Algebraic Number Theory

notes by Weizhe Zheng

February 8, 2010

Part I Global fields and local fields

1 Global fields

Definition 1.1. A number field is a finite extension of the field \mathbb{Q} of rational numbers. A function field is a finite extension of the field $\mathbb{F}_q(T)$ of rational functions over a finite field \mathbb{F}_q . A global field is either a number field or a function field.

Remark 1.2. (i) For any number field K, there exists a unique embedding $\mathbb{Q} \to K$ since \mathbb{Q} is prime field.

(ii) If k is a field and K is a finite extension of k(T), then every element T' of K transcendental over k defines a k-embedding $k(T) \to K$ sending T to T' such that K is a finite extension of k(T').

Any number field is a separable extension of \mathbb{Q} since \mathbb{Q} has characteristic 0. For function fields we have the following result.

Proposition 1.3. Let k be a perfect field, K be a finite extension of k(T). Then there exists an element T' of K such that K is a finite separable extension of k(T').

This follows from the following.

Theorem 1.4 (Lüroth). Let k be a perfect field, K be a subfield of k(T) containing k. Then there exists T' in K such that K = k(T').

2 Places

Let K be a field.

Definition 2.1. An absolute value on K is a function $K \to \mathbb{R}_{\geq 0}$ sending x to |x| such that, for any x and y in K, we have

- (a) |x| = 0 if and only if x = 0;
- (b) |xy| = |x||y|; and
- (c) $|x+y| \le |x| + |y|$ (triangle inequality).

The absolute value is *ultrametric* if, for any x and y in K, $|x + y| \leq \max\{|x|, |y|\}$ (strong triangle inequality). An absolute value is *Archimedean* if it is not ultrametric.

A valued field is a field endowed with an absolute value. An *ultrametric* field is a field endowed with an ultrametric absolute value.

An absolute value defines a metric on K and hence a topology on K. The map $K \to \mathbb{R}_{\geq 0}$ sending x to |x| is continuous if we endow $\mathbb{R}_{\geq 0}$ with the Euclidean topology.

Example 2.2. (i) |x| = 1 for all $x \neq 0$ defines an ultrametric absolute value on K, called the *trivial* absolute value on K. It defines the discrete topology on K.

(ii) If |-| is an absolute value on K, then $|-|^{\alpha}$ is an absolute value on K for $0 < \alpha \leq 1$. If |-| is an ultrametric absolute value on K, then $|-|^{\alpha}$ is an ultrametric absolute value on K for $\alpha > 0$.

(iii) On \mathbb{Q} , the usual absolute value is an absolute value, denoted by $|-|_{\infty}$.

Definition 2.3. Two absolute values on K are *equivalent* if they define the same topology on K. A *place* of K is an equivalent class of nontrivial absolute values on K.

I.2.p1 Proposition 2.4. Let $|-|_1$ and $|-|_2$ be two absolute values on K. The following conditions are equivalent

- (a) $|-|_1$ and $|-|_2$ are equivalent.
- (b) $|-|_1 = |-|_2^{\alpha}$ for some $\alpha > 0$.
- (c) For any x in K, $|x|_1 < 1$ if and only if $|x|_2 < 1$.
- **[I.2.ta]** Theorem 2.5 (Approximation). Let v_1, \ldots, v_n be pairwise distinct places of K. Then the image of the diagonal map $K \to \prod_{i=1}^n K_{v_i}$ is dense, where K_{v_i} is K endowed with the topology defined by v_i . In other words, if $|-|_1, \ldots, |-|_n$ are absolute values on K representing v_1, \ldots, v_n , respectively, then for any x_1, \ldots, x_n in K and $\epsilon > 0$, there exists x in K such that $|x - x_i|_i < \epsilon$.

This follows from $\begin{bmatrix} I.2.p1 \\ 2.4. \end{bmatrix}$

Proposition 2.6. Let |-| be an absolute value on K. The following conditions are equivalent

(a) |-| is ultrametric;

(b) $|n| \leq 1$ for all $n \in \mathbb{Z}$;

(c) The map $K^{\times} \to \mathbb{R}_{>0}$ sending x to |x| is continuous if we endow $\mathbb{R}_{>0}$ with the discrete topology.

