froby, g §n y/r = (Froby, g/p, Froby, FGn,) /). Note that
p; splits in K;. We have F((,,) = K;((,;), so that FK; is contained in K;i(C,)-
Indeed, for h = (g, 7;)*(Froby, g/r, Froby, (., )/r)” € Gal(E(Cy,)/K5), if h fixes Cp,,
then TiaFrObfi,F(gni)/F =1, so that 7" = FrObfi,F(cn,.)/F = 1. It follows that o and 3
are multiples of d, so that h = 1.

Let K = K;---K,. We have EN K = F, so that Gal(FK/K) = Gal(E/F).
Indeed Gal(E(Cpnyy-- -, Cn, )/ F) ~ Gal(E/F) X (Z/nZ)* X -+ - X (Z/n,Z)*. Since K
is fixed by (g,71,...,7), £ N K is fixed by g.

Let Ap/r(pi) = g%, B; € Z. Then 1 = Ag/p(a) = g2 We may assume
> Bi = 0. We have a commutative diagram

SK AEK/K

I EEE Gal(EK/K)
NK/Fi ig

, A
75 25 Gal(E/F).

Here S O S) and contains all maximal ideals dividing one of the n;’s. Let g be
the generator of Gal(EK/K) of image g. By the surjectivity of Agg /K, there exists
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b e I;K such that AEK/K(B) = g. Then Ag/p(b) = g, where b = NK/F(E). Since
p; splits in K, it is a norm from K; to F', so that there exists ¢; € IIS(K such that
Ng,/r(c) = psb~", so that Ag/r(Nk,/r(c;)) = 1. By the analogue of the above
diagram for K;, we get Agk,/k,(¢;) = 1. Since FK; is contained in K;((y,), there
exists y; > mg, and 9; € Tk, (1), i € Pk, (wi) such that ¢; = (2;)Nek,/k,(0:)-
Therefore,

a= HP?ib_ﬂi = HNKi/F(Ci) = [I(Nk,/r(2:))Nek,yr(0:) = (y)Neyr(e),

]

where Yy = Hz NKZ/F(xz) c Pp(m), and ¢ = Hl NEKZ/E(‘OZ) € IE(m)
This finishes the proof of Artin reciprocity for abelian extensions.

3.7 Existence theorem

Let F' be a number field. We say that an open subgroup of Iz containing F* is
normic if it is of the form Ny = F*Ng p(lg) for some finite abelian extending
E/F. The goal of this section is to prove Theorem [3.1.19| namely that every open
subgroup of Iz containing F'* is normic. The strategy of the proof is to reduce to a
Kummer extension, where the class field can be constructed directly.

Lemma 3.7.1. If N is normic and N’ D N, then N is normic.
Proof. We have N' = N, E/F finite abelian. This induces a commutative diagram

I} /Ng —= Gal(E/F)

| |

% /N —% Gal(E'/F),

where ' C E/ C E. It is clear that the lower horizontal arrow is the Artin isomor-
phism for £’ H

Lemma 3.7.2. Let K/F be a finite abelian extension and let N be an open subgroup
of Ir containing F*. If N = NI}}F(./\/') C Ik is normic, then N is normic.

Proof. We have F' = Fy C F} C--- C F,, = K such that each F;,,/F; is cyclic. We
may assume that K/F is acyclic.

We have N/ = Nk, L/K finite abelian. Let us show that L/F is a Galois
extension. Let o be an F-embedding of L into a separable closure of K. Then
oK = K and o N’ = N'. But by functoriality, oNy/x = Nyr/k. Thus L = oL.

Next we show that L/F is an abelian extension. We use the fact that for an exact
sequence of groups 1 -+ A — G — C — 1 with A abelian and C cyclic, G is abelian
if and only if the action of C' on A by conjugation is trivial. For 7 € Gal(L/F), we
have a commutative diagram

]IK/NL/K *N>Gal(L/K)

| |

]IK/NL/K *N>Gal(L/K),
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where the right vertical arrow is conjugation by 7. For x € Ik, Ng/p(72) = Ng/p(z),
so that 72z/x € N’. Thus the left vertical arrow is the identity. It follows that the
right vertical arrow is the identity. This finishes the proof that L/F is abelian.

