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Part I

Global fields and local fields

1 Global fields

Definition 1.1. A number field is a finite extension of the field Q of rational
numbers. A function field is a finite extension of the field Fq(T ) of rational
functions over a finite field Fq. A global field is either a number field or a
function field.

Remark 1.2. (i) For any number field K, there exists a unique embedding
Q→ K since Q is prime field.

(ii) If k is a field and K is a finite extension of k(T ), then every element
T ′ of K transcendental over k defines a k-embedding k(T ) → K sending T
to T ′ such that K is a finite extension of k(T ′).

Any number field is a separable extension of Q since Q has characteris-
tic 0. For function fields we have the following result.

Proposition 1.3. Let k be a perfect field, K be a finite extension of k(T ).
Then there exists an element T ′ of K such that K is a finite separable exten-
sion of k(T ′).

This follows from the following.

Theorem 1.4 (Lüroth). Let k be a perfect field, K be a subfield of k(T )
containing k. Then there exists T ′ in K such that K = k(T ′).
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2 Places

Let K be a field.

Definition 2.1. An absolute value on K is a function K → R≥0 sending x
to |x| such that, for any x and y in K, we have

(a) |x| = 0 if and only if x = 0;
(b) |xy| = |x||y|; and
(c) |x+ y| ≤ |x|+ |y| (triangle inequality).
The absolute value is ultrametric if, for any x and y in K, |x + y| ≤

max{|x|, |y|} (strong triangle inequality). An absolute value is Archimedean
if it is not ultrametric.

A valued field is a field endowed with an absolute value. An ultrametric
field is a field endowed with an ultrametric absolute value.

An absolute value defines a metric on K and hence a topology on K.
The map K → R≥0 sending x to |x| is continuous if we endow R≥0 with the
Euclidean topology.

Example 2.2. (i) |x| = 1 for all x 6= 0 defines an ultrametric absolute value
on K, called the trivial absolute value on K. It defines the discrete topology
on K.

(ii) If |−| is an absolute value on K, then |−|α is an absolute value on K
for 0 < α ≤ 1. If |−| is an ultrametric absolute value on K, then |−|α is an
ultrametric absolute value on K for α > 0.

(iii) On Q, the usual absolute value is an absolute value, denoted by |−|∞.

Definition 2.3. Two absolute values on K are equivalent if they define the
same topology on K. A place of K is an equivalent class of nontrivial absolute
values on K.

I.2.p1 Proposition 2.4. Let |−|1 and |−|2 be two absolute values on K. The fol-
lowing conditions are equivalent

(a) |−|1 and |−|2 are equivalent.
(b) |−|1 = |−|α2 for some α > 0.
(c) For any x in K, |x|1 < 1 if and only if |x|2 < 1.

I.2.ta Theorem 2.5 (Approximation). Let v1, . . . , vn be pairwise distinct places
of K. Then the image of the diagonal map K →

∏n
i=1Kvi is dense, where Kvi

is K endowed with the topology defined by vi. In other words, if |−|1, . . . , |−|n
are absolute values on K representing v1, . . . , vn, respectively, then for any
x1, . . . , xn in K and ε > 0, there exists x in K such that |x− xi|i < ε.
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This follows from
I.2.p1I.2.p1
2.4.

Proposition 2.6. Let |−| be an absolute value on K. The following condi-
tions are equivalent

(a) |−| is ultrametric;
(b) |n| ≤ 1 for all n ∈ Z;
(c) The map K× → R>0 sending x to |x| is continuous if we endow R>0

with the discrete topology.

Corollary 2.7. If the characteristic of K is positive, then every absolute
value on K is ultrametric.

Definition 2.8. A valuation (of height 1) on K is a function v : K× →
R ∪ {∞} such that, for any x and y in K, we have

(a) v(x) =∞ if and only if x = 0;
(b) v(xy) = v(x) + v(y); and
(c) v(x+ y) ≥ min{v(x), v(y)}.

Fix 0 < ε < 1. For any valuation v on K, |x|v = εv(x) defines an ultra-
metric absolute value on K. v 7→ |−|v gives a bijection from valuations on K
to ultrametric absolute values on K. We say two valuations v1 and v2 on K
are equivalent if the corresponding absolute values on K are equivalent.

Example 2.9. (i) v(x) = 0 for all x 6= 0 defines a valuation on K, called the
trivial valuation on K. It corresponds to the trivial absolute value on K.

(ii) If v is a valuation on K, then αv is a valuation on K equivalent
to v for any α > 0. Conversely, by

I.2.p1I.2.p1
2.4, two valuations v1 and v2 on K are

equivalent if and only if v1 = αv2 for some α > 0.
(iii) Let p be a prime number. For any x in Q×, x = par/s, where a,

r and s are integers such that (r, p) = (s, p) = 1. Put vp(x) = a. This
defines a discrete valuation vp on Q, called the p-adic valuation on Q. Put
|x|p = p−vp(x).