Corollary 2.7. If the characteristic of K is positive, then every absolute value on K is ultrametric.

Definition 2.8. A valuation (of height 1) on K is a function $v: K^{\times} \to \mathbb{R} \cup \{\infty\}$ such that, for any x and y in K, we have

(a) $v(x) = \infty$ if and only if x = 0;

(b) v(xy) = v(x) + v(y); and

(c) $v(x+y) \ge \min\{v(x), v(y)\}.$

Fix $0 < \epsilon < 1$. For any valuation v on K, $|x|_v = \epsilon^{v(x)}$ defines an ultrametric absolute value on K. $v \mapsto |-|_v$ gives a bijection from valuations on Kto ultrametric absolute values on K. We say two valuations v_1 and v_2 on Kare *equivalent* if the corresponding absolute values on K are equivalent.

Example 2.9. (i) v(x) = 0 for all $x \neq 0$ defines a valuation on K, called the trivial valuation on K. It corresponds to the trivial absolute value on K.

(ii) If v is a valuation on K, then αv is a valuation on K equivalent to v for any $\alpha > 0$. Conversely, by 2.4, two valuations v_1 and v_2 on K are equivalent if and only if $v_1 = \alpha v_2$ for some $\alpha > 0$.

(iii) Let p be a prime number. For any x in \mathbb{Q}^{\times} , $x = p^a r/s$, where a, r and s are integers such that (r, p) = (s, p) = 1. Put $v_p(x) = a$. This defines a discrete valuation v_p on \mathbb{Q} , called the *p*-adic valuation on \mathbb{Q} . Put $|x|_p = p^{-v_p(x)}$.

If v is a valuation on K, $\mathcal{O} = \{x \mid v(x) \ge 0\}$ is a ring, called the *ring* of v; $\mathfrak{m} = \{x \mid v(x) > 0\}$ is a maximal ideal, called the *ideal* of v. If v is trivial, $\mathcal{O} = K$, $\mathfrak{m} = 0$.

I.2.pr Proposition 2.10. Let v be a nontrivial valuation on K, \mathcal{O} be the ring of v, **m** be the ideal of v. Then \mathcal{O} is a normal local domain of dimension 1. Moreover the following conditions are equivalent (a) \mathcal{O} is a discrete valuation ring;

(b) \mathcal{O} is Noetherian;

(c) \mathfrak{m} is principal;

(d) $v(K^{\times})$ is a discrete subgroup of \mathbb{R} .

A valuation v is called *discrete* if it satisfies the conditions of 2.10. It is called *normalized* if $v(K^{\times}) = \mathbb{Z}$. A generator of \mathfrak{m} is called a *uniformizer* of v.

Definition 2.11. Let Γ be a subset of \mathbb{R} . A *major subset* of Γ is a subset of Γ of the form \emptyset , Γ , $\Gamma \cap \mathbb{R}_{>x}$, or $\Gamma \cap \mathbb{R}_{\geq x}$ for some x in \mathbb{R} .

- **I.2.p3** Proposition 2.12. Let v be a valuation on K, \mathcal{O} be the ring of v. The map $M \mapsto v(M \{0\})$ from the set of sub- \mathcal{O} -modules of K to the set of major subsets of $v(K^{\times})$ is a bijection. In other words, for any absolute value corresponding to v, the sub- \mathcal{O} -modules of K are 0, K, $\mathring{B}(0,r)$, and $\overline{B}(0,r)$, r > 0.
- **I.2.p3c** Corollary 2.13. The map $I \mapsto v(I \{0\})$ from the set of ideals of \mathcal{O} to the set of major subsets of $v(\mathcal{O} \{0\})$ is a bijection. In other words, for any absolute value corresponding to v, the ideals of \mathcal{O} are 0, $\mathring{B}(0,r)$, and $\overline{B}(0,r)$, $0 < r \leq 1$.
- **I.2.p4** Proposition 2.14. Let v_1, \ldots, v_n be pairwise distinct ultrametric places of K, $\mathcal{O}_1, \ldots, \mathcal{O}_n$ be the corresponding rings, $\mathfrak{m}_1, \ldots, \mathfrak{m}_n$ be the corresponding ideals, $A = \bigcap_{i=1}^n \mathcal{O}_i$, $\mathfrak{p}_i = \mathfrak{m}_i \cap A$, $i = 1, \ldots, n$. Then $\operatorname{Frac}(A) = K$, the maximal ideals of A are $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$, which are pairwise distinct, and $A_{\mathfrak{p}_i} = \mathcal{O}_i$, $i = 1, \ldots, n$.