We have N' D F*Ng p(N') = F*Np/p(I) = Ni. Therefore, N is normic by

the preceding lemma. O

Remark 3.7.3. It suffices to show that any open subgroup N' C Iy of exponent n
containing F'* is normic under the assumption that F' contains all n-th roots of unity.
Indeed, let K = F((,), which is an abelian extension of F. Then Iy /N [}}F(N’ ) —

I /N is an injection, so that the exponent of N [}} #(N) has exponent dividing n. The
assertion then follows from the preceding lemma. (By a more elaborate reduction
we may even assume n is a prime, but this does not make the proof simpler.)

Now let F' be a number field containing all n-th roots of unity and let A/ be an
open subgroup of I of exponent dividing n containing F*. Then N contains F"
for all places v of F'. Moreover, there exists a finite set of places S of F' containing
all Archimedean places such that U, € N for all v not in S. Since the class group
Clp is finite, we may enlarge S so that [ = F*Irgs. We may further enlarge S
such that S contains all places dividing n. Since N D F* g F," [1ygs Uy, the
existence theorem follows from the following theorem.

Theorem 3.7.4. Let F' be a number field containing the n-th roots of unity and
let S be a finite set of places of F' containing all Archimedean places and all places
dividing n such that Ip = F*Ipg. Let N = F*[[,es F)" Ilygs Us. Then N = N,

where B = F({/OF ).

Note that E/F is a finite extension. Indeed,
[+ F] = (056 F™" (") = (05 5/ Ok N F*") = #(O6/ OF) = n#".

Here in the last equality we have used the fact that Op g is the product of pr with
a free abelian group of rank #S5 — 1.

Proof. By Artin reciprocity, Ny 2 I for all places v of F'. Moreover, for » € Of ¢
and v € S, F({/x)/F is unramified at v. Thus E/F is unramified at v so that
Ng D U, for v € S. Therefore, Ng D N. Tt suffices to show #(Iz/N) = #(1r/NE).
We have seen

#(1p/Ng) = [E : F] = n¥5.

To compute #(Ir/N), we use the short exact sequence

1= 05g/O5 S T FX/T] FX 2 1N — 1.

veES veS

The exactness at the middle term is clear. For the surjectivity of ¥, we use Ip =
F*Ips. The injectivity of ¢ is equivalent to Op ¢ N [es )" = Opls. It is clear
that Op g N Ilyes F)P 2 Ofp’s. Conversely, for v € Opg N [l,es £, v splits in
K = F({/x) for v € S and v is unramified in K for v ¢ S. It follows that
Nk O F*lgs = Ip, so that Nx = Ip, which is equivalent to K = F, namely,
x € F*". Therefore, x € Of's.
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Since S contains all places dividing n, [T,cg|n|, = 1 by product formula, so that
#(TTves FX/ Mpes FX™) = n?#5 by the following lemma. It follows that

#(Ie/N) = #(J] £/ T] F)/#(056/Ors) = 0.

vES vES

]

Lemma 3.7.5. Let K be a local field of characteristic zero containing all n-th roots
of unity. Then #(K*/K*") =n?/|n|. Here |-| is the normalized absolute value.

Proof. For K = C, the equation becomes 1 = 1. For K = R, we have n < 2, so that
the equation becomes 1 =1 or 2 = 2. Assume that K is ultrametric. Consider the
trivial action of G = Z/nZ on K*. Then

ﬁO(G,KX> _ KX/Kxn, f{_l(G,KX) _ {33 e KX ‘ " = 1}.

Thus
#(K*/K™")/n = Q(K™) = QUk)Q(Z) = nQ(Uk).

Finally, exp and log induce isomorphisms between m$ and 1 + m¢, for some a > 1,
so that

Q(Uk) = Q1 +m?) = Q(m") = Q(Ok) = #(Ok /nOk) = 1/In|.
Here we used H(G,Ok) = Ok /nOk and H (G, Ok) = 0. O

Corollary 3.7.6. Let E/F be a finite extension of number fields and let K/F be
the maximal abelian sub-extension. Then Ny = Ni.