If v is a valuation on K, O = {x | v(x) ≥ 0} is a ring, called the ring
of v; m = {x | v(x) > 0} is a maximal ideal, called the ideal of v. If v is
trivial, O = K, m = 0.

I.2.pr Proposition 2.10. Let v be a nontrivial valuation on K, O be the ring of v,
m be the ideal of v. Then O is a normal local domain of dimension 1.
Moreover the following conditions are equivalent
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(a) O is a discrete valuation ring;
(b) O is Noetherian;
(c) m is principal;
(d) v(K×) is a discrete subgroup of R.

A valuation v is called discrete if it satisfies the conditions of
I.2.prI.2.pr
2.10. It is

called normalized if v(K×) = Z. A generator of m is called a uniformizer
of v.

Definition 2.11. Let Γ be a subset of R. A major subset of Γ is a subset
of Γ of the form ∅, Γ, Γ ∩ R>x, or Γ ∩ R≥x for some x in R.

I.2.p3 Proposition 2.12. Let v be a valuation on K, O be the ring of v. The
map M 7→ v(M − {0}) from the set of sub-O-modules of K to the set of
major subsets of v(K×) is a bijection. In other words, for any absolute value
corresponding to v, the sub-O-modules of K are 0, K, B̊(0, r), and B̄(0, r),
r > 0.

I.2.p3c Corollary 2.13. The map I 7→ v(I −{0}) from the set of ideals of O to the
set of major subsets of v(O − {0}) is a bijection. In other words, for any
absolute value corresponding to v, the ideals of O are 0, B̊(0, r), and B̄(0, r),
0 < r ≤ 1.

I.2.p4 Proposition 2.14. Let v1, . . . , vn be pairwise distinct ultrametric places of K,
O1, . . . ,On be the corresponding rings, m1, . . . ,mn be the corresponding ide-
als, A = ∩ni=1Oi, pi = mi ∩ A, i = 1, . . . , n. Then Frac(A) = K, the max-
imal ideals of A are p1, . . . , pn, which are pairwise distinct, and Api = Oi,
i = 1, . . . , n.

This follows from
I.2.taI.2.ta
2.5.

3 Places of Q and k(T )

Theorem 3.1. The places of Q are the places defined by |−|∞ and |−|p,
where p runs over all primes numbers. They are pairwise distinct.

Let Fq be a finite field. Every absolute value on Fq(T ) is trivial on Fq.
More generally, for any field k, we now determine all the absolute values on
k(T ) trivial on k.
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Example 3.2. (i) Let P be the set of monic irreducible polynomials in k[T ].
Every f in k(T )× can be uniquely decomposed as

f = λ
∏
P∈P

P vP (f),

where λ is in k×, vP (f) is in Z and is zero for all but a finite number of P .
Then vP is a valuation of k(T ).

(ii) For f = P
Q

in k(T )× with P and Q in k[T ] − {0}, define the degree

of f to be deg f = degP − degQ. Then v∞(f) = − deg f is a valuation on
k(T ).

Theorem 3.3. The places of k(T ) inducing the trivial absolute value on k
are those defined by vP , P ∈ P and v∞. They are pairwise distinct.

This establishes a bijection between places of k(T ) trivial on k and closed
points of the scheme P1

k.

I.3.p Proposition 3.4. Let (K, |−|) be an ultrametric valued field. For f = a0 +
a1X+ · · ·+anXn in K[T ], define |f |max = max0≤i≤n|ai|. This extends unique
to an ultrametric absolute value on K(T ), which extends |−| on K.

4 Completion

Let (K, |−|) be a valued field. Then the completion of K

K̂ = {Cauchy sequences in K}/{sequences in K converging to 0}

is a field. The absolute value on K extends by continuity to an absolute
value on K̂. We have |K̂| = R≥0 if K is Archimedean, and |K̂| = |K| if K is
ultrametric. Moreover, if K is ultrametric, the map OK/mK → OK̂/mK̂ is
an isomorphism.

Example 4.1. (i) The completion of Q with respect to v∞ is R. The com-
pletion of Q with respect to vp is Qp, the field of p-adic numbers.

(ii) Let k be a field, P be a monic irreducible polynomial in k[T ], kP =
k[T ]/(P ). Then kP is a finite extension of k and the completion of k(T )
with respect to vP is the field kP ((P )) of Laurent series. In particular, the
completion of k(T ) with respect to vT is k((T )). The completion of k(T )
with respect to v∞ is k(( 1

T
)).
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I.4.tG Theorem 4.2 (Gelfand-Mazur). Any Banach algebra over C that is a divi-
sion algebra is isomorphic to C.