This follows from 2.5.

3 Places of \mathbb{Q} and k(T)

Theorem 3.1. The places of \mathbb{Q} are the places defined by $|-|_{\infty}$ and $|-|_p$, where p runs over all primes numbers. They are pairwise distinct.

Let \mathbb{F}_q be a finite field. Every absolute value on $\mathbb{F}_q(T)$ is trivial on \mathbb{F}_q . More generally, for any field k, we now determine all the absolute values on k(T) trivial on k. **Example 3.2.** (i) Let \mathcal{P} be the set of monic irreducible polynomials in k[T]. Every f in $k(T)^{\times}$ can be uniquely decomposed as

$$f = \lambda \prod_{P \in \mathcal{P}} P^{v_P(f)}$$

where λ is in k^{\times} , $v_P(f)$ is in \mathbb{Z} and is zero for all but a finite number of P. Then v_P is a valuation of k(T).

(ii) For $f = \frac{P}{Q}$ in $k(T)^{\times}$ with P and Q in $k[T] - \{0\}$, define the degree of f to be deg $f = \deg P - \deg Q$. Then $v_{\infty}(f) = -\deg f$ is a valuation on k(T).

Theorem 3.3. The places of k(T) inducing the trivial absolute value on k are those defined by v_P , $P \in \mathcal{P}$ and v_{∞} . They are pairwise distinct.

This establishes a bijection between places of k(T) trivial on k and closed points of the scheme \mathbb{P}^1_k .

Proposition 3.4. Let (K, |-|) be an ultrametric valued field. For $f = a_0 + a_1X + \dots + a_nX^n$ in K[T], define $|f|_{\max} = \max_{0 \le i \le n} |a_i|$. This extends unique to an ultrametric absolute value on K(T), which extends |-| on K.

4 Completion

Let (K, |-|) be a valued field. Then the completion of K

 $\hat{K} = \{\text{Cauchy sequences in } K\} / \{\text{sequences in } K \text{ converging to } 0\}$

is a field. The absolute value on K extends by continuity to an absolute value on \hat{K} . We have $|\hat{K}| = \mathbb{R}_{\geq 0}$ if K is Archimedean, and $|\hat{K}| = |K|$ if K is ultrametric. Moreover, if K is ultrametric, the map $\mathcal{O}_K/\mathfrak{m}_K \to \mathcal{O}_{\hat{K}}/\mathfrak{m}_{\hat{K}}$ is an isomorphism.

Example 4.1. (i) The completion of \mathbb{Q} with respect to v_{∞} is \mathbb{R} . The completion of \mathbb{Q} with respect to v_p is \mathbb{Q}_p , the field of *p*-adic numbers.

(ii) Let k be a field, P be a monic irreducible polynomial in k[T], $k_P = k[T]/(P)$. Then k_P is a finite extension of k and the completion of k(T) with respect to v_P is the field $k_P((P))$ of Laurent series. In particular, the completion of k(T) with respect to v_T is k((T)). The completion of k(T) with respect to v_{∞} is $k((\frac{1}{T}))$.

- **I.4.tG** Theorem 4.2 (Gelfand-Mazur). Any Banach algebra over \mathbb{C} that is a division algebra is isomorphic to \mathbb{C} .
- **I.4.t1** Theorem 4.3. Let K be a complete Archimedean valued field. Then K is isomorphic to either \mathbb{R} or \mathbb{C} as a topological field.

This follows from 4.2.

Corollary 4.4. Any Archimedean valued field is a subfield of \mathbb{C} .

Let K be a field with a discrete valuation. Then the maps

$$\mathcal{O}_{\hat{K}} \to \varprojlim_{n \in \mathbb{N}} \mathcal{O}_{\hat{K}} / \mathfrak{m}_{\hat{K}}^{n}, \quad \mathcal{O}_{K} / \mathfrak{m}_{K}^{n} \to \mathcal{O}_{\hat{K}} / \mathfrak{m}_{\hat{K}}^{n}$$

are isomorphisms.