Proof. By the existence theorem, Ny = Ny, K'/F finite abelian. Since Ny =
Ng C Nk, K’ is an extension of K. Every place v of F that admits w | v in F with
D(w/v) = 1 satisfies F* C N = Ng. If, in addition, v is unramified in K’, then v
splits in K’ because Frob, € Gal(K'/F) is trivial. (By the compatibility with local
reciprocity that we will prove in the next section, the additional condition that v is
unramified in K’ is in fact automatic.) It follows, by Chebotarev’s density theorem,

that E is an extension of K’ (exercise). Therefore, by the assumption on K, we
have K ~ K’ and Nx = Ng» = Ng. O

Remark 3.7.7. Let E/F be a finite Galois extension of group G, and let K/F
be the maximal abelian sub-extension as in the corollary. Then Gal(K/F') can be
identified with G®. The corollary, combined with Artin reciprocity for the abelian
extension K/F, implies the general case of Artin reciprocity for E/F.

Transfer

Given a group G and a subgroup H of finite index, the transfer homomorphism
Ver: G*® — H?" is defined as follows. Let G = [[,cg Hr. For g € G and r € R,
write rg = h,r’ with h, € H and " € R. Then Ver(g[G, G]) is II, h.[H, H].
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Theorem 3.7.8. Let E/F be a finite Galois extension of number fields and let K
be an intermediate field. Then the diagram

HF/FXNE/F(]IE) = Gal(E/F)ab

| [

HK/KXNE/K(HE) = Gal(E/K)ab
commutes.

Proof. Let G = Gal(E/F) and H = Gal(E/K). Let p be a maximal ideal of
Op unramified in F' and let q be a lifting of p to E. It suffices to show that
(%) = Ver(¢), where ¢ = Froby/, € G and 6 is the class of ¢ in G®. Note
that pOx = [ler(K N gq), where G = [l,er HgD, D = D(q/p) = (¢) is the
decomposition group. For p’ = K N gq, Frobyq/, = Flrobgfl/p = (gpg~ "o = gplog™1,
where f, = f(p’/p) is the smallest integer ¢ > 1 such that g¢’g~' € H. Thus

E/K

() L gohg 1. 5]

pOK ger

This is also Ver(¢), because a set of representatives of H\G is given by g¢', g € T,
0<i< fy—1,and (9¢')¢ = g¢'' for 0 < i < fy—1and (g¢fs~ )¢ = (94’9~ ")g. O

This compatibility with transfer implies the following principal ideal theorem for
the Hilbert class field.

Theorem 3.7.9 (principal ideal). Let F' be a number field. For every ideal a of OF,
aOp,. s principal.

For any Galois extension E/F', Hg is the maximal unramified abelian extension
of E (this characterization uses the compatibility with local reciprocity, which will
be proved in the next section), hence a Galois extension of F.

Proof. Let G = Gal(Hp,./F). Since Hy, /F is an unramified extension, the maximal
abelian sub-extension Hy,./F is Hp. Thus Gal(Hp/F) = G and Gal(Hpg,/Hr) =
[G, G]. By the compatibility with transfer, the diagram

Clp ———= G

e

Clg, — |G, G]
commutes. Thus, by the following theorem, the map Clp — Cly,. is zero. n

Theorem 3.7.10. Let G be a finite group. Then Ver: G** — [G, G| is the zero
map.

We refer the reader to [N, Theorem VI.7.6] for a proof of a generalization of this
group-theoretic result.
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Remark 3.7.11. For a number field F' we can form the class field tower

F:FogFlngg

Y

where each Fj,1 = Hp, is the Hilbert class field of Hp,. Furtwéingler asked whether
the class field tower is finite. Golod and Shafarevich gave examples of number fields
F for which the class field tower is infinite. See [CF) Chapter IX].

3.8 Local class field theory

Global reciprocity on local fields

Theorem 3.8.1. Let E/F be a finite abelian extension of number fields. The global
Artin reciprocity pgjp: Ip/F* Ng/p(lg) = Gal(E/F) induces, for every place w of
E above a place v of F, an isomorphism

F/Ng,/r,(Ey) = D(w/v).
We start with a local analogue of the first inequality.

Lemma 3.8.2. For any finite abelian extension L/K of local fields of characteris-
tic 0, we have

(K"t Npjg(L¥)] < #Gal(L/K).

Proof. Let D = Gal(L/K). In the cyclic case, we have seen that #H°(D, L*) = #D
in the proof of the second inequality. The general case follows from the cyclic case
by the following exact sequence for a sub-extension L'/ K:

N,
LNy (L¥) =25 K INp g (LX) — K> /N (L) — 1.