I.4.t1 Theorem 4.3. Let K be a complete Archimedean valued field. Then K is
isomorphic to either R or C as a topological field.

This follows from
I.4.tGI.4.tG
4.2.

Corollary 4.4. Any Archimedean valued field is a subfield of C.

Let K be a field with a discrete valuation. Then the maps

OK̂ → lim←−
n∈N
OK̂/m

n
K̂
, OK/mn

K → OK̂/m
n
K̂

are isomorphisms.

Proposition 4.5. Let O be a complete discrete valuation ring, π be a uni-
formizer, Σ be a system of representatives for O/m. Then every x in O can
be written uniquely as the convergent series x = x0 + x1π+ · · ·+ xnπ

n + . . . ,
where xi is in Σ for i in N.

I.4.p2 Proposition 4.6. Let K be a field with a place, E be a Hausdorff topological
K-vector space of finite dimension, (ei)1≤i≤n be a basis for E. Assume either
dimK E = 1 or K complete. Then the K-linear map Kn → E sending
(xi)1≤i≤n to

∑
1≤i≤n xiei is a homeomorphism.

Proposition 4.7 (Inverse function theorem). Let (K, |−|) be a complete
ultrametric field, O be the ring of the valuation, f be a polynomial in O[X],
α in O. Then f induces a homeomorphism B̊(α, η) → B̊(f(α), η2), where
η = |f ′(α)|.

The inverse is constructed by Newton’s method.

Corollary 4.8. Suppose |f(α)| < |f ′(α)|2. Then there exists a unique β in O
such that f(β) = 0 and |β − α| < |f ′(α)|. Moreover, |β − α| < |f(α)/f ′(α)|
and f(β) = f(α).

Corollary 4.9. Let f be in O[X], ᾱ in the residue field κ of K be a sim-
ple root of the reduction φ(f) ∈ κ[X] of f , that is, (φ(f))(ᾱ) = 0 and
(φ(f)′)(ᾱ) 6= 0. Then f has a unique root α in O with reduction ᾱ.

This can be generalized as follows.
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I.4.pH Proposition 4.10 (Hensel’s lemma). Let K be a complete ultrametric field,
O be the ring of the valuation, p 6= O be an ideal of O, φ : O[X]→ (O/p)[X]
be the reduction map, f be a polynomial in O[X], φ(f) = ḡh̄, where ḡ and
h̄ are polynomials in (O/p)[X] and ḡ is monic. Suppose that ḡ and h̄ are
strongly coprime, that is, that they generate the ideal (O/p)[X]. Then there
exists a unique pair (g, h) of polynomials in O[X] with g monic such that
f = gh, φ(g) = ḡ, φ(h) = h̄. Moreover, g and h are coprime.

I.4.pHc Corollary 4.11. Let f = a0+a1X+ · · ·+anX
n be an irreducible polynomial

in K[X] with a0an 6= 0. Then |f |max = max{|a0|, |an|}.

I.4.t2 Theorem 4.12. Let (K, |−|) be a complete valued field, L be a finite ex-
tension of K of degree n. Then |α| =

√
|NmL/K(α)|, α ∈ L is the unique

absolute value on L extending |−|.

The existence follows from
I.4.t1I.4.t1
4.3 and

I.4.pHcI.4.pHc
4.11. The uniqueness follows from

I.4.p2I.4.p2
4.6

if |−| is nontrivial and
I.5.l1cI.5.l1c
5.3 if |−| is trivial.

Corollary 4.13. Let (K, |−|) be as in the theorem, L be an algebraic exten-
sion of K. Then there exists a unique extension of |−| to L.

Proposition 4.14 (Krasner’s lemma). Let (K, |−|) be a complete ultrametric
field, L be a Galois extension of K, α be in L and β be in K. Suppose
|β − α| < |σ(α) − α| for all σ in Gal(L/K) satisfying σ(α) 6= α. Then α is
in K.

This is often applied in the following way. Let K̄ be an algebraic closure
of K, α and β be in K̄ with α separable over K. Suppose |β − α| < |α′ − α|
for all K-conjugates α′ 6= α of α. Then K(α) ⊂ K(β).

I.4.pKc1 Corollary 4.15. Let K be a complete ultrametric field whose absolute value
is nontrivial, L be an algebraic extension of K. If L is complete, then the
separable degree and the inseparable height of L over K are both finite.

Recall that the inseparable height of an element x in L over K is

inf{n | xpn is separable over K},

where p is the characteristic exponent of K. The inseparable height of L over
K is the maximum of the inseparable heights of the elements of L over K.