Proposition 4.5. Let \mathcal{O} be a complete discrete valuation ring, π be a uniformizer, Σ be a system of representatives for \mathcal{O}/\mathfrak{m} . Then every x in \mathcal{O} can be written uniquely as the convergent series $x = x_0 + x_1\pi + \cdots + x_n\pi^n + \ldots$, where x_i is in Σ for i in \mathbb{N} .

I.4.p2 Proposition 4.6. Let K be a field with a place, E be a Hausdorff topological K-vector space of finite dimension, $(e_i)_{1 \le i \le n}$ be a basis for E. Assume either $\dim_K E = 1$ or K complete. Then the K-linear map $K^n \to E$ sending $(x_i)_{1 \le i \le n}$ to $\sum_{1 \le i \le n} x_i e_i$ is a homeomorphism.

Proposition 4.7 (Inverse function theorem). Let (K, |-|) be a complete ultrametric field, \mathcal{O} be the ring of the valuation, f be a polynomial in $\mathcal{O}[X]$, α in \mathcal{O} . Then f induces a homeomorphism $\mathring{B}(\alpha, \eta) \to \mathring{B}(f(\alpha), \eta^2)$, where $\eta = |f'(\alpha)|$.

The inverse is constructed by Newton's method.

Corollary 4.8. Suppose $|f(\alpha)| < |f'(\alpha)|^2$. Then there exists a unique β in \mathcal{O} such that $f(\beta) = 0$ and $|\beta - \alpha| < |f'(\alpha)|$. Moreover, $|\beta - \alpha| < |f(\alpha)/f'(\alpha)|$ and $f(\beta) = f(\alpha)$.

Corollary 4.9. Let f be in $\mathcal{O}[X]$, $\bar{\alpha}$ in the residue field κ of K be a simple root of the reduction $\phi(f) \in \kappa[X]$ of f, that is, $(\phi(f))(\bar{\alpha}) = 0$ and $(\phi(f)')(\bar{\alpha}) \neq 0$. Then f has a unique root α in \mathcal{O} with reduction $\bar{\alpha}$.

This can be generalized as follows.

- **I.4.pH** Proposition 4.10 (Hensel's lemma). Let K be a complete ultrametric field, \mathcal{O} be the ring of the valuation, $\mathfrak{p} \neq \mathcal{O}$ be an ideal of \mathcal{O} , $\phi: \mathcal{O}[X] \to (\mathcal{O}/\mathfrak{p})[X]$ be the reduction map, f be a polynomial in $\mathcal{O}[X]$, $\phi(f) = \bar{g}\bar{h}$, where \bar{g} and \bar{h} are polynomials in $(\mathcal{O}/\mathfrak{p})[X]$ and \bar{g} is monic. Suppose that \bar{g} and \bar{h} are strongly coprime, that is, that they generate the ideal $(\mathcal{O}/\mathfrak{p})[X]$. Then there exists a unique pair (g,h) of polynomials in $\mathcal{O}[X]$ with g monic such that $f = gh, \phi(g) = \bar{g}, \phi(h) = \bar{h}$. Moreover, g and h are coprime.
- **I.4.pHc** Corollary 4.11. Let $f = a_0 + a_1 X + \dots + a_n X^n$ be an irreducible polynomial in K[X] with $a_0 a_n \neq 0$. Then $|f|_{\max} = \max\{|a_0|, |a_n|\}$.
- **I.4.t2** Theorem 4.12. Let (K, |-|) be a complete valued field, L be a finite extension of K of degree n. Then $|\alpha| = \sqrt{|\operatorname{Nm}_{L/K}(\alpha)|}$, $\alpha \in L$ is the unique absolute value on L extending |-|.

The existence follows from $[\underline{1.4.t1}]$ $[\underline{1.4.pHc}]$ the uniqueness follows from $[\underline{4.6}]$ if |-| is nontrivial and $[\underline{5.11c}]$ |-| is trivial.

Corollary 4.13. Let (K, |-|) be as in the theorem, L be an algebraic extension of K. Then there exists a unique extension of |-| to L.