Proposition 3.8.3. pp/p(F)) = D(w/v).

This will finish the proof of the theorem. Indeed, pg/r(Ng, /r,(Ey)) = 1, so
by the proposition, pg/r induces a surjective homomorphism F*/Ng, /p, (Ey) —
D(w/v), and we conclude by the inequality above.

Proof. Let G = Gal(E/F), D = D(w/v), K = EP. We have a commutative square

Ip/Ng 25 G

\L PK/F

Since v splits in K, px/p(F)) = 1. Thus pg/p(F)) C D.
For the inverse inclusion we reduce to the case of a Kummer extension as follows.
Assume that H = pg/p(F)) C D. Let L/K be a sub-extension of E /K of prime
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degree p. Then pr/p(F)) = 1. Let L' = L((,) and K’ = K((,). By the commutative
square

PL!K!

]IK//K/XNL//K/ (]IL/) — Gal(L’/K’)

"

Ip/F* Ny yp(ly) —> Gal(L/F),
we have pp /g (K.) = 1, where v | wi, wx = w|k. By assumption, w is the unique
place of w above wg. Thus w;, = w| is the unique place of L above wg, so that
P | [Lw, @ Kuyl | [Lly  Kuy], where w' is a place above v' and wy. Note that
[K': K] | p—1is prime to p. To find a contradiction, it suffices to show that v’
splits in L'.

We are thus reduced to showing that if £//F is an abelian extension of exponent n,
with F' containing all n-th roots of unity, such that F\ C Ng, then vy splits in E.
Let S 3 vy be a finite set of places of F' containing all Archimedean places, all
places ramified in £, and all places dividing n, such that Ir = F*Ipg. We have
Ng 2 F*XF} Hvis F " l,gs Uy = N. Thus E is contained in the class field of A

EZT)

described in following theorem applied to T" = {vp}. Since vy splits in this class
field, it splits in E. n

Theorem 3.8.4. Let F' be a number field containing the n-th roots of unity and let
S =TIIT be a finite set of places of F' containing all Archimedean places and all
places dividing n such that Ip = F*Irg. Let

N: H FUX H van H Uv; Nl — H FUX H van H U’U'

veT veT’ vgS veT”’ veT vES
Then F*N = Ng, where E = F(YA), A= F*nN'.

The case T' = () is Theorem |3.7.4, We have seen that E/F is a finite extension.
Note that v € T clearly splits in E/F.

Proof. As before, by Artin reciprocity Ng 2 F" for all places v of F. For v ¢ S,
E/F is unramified so that Ny 2 U,. For v € T, Ng O FX. Thus Ng 2 F*N. Tt
suffices to show that they have the same index in .

We have

Mp:Ng]=[F:F]=[AF" :F*"|=[A:ANF*"] =[A: Or's].
To compute [Ir : F*N], we use the short exact sequence

1= Ofg/N — ] FS/E™ B Ip/F*N = 1,

veT”’

where A" = F* N N. For the surjectivity of ¢ we used Ip = F*Irg. Thus

Lp - FPNT =[] £ T] EX05s - Ops] A OF)-

veT’ veT’
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Similarly, let E' = F(3/A’). Then N D N, and we have
Lp: Npr] = [A": 05, (L« PN = [[] Y« [T F)"[OFs - OFls] A : O],

veT veT’

Thus
[]IF NE][]IF :NE’] = [A : O;%HA/ : ;',%] = []IF : FX./\/][]IF . FXN/].
Here we have used the fact

([T 7 T R = n?° = [Ofs - O]

vesS vesS
proven in Theorem It follows that [Ir : Ng] = [Ip : F*N] and N =
F*N. [

Local reciprocity and existence theorem

Proposition 3.8.5. Let L/K be a finite (resp. finite Galois) extension of local fields.
Let F be a number field and v a place of F with an isomorphism v: F, = K. Then
there exist a finite (resp. finite Galois) extension E/F, a place w of E above v, and
an isomorphism E,, = L extension v. Furthermore, in the Galois case, there exists
an intermediate field F' of E/F such that F), = F, and Gal(L/K) ~ Gal(E/F"),
where v = w|pr.

We have seen that any local field of characteristic zero is the completion of a
number field. That a finite extension of Q, is the completion of a number field is a
special case of the above proposition.

Note that even if L/K is abelian, E/F is not necessarily abelian.

Proof. The Archimedean case is trivial. Assume we are in the non-Archimedean
case.

In the case of a finite extension, we have L = K[X]/(f). By Krasner’s lemma,
we may assume that f € F[X]|. We take F = F[X]|/(f) and take w to be the place
defined by the embedding £ — L.

In the case of a finite Galois extension, L/K is the splitting field of a polynomial
g € K[X]. Again by Krasner’s lemma, we may assume that g € F[X]. We take F
to be the splitting field of ¢ in F' and choose a place w | v. Then we have E,, ~ L
extending F), ~ K. We get a monomorphism D = Gal(L/K) — Gal(E/F) = G.
Finally we take F' = FP| so that Gal(E/F') = D. O

Let L/K be a finite abelian extension of local fields of characteristic zero. By
the last assertion of the proposition, there exist a finite abelian extension of number
fields E/F, places w | v, and an isomorphism E,, ~ L inducing F, ~ K. We define
the local reciprocity isomorphism

TL/K: Gal(L/K) l> KX/NL/K(LX)

to be the isomorphism induced from the global reciprocity isomorphism 7g/r. We
check that this definition does not depend on choices. For this, consider another
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set of data E'/F', w' | V', E!, ~ L. Let E” be the composite of £ and E’ in L.
The embedding E” — L induces a place w” of E” and an isomorphism E”, = L
inducing F/, = K, where F"” is the composite of F and F’ in K and v” = w”|gn.
The extension E”/F" is a composite of EF”/F"” and E'F”/F", hence abelian. By
the functoriality of global reciprocity, the square

TE ) pI

Gal(E”/F”) — ]IFI//FHXNEII/FN (]IE//)

\L \LNF///F

Gal(E/F) —2 1/ F* Ny p(I)

commutes. This implies that ry,x does not depend on choices.

We check the required properties of ry/x. For L/K unramified with K non-
Archimedean, the normalization 77,k (Froby,x) = 7L Np/k(L*) follows from the
construction of 7k via the Artin map. For abelian extensions L/K and L'/K'
of local fields and an embedding 7: L < L' such that 7(K) C K’, the functorial-
ity of 71/ follows from the functoriality of global reciprocity. Indeed, we construct
successively number field extensions E/F' (abelian), F'/F, and E'/F’ (abelian, mod-
ifying F'/F if necessary), giving rise to the local field extensions by completion, then
T(E) C E.

Next we prove the local existence theorem (Theorem , namely that every
(open) subgroup N' C K* of finite index equals N, := N x(L*) for some finite
extension L/K. As in the global case, we reduce to the Kummer case where N/
has exponent n and K contains all n-th roots of unity. In this case, N' O K*".
We conclude by the fact that A K(VED) = K (Proposition , which is a
consequence of local reciprocity and Kummer theory.

Corollary 3.8.6. Let L/K be a finite Galois extension of local fields of character-
istic 0 and let K'/K be the mazimal abelian sub-extension. Then Ni, = N

Proof. We claim that for any abelian extension L'/K with N Lk € N /K, Lis
an extension of I'. Assume this claim. By the existence theorem, there exists an
abelian extension L”/K such that Ny x = N k. By the claim, L is an extension
of L”. But Npvx = Nk € Ngjk, so that L” is an extension of K'. By the
assumption on K’, we have K’ ~ L" so that N = Np» = Ngr.

We prove the claim by induction on [L : K]. We have

Nijk SNuk "Ngrygk = Npgr k-
Here the equality is a consequence of the existence theorem (Corollary|3.1.14). Thus
NL/K’ g Ni/l/K(NL/K) g N[;}/K(NL’K’/K> — NL’K’/K"

Here in the equality we used the lemma below (applied to L'K’/K). Since L/K is
solvable (see the remark below), [L : K| < [L : K], and we conclude by induction
hypothesis. [l

Lemma 3.8.7. Let L' /K be a finite abelian extension of local fields of characteris-
tic 0 and let K'/K be a sub-extension. Then N*}/K(NL//K) = Nu/kr.
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Proof. Consider the exact sequence