Proposition 4.14 (Krasner's lemma). Let (K, |-|) be a complete ultrametric field, L be a Galois extension of K, α be in L and β be in K. Suppose $|\beta - \alpha| < |\sigma(\alpha) - \alpha|$ for all σ in $\operatorname{Gal}(L/K)$ satisfying $\sigma(\alpha) \neq \alpha$. Then α is in K.

This is often applied in the following way. Let \overline{K} be an algebraic closure of K, α and β be in \overline{K} with α separable over K. Suppose $|\beta - \alpha| < |\alpha' - \alpha|$ for all K-conjugates $\alpha' \neq \alpha$ of α . Then $K(\alpha) \subset K(\beta)$.

I.4.pKc1 Corollary 4.15. Let K be a complete ultrametric field whose absolute value is nontrivial, L be an algebraic extension of K. If L is complete, then the separable degree and the inseparable height of L over K are both finite.

Recall that the *inseparable height* of an element x in L over K is

 $\inf\{n \mid x^{p^n} \text{ is separable over } K\},\$

where p is the characteristic exponent of K. The *inseparable height* of L over K is the maximum of the inseparable heights of the elements of L over K.

The corollary follows from the proposition and Baire category theorem.

Example 4.16. Let k be a field of characteristic p > 0,

 $L = k(X_1, X_2, \dots, X_n, \dots)((T))$

endowed with the T-adic topology, $K = L^p$. Then L and K are complete and L/K is an infinite purely inseparable extension of height 1.

I.4.pKc2 Corollary 4.17. The completion of a separably closed ultrametric field is separably closed.

Example 4.18. For any complete discrete valuation field K, the separable closure K^{sep} is not complete by 4.15, but the completion of K^{sep} is separably closed by 4.17. In particular, for any prime number p, the algebraic closure $\overline{\mathbb{Q}_p}$ of \mathbb{Q}_p is not complete, and the completion \mathbb{C}_p of $\overline{\mathbb{Q}_p}$ is algebraically closed.

5 Extension of places

Let L/K be a field extension. The restriction of any absolute value on L is an absolute value on K.

Definition 5.1. Let w be a valuation of L, v = w|K. The ramification index of w over v is $e(w/v) = [w(L^{\times}) : v(K^{\times})]$. The inertia degree of w over vis $f(w/v) = [\kappa_w : \kappa_v]$, where κ_w and κ_v are the residue fields of w and v, respectively.

[1.5.11] Lemma 5.2. Let L/K be a finite extension of fields, n = [L : K], w be a valuation on L, v = w|L. Then

$$e(w/v)f(w/v) \le n.$$

In particular, e(w/v) and f(w/v) are both finite.

- **[I.5.11c]** Corollary 5.3. Let L/K be an algebraic field extension, |-| be an absolute value on L. If the restriction of |-| is trivial, then |-| is trivial.
- **I.5.p1** Proposition 5.4. Let L/K be an algebraic field extension. Then any absolute value on K can be extended to an absolute value on L.

This follows from Zorn's lemma and $\frac{11.5.p2}{5.7}$ below.

I.5.p1c1 Corollary 5.5. Let L/K be a purely inseparable field extension. Then any absolute value on K can be extended uniquely to an absolute value on L.

I.5.p1c2 Corollary 5.6. Let L/K be a field extension. Then any valuation on K can be extended to a valuation on L.

This follows from Zorn's lemma and 3.4.

I.5.p2 Proposition 5.7. Let L/K be a finite extension of fields, v be an absolute value on K. Then there are only finitely many absolute values w_1, \ldots, w_g of L above v. If

$$\phi \colon \widehat{K_v} \otimes_K L \to \prod_{i=1}^g \widehat{L_{w_i}}$$

denotes the ring homomorphism induced by the diagonal embedding of L, then ϕ is surjective and Ker ϕ is the radical of $\widehat{K_v} \otimes_K L$. Moreover,

$$\sum_{i=1}^{g} n_i \le g,$$

where $n_i = [\widehat{L_{w_i}} : \widehat{K_v}], \ 1 \le n \le g \text{ and } n = [L:K].$

This follows from approximation theorem 2.5, 4.6 and 4.12.