K’/K

K/X/NL//K/ KX/NL//K—)K /NK’/K_>1
that we used in the proof of the local analogue of the first inequality. Since
IL':K]=[L": K'||K': K],

we have #(K* /Ny k) = #(K"” [Ny ) #(K* Nk i) by reciprocity Thus the
first arrow in the exact sequence is an injection. In other words, N, / K(N LK) =
Nk O]

Remark 3.8.8 (Higher ramification groups). Let L/K be a finite extension of
Archimedean local fields of group G. For ¢ > —1, the i-th ramification group G; < G
is the subgroup consisting of ¢ € G acting tr1v1ally on Op/m5™ (or equivalently,
vr(gr —x) > i+ 1 for all z € Op). This gives a descending filtration

G:G_1>G0>G1>....

of normal subgroups of G. Note that G is the inertia group so that G_; / GO o~
Gal(kp/kk). Fori >0, g € Gg belongs to g € G; if and only if g /7y, E UL , be-
cause O = Opao|mp]. Thus g — gy /7p glves an injection G; /G413 — U )/ (+1),
It follows that G is solvable. Note that UL JU LZH is k[ for i = 0 and kg, for i > 1.
The group G is a p-group and is called the wild inertia group.

Let L/K be a finite Galois extension of local fields of characteristic 0 and let
K'/K be the maximal abelian sub-extension as in the corollary. We define

TL/K: Gal(L/K)™ = K*/Np k(LX)

to be the isomorphism induced by 7g//kx. Functoriality of rp k follows from the
abelian case. This finishes the proof of local reciprocity (Theorem [3.1.5)).

Theorem 3.8.9 (Compatibility between local and global reciprocity). Let E/F be
a finite Galois extension of number fields and let w be a place of E above a place v
of F'. Then the diagram

Gal(E,/F,)™ 5 F [N, 5, (ES)
Gal(E/F)™® —= 21 /F* N p(1g)

commutes.

Proof. Let F' = EP  where D = D(w/v), and let v' = w|. Then F, ~ F!, and the
above diagram can be identified with the outer square of the diagram

TEw/F’,
Gal(Ew/Fv’,)ab *N;JF;/X /NEw/FL, (E:U()

gl |-

Gal(E/F")®> — 2L | F™* Ny po(Ip)

i lNF’/F
T‘E/

Gal(E/F)* ST/ F* Ngp(lg)
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The upper square commutes by construction: both g, /r and rg/p can be identi-
fied with the reciprocity isomorphisms for the maximal abelian sub-extension E’/F”
of E/F'. The lower square commutes by the functoriality of global reciprocity. [

Local construction of local reciprocity

Our construction of the local reciprocity uses global reciprocity. There are more
direct constructions of local reciprocity.

We have indicated that reciprocity can be interpreted as a cup product of group
cohomology. It is more convenient to state this with Tate cohomology. For any finite
Galois extension L/K of local fields of group G and degree d, there is a canonical
isomorphism Bryx := H*(G,L*) ~ 17 /7 and the inverse image c;,x € H*(G, L*)
of the class of é is called the fundamental class.

Theorem 3.8.10. The homomorphism
H"™%(G,2) — HY(G, L*)
defined by cup product with crx is an isomorphism for every q € Z.

The case ¢ = 0 gives the reciprocity isomorphism:
ro G = H72(G,2) —2% [°(G,L¥) = K* /Ny x(L7).

For details on this approach (both local and global), we refer to |CF].

In the case where L/K is a totally ramified finite Galois extension of non-
Archimedean local fields, the reciprocity map can be made more explicit. In this
case, the fundamental class is given by the short exact sequences of G-modules

1—>UL—>ULAL“3>ULAM—>1, 1—>ULAM—>ZBX”—L>Z—>O,

where L™ is the maximal unramified extension of L, and ¢(x) = Frob(z)/z. The
image of g[G,G] in H*(G,Ug;) (or H™Y(G,Uy)) is given by the class of gy /7.
Thus

rk(YlG, G]) = N e (2),

where x € U is a solution to the equation Frob(z)/x = gmp /7.

Note that the short exact sequence
1 — Gal(K™/K™) — Gal(K*/K) — Gal(kg /kx) — 1,

where K" is the maximal abelian extension of K and Gal(kg /kx) ~ Z, splits. It
follows that for any finite abelian extension L/K is contained in a finite abelian
extension of the form K;K,/K, where K;/K is unramified and Ky/K is totally

ramified. For an explicit construction of the splitting, see below.
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Lubin-Tate extensions

For non-Archimedean local fields, Lubin-Tate theory solves the problem of explicit
construction of abelian extensions. Let K be such a field. Let m be a uniformizer

and let ¢ = #kk.

Definition 3.8.11. A Lubin-Tate polynomial is f(X) = X7+ a, 1 XT' + - +
as X? + X € Ok|[X] such that vg(a;) > 1. The n-th Lubin-Tate extension L, is
the splitting field of the n-th iteration f™(X) = (fo fo---o f)(X) of f(X).

It turns out that these extensions depend on 7 but not on the choice of f.

Theorem 3.8.12 (Lubin-Tate). The extension L, /K is abelian and we have

NLn/K = UI(?)WZ.

Thus L, /K is a totally ramified extension of group Ugx /U [(? ),
Example 3.8.13. For K = Q, and f(X) = (X + 1)» — 1, we have f("(X) =
(X + 1" =1, 50 L = Qp(Gn) = Qp( Q"))

In general, L,, = K(Ff[r"]), where F is the Lubin-Tate module associated to f,
which is a one-dimensional formal group law equipped with an Og-action. The
isomorphism class of Iy depends only on 7.

Let Lo, = U, L,. Then K* = L K™. We get a splitting Gal(K**/K) ~
Gal(Ls/K) x Gal(K™/K) corresponding to the splitting K* ~ Uy x 7% via reci-
procity.



94

CHAPTER 3. CLASS FIELD THEORY



Bibliography

[AT]
[B1]

[B2]

[B4]

[CF]

[H]

[T1]

[T2]
(W]

E. Artin and J. Tate, Class field theory, AMS Chelsea Publishing, Providence, RI, 2009.
Reprinted with corrections from the 1967 original. MR2467155 (2009k:11001)

N. Bourbaki, Eléments de mathématique. Topologie générale, Springer, Berlin, 2007 (French).
MR0358652 (50 #11111)
, Eléments de mathématique. Intégration, Springer, Berlin, 2007 (French).

, Eléments de mathématique. Algébre commutative, Springer, Berlin, 2007 (French).

19} 10, [T} 12

__, Eléments de mathématique. Théories spectrales, Springer, Berlin, 2007 (French).
37
J. W. S. Cassels and A. Frohlich (eds.), Algebraic number theory, Proceedings of an instruc-

tional conference organized by the London Mathematical Society (a NATO Advanced Study
Institute) with the support of the International Mathematical Union, Academic Press, Lon-
don; Thompson Book Co., Inc., Washington, D.C., 1967. MR0215665 (35 #6500)

P. J. Higgins, Introduction to topological groups, Cambridge University Press, London-New
York, 1974. London Mathematical Society Lecture Note Series, No. 15. MR0360908 (50

#13355)

S. Iyanaga (ed.), The theory of numbers, North-Holland, Amsterdam, 1975. Translated from
the 1969 Japanese edition by K. Iyanaga.

J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Trans-
lated from the 1992 German original and with a note by Norbert Schappacher; With a fore-

word by G. Harder. MR1697859 1[0}

D. Ramakrishnan and R. J. Valenza, Fourier analysis on number fields, Graduate Texts in
Mathematics, vol. 186, Springer-Verlag, New York, 1999. MR1680912 1[44]

W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987.
MR924157 (88k:00002)

J.-P. Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg,
1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in
Mathematics, Vol. 42. MR0450380 (56 #8675)

J. T. Tate Jr, Fourier analysis in number fields and Hecke’s zeta-functions, 1950. Thesis
(Ph.D.)-Princeton University, reproduced in |CF]. MR2612222

Y. Tian, Lectures on algebraic number theory. Notes.

A. Weil, Basic number theory, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint
of the second (1973) edition. MR1344916 (96¢:11002)

95



	Adèles, Idèles
	Topological groups
	Global fields, Local fields
	Adèles
	Haar measures
	Idèles
	Appendix: Classification of local fields

	Tate's thesis
	Pontryagin duality
	Local zeta integrals
	Global zeta integrals

	Class field theory
	Main statements
	The power reciprocity law
	The first inequality
	Cohomology of groups
	The second inequality
	Artin reciprocity
	Existence theorem
	Local class field theory