I.5.p2c1 Corollary 5.8. With the notations of $\begin{bmatrix} \mathbf{I.5.p2} \\ 5.7 \end{bmatrix}$, the following conditions are equivalent

- (a) $\widehat{K_v} \otimes_K L$ is reduced;
- (b) ϕ is an isomorphism;

(c)
$$\sum_{i=1}^{g} n_i = n;$$

(d) we have an equality of characteristic polynomials

$$\operatorname{Ch}_{L/K}(x,T) = \prod_{i=1}^{g} \operatorname{Ch}_{\widehat{Lw_i}/\widehat{K_v}}(x,T)$$

for all x in L. Moreover, (d) implies

$$\operatorname{Tr}_{L/K}(x) = \sum_{i=1}^{g} \operatorname{Tr}_{\widehat{L_{w_i}}/\widehat{K_v}}(x), \operatorname{Nm}_{L/K}(x) = \prod_{i=1}^{g} \operatorname{Nm}_{\widehat{L_{w_i}}/\widehat{K_v}}(x)$$

and $|\operatorname{Nm}_{L/K}(x)|_v = \prod_{i=1}^g |x|_{w_i}^{n_i}$ for all x in L.

I.5.p2c2 Corollary 5.9. If L/K is a finite separable extension, then the conditions of $\frac{1.5.p2c1}{5.8 \text{ are satisfied.}}$

I.5.t1 Theorem 5.10. Let L/K be a finite extension, v be a valuation on K, w_1, \ldots, w_q be the extensions of v to L. Then

$$\sum_{i=1}^{g} e(w_i/v) f(w_i/v) \le n$$

Moreover, if equality holds, then $e(w_i/v)f(w_i/v) = [\widehat{L_{w_i}} : \widehat{K_v}]$ for all $1 \le i \le g$ and the conditions of 5.8 are satisfied.

This follows from $\begin{array}{c} \underline{I.5.11}\\ b.2 \end{array}$ and $\begin{array}{c} \underline{I.4.p2}\\ 4.6. \end{array}$

I.5.p3 Proposition 5.11. Let L/K be a field extension, v be a valuation of K, \mathcal{O}_v be the ring of v. Then the integral closure of \mathcal{O}_v in L is $\cap_w \mathcal{O}_w$, where w runs over the valuations of L above v and \mathcal{O}_w is the ring of w.

This follows from 5.0

I.5.p3c Corollary 5.12. Let L/K be an algebraic field extension, v be a valuation on K, \mathcal{O}_v be the ring of v, A be the integral closure of \mathcal{O}_v in L. Then $w \mapsto A \cap \mathfrak{m}_w$ gives a bijection from the set of extensions of v to L onto $\operatorname{Max}(A)$, the set of maximal ideals of A, where \mathfrak{m}_w is the ideal of w.

This follows from $\frac{1.2.p4}{2.14}$.

Definition 5.13. Let L/K be a finite extension of fields, n = [L : K], w be a valuation on L, v = w|L. The *initial ramification index* of w over v is

 $\epsilon(w/v) = \begin{cases} e(w/v) & \text{if } w \text{ is discrete,} \\ 1 & \text{otherwise.} \end{cases}$

I.5.p4 Proposition 5.14. Let L/K be a finite extension of fields, w be a valuation on L, v = w | K, \mathcal{O}_w and \mathcal{O}_v be the rings of w and v, respectively, and \mathfrak{m}_v be the ideal of v. Then $[\mathcal{O}_w/\mathfrak{m}_v\mathcal{O}_w:\mathcal{O}_v/\mathfrak{m}_v] = \epsilon(w/v)f(w/v)$.

This follows from 2.13.

Proposition 5.15. Let L/K be a finite extension of fields, v be a valuation on K, w_1, \ldots, w_g be the extensions of v to L, \mathcal{O}_v and \mathfrak{m}_v be the ring and the ideal of v, respectively, and A be the integral closure of \mathcal{O}_v in L. Then $[A/\mathfrak{m}_v A: \mathcal{O}_v/\mathfrak{m}_v] = \sum_{i=1}^g \epsilon(w_i/v) f(w_i/v).$ This follows from 5.12.

I.5.t2 Theorem 5.16. With the notations of $\begin{bmatrix} I.5.p5 \\ 5.15 \end{bmatrix}$, the following conditions are equivalent

(a) A is a finite \mathcal{O}_v -module;

(b) A is a free \mathcal{O}_v -module;

(c) $[A/\mathfrak{m}_v A: \mathcal{O}_v/\mathfrak{m}_v] = n;$

 $\begin{array}{l} (d) \sum_{i=1}^{g} e(w_i/v) f(w_i/v) = n \ and \ \epsilon(w_i/v) = e(w_i/v) \ for \ all \ 1 \leq i \leq g, \\ where \ n = [L : K]. \ Moreover, \ if \ these \ conditions \ are \ satisfied, \ then \\ e(w_i/v) f(w_i/v) \leq [\widehat{L_{w_i}} : \widehat{K_v}] \ for \ all \ 1 \leq i \leq g \ and \ the \ conditions \ of \ 5.8 \ are \\ satisfied. \end{array}$

This follows from 5.10, 5.15, Nakayama's lemma and the following.

Lemma 5.17. Let K be a field, v be a valuation on K, \mathcal{O} be the ring of v. Then any finite torsion-free \mathcal{O} -module M is free.

Proposition 5.18. Let L/K be a finite extension of fields.

(i) If L/K is purely inseparable, then $\operatorname{Tr}_{L/K}(x) = 0$ for any x in L.

(ii) If L/K is separable, then $(x, y) \mapsto \operatorname{Tr}_{L/K}(xy)$ is a non-degenerate K-bilinear form on L.

Definition 5.19. Let L/K be a finite extension of fields. The *discriminant* of a finite sequence of elements $\alpha_1, \ldots, \alpha_n$ in L over K is the element in K given by

$$D_{L/K}(\alpha_1,\ldots,\alpha_n) = \det(\operatorname{Tr}_{L/K}(\alpha_i\alpha_j))$$

Proposition 5.20. (i) If $\beta_j = \sum_{j=1}^n a_{ji}\alpha_i$, a_{ij} in K, $1 \le j \le n$, then $D_{L/K}(\beta_1, \ldots, \beta_n) = (\det(a_{ij}))^2 D_{L/K}(\alpha_1, \ldots, \alpha_n).$

(ii) Suppose L/K is separable and n = [L : K]. Let $\sigma_1, \ldots, \sigma_n$ be Kembeddings of L into a separable closure K' of K. Then $D_{L/K}(\alpha_1, \ldots, \alpha_n) = (\det(\sigma_i \alpha_j))^2$. Moreover, $D_{L/K}(\alpha_1, \ldots, \alpha_n) \neq 0$ if and only if $\{\alpha_1, \ldots, \alpha_n\}$ is a K-basis of L.

I.5.6 Proposition 5.21. Let A be a normal domain, K be the fraction field of A, L/K be a finite separable extension, B be the integral closure of A in L, $\{\alpha_1, \ldots, \alpha_n\} \subset B$ be a K-basis for L, $\{\beta_1, \ldots, \beta_n\} \subset L$ be the dual basis with respect to $\operatorname{Tr}_{L/K}$, $d = D_{L/K}(\alpha_1, \ldots, \alpha_n)$. Then

$$\alpha_1 A + \dots + \alpha_n A \subset B \subset \beta_1 A + \dots + \beta_n A \subset d^{-1}(\alpha_1 A + \dots + \alpha_n A).$$

Corollary 5.22. Let A be a Noetherian normal domain, K be the fraction field of A, L/K be a finite separable extension. Then the integral closure B of A in L is a finite A-module.

Corollary 5.23. Let A be a principal ideal domain, K be the fraction field of A, L/K be a finite separable extension. Then the integral closure B of A in L is a free A-module of rank [L:K].

Corollary 5.24. Let L/K be a finite separable field extension, v be a discrete valuation of K. Then the conditions of $\frac{1.5 \cdot t^2}{5.16}$ are satisfied.

Proposition 5.25. Let k be a field, K be a finite extension of k(T), L be a finite extension of K, v be a discrete valuation on K, trivial on k. Then the conditions of 5.16 are satisfied.

This follows from properties of Nagata rings.

I.5.p7 Proposition 5.26. Let $A \subset B$ be discrete valuation rings, K and L be the fraction fields of A and B, \mathfrak{p} and \mathfrak{P} the maximal ideals of A and B, respectively, v and w be the corresponding places. Assume either (a) B is a finite A-module; or (b) K is complete and e = e(w/v) and f = f(w/v) are finite. Let Π be a uniformizer of w, $\omega_1, \ldots, \omega_f$ be elements in B such that the images $\overline{\omega_1}, \ldots, \overline{\omega_f}$ form a A/\mathfrak{p} -basis of B/\mathfrak{P} . Then the homomorphism of A-modules

$$\bigoplus_{i=0}^{e-1} \bigoplus_{j=1}^{f} A \to B$$

is an isomorphism. Moreover, if B/\mathfrak{P} is a separable extension of A/\mathfrak{p} , then there exists α in B such that $B = A[\alpha]$.

This follows from $\overset{[\underline{1.5.11}}{5.2, (a)}$ Nakayama's lemma and (b) $\overset{[\underline{1.4.p2}}{4.6.}$

Corollary 5.27. Let (K, v) be a complete discrete valuation field, L/K be a finite extension. Then the conditions of 5.16 are satisfied.

Definition 5.28. Let (K, v) be a complete valuation field, (L, w) be an algebraic extension. If L/K is finite, we say L/K is *unramified*, if the residue field extension is separable and f(w/v) = [L : K]. In general, we say L/K is *unramified* if every finite subextension $K' \subset L$ over K is unramified.

An unramified extension is separable.

I.5.pu Proposition 5.29. Let K be a complete valuation field, L_1 and L_2 be two unramified extension of K, L be a composition field of L_1 and L_2 over K. Then L is unramified over K.

This follows from Hensel's lemma 4.10.

Corollary 5.30. Let K be a complete valuation field, L/K be an algebraic extension. Then there exists a unique maximal unramified subextension.

6 Dedekind domains

I.6.p0 Proposition 6.1. Let A be a ring. The following conditions are equivalent (a) A is a discrete valuation ring;

(b) A is a normal Noetherian local ring of dimension 1;

(c) A is a Noetherian local ring of dimension ≥ 0 whose maximal ideal is principal.

I.6.p0c Corollary 6.2. Let A be a Noetherian domain. The following conditions are equivalent

(a) A is normal of dimension ≤ 1 ;

(b) $A_{\mathfrak{p}}$ is a discrete valuation ring for every nonzero prime ideal \mathfrak{p} of A.

Definition 6.13. A *Dedekind domain* is a Noetherian domain satisfying the conditions of 6.2.

Example 6.4. The ring of rational integers \mathbb{Z} is a Dedekind domain. For any field k, the polynomial ring k[T] is a Dedekind domain.

[I.6.tk] Theorem 6.5 (Krull-Akizuki). Let A be a Noetherian domain of dimension 1, K be the fraction field of A, L/K be a finite extension, B be the integral closure of A in L. Then B is a Dedekind domain, and above every maximal ideal \mathfrak{p} of A, there are only finitely many maximal ideals of B.

Definition 6.6. Let K be a number field. The ring of integers \mathcal{O}_K of K is the integral closure of \mathbb{Z} in K.

Corollary 6.7. \mathcal{O}_K is a Dedekind domain.

An ideal of a ring A is a sub-A-module of A. This notion can be generalized as follows.

Definition 6.8. Let A be an integral domain, K be the fraction field of A. A fractional ideal of A is a sub-A-module I of K. It is invertible if there exists a fractional ideal J such that IJ = A. A fractional principal ideal is a fractional ideal of the form xA, x in K. The group of (Cartier) divisors Div(A) on A is the group of invertible fractional ideals of A. The group of principal divisors Prin.Div(A) on A is the group of invertible fractional principal ideals of A. The Picard group of A is Pic(A) = Div(A)/Prin.Div(A).

We have Prin.Div $(A) = K^{\times}/A^{\times}$ and hence the following sequence is exact

 $1 \to A^{\times} \to K^{\times} \to \operatorname{Prin.Div}(A) \to \operatorname{Div}(A) \to 0.$