The corollary follows from the proposition and Baire category theorem.
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Example 4.16. Let k be a field of characteristic p > 0,

L = k(X1, X2, . . . , Xn, . . . )((T ))

endowed with the T -adic topology, K = Lp. Then L and K are complete
and L/K is an infinite purely inseparable extension of height 1.

I.4.pKc2 Corollary 4.17. The completion of a separably closed ultrametric field is
separably closed.

Example 4.18. For any complete discrete valuation field K, the separable
closure Ksep is not complete by

I.4.pKc1I.4.pKc1
4.15, but the completion of Ksep is separably

closed by
I.4.pKc2I.4.pKc2
4.17. In particular, for any prime number p, the algebraic closure

Qp of Qp is not complete, and the completion Cp of Qp is algebraically closed.

5 Extension of places

Let L/K be a field extension. The restriction of any absolute value on L is
an absolute value on K.

Definition 5.1. Let w be a valuation of L, v = w|K. The ramification index
of w over v is e(w/v) = [w(L×) : v(K×)]. The inertia degree of w over v
is f(w/v) = [κw : κv], where κw and κv are the residue fields of w and v,
respectively.

I.5.l1 Lemma 5.2. Let L/K be a finite extension of fields, n = [L : K], w be a
valuation on L, v = w|L. Then

e(w/v)f(w/v) ≤ n.

In particular, e(w/v) and f(w/v) are both finite.

I.5.l1c Corollary 5.3. Let L/K be an algebraic field extension, |−| be an absolute
value on L. If the restriction of |−| is trivial, then |−| is trivial.

I.5.p1 Proposition 5.4. Let L/K be an algebraic field extension. Then any abso-
lute value on K can be extended to an absolute value on L.

This follows from Zorn’s lemma and
I.5.p2I.5.p2
5.7 below.

I.5.p1c1 Corollary 5.5. Let L/K be a purely inseparable field extension. Then any
absolute value on K can be extended uniquely to an absolute value on L.
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I.5.p1c2 Corollary 5.6. Let L/K be a field extension. Then any valuation on K can
be extended to a valuation on L.

This follows from Zorn’s lemma and
I.3.pI.3.p
3.4.

I.5.p2 Proposition 5.7. Let L/K be a finite extension of fields, v be an absolute
value on K. Then there are only finitely many absolute values w1, . . . , wg of
L above v. If

φ : K̂v ⊗K L→
g∏
i=1

L̂wi

denotes the ring homomorphism induced by the diagonal embedding of L, then
φ is surjective and Kerφ is the radical of K̂v ⊗K L. Moreover,

g∑
i=1

ni ≤ g,

where ni = [L̂wi
: K̂v], 1 ≤ n ≤ g and n = [L : K].

This follows from approximation theorem
I.2.taI.2.ta
2.5,

I.4.p2I.4.p2
4.6 and

I.4.t2I.4.t2
4.12.

I.5.p2c1 Corollary 5.8. With the notations of
I.5.p2I.5.p2
5.7, the following conditions are equiv-

alent
(a) K̂v ⊗K L is reduced;
(b) φ is an isomorphism;
(c)

∑g
i=1 ni = n;

(d) we have an equality of characteristic polynomials

ChL/K(x, T ) =

g∏
i=1

ChL̂wi/K̂v
(x, T )

for all x in L.
Moreover, (d) implies

TrL/K(x) =

g∑
i=1

TrL̂wi/K̂v
(x),NmL/K(x) =

g∏
i=1

NmL̂wi/K̂v
(x)

and |NmL/K(x)|v =
∏g

i=1|x|ni
wi

for all x in L.

I.5.p2c2 Corollary 5.9. If L/K is a finite separable extension, then the conditions
of

I.5.p2c1I.5.p2c1
5.8 are satisfied.
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I.5.t1 Theorem 5.10. Let L/K be a finite extension, v be a valuation on K,
w1, . . . , wg be the extensions of v to L. Then

g∑
i=1

e(wi/v)f(wi/v) ≤ n.

Moreover, if equality holds, then e(wi/v)f(wi/v) = [L̂wi
: K̂v] for all 1 ≤ i ≤

g and the conditions of
I.5.p2c1I.5.p2c1
5.8 are satisfied.

This follows from
I.5.l1I.5.l1
5.2 and

I.4.p2I.4.p2
4.6.

I.5.p3 Proposition 5.11. Let L/K be a field extension, v be a valuation of K, Ov
be the ring of v. Then the integral closure of Ov in L is ∩wOw, where w runs
over the valuations of L above v and Ow is the ring of w.

This follows from
I.5.p1c2I.5.p1c2
5.6.

I.5.p3c Corollary 5.12. Let L/K be an algebraic field extension, v be a valuation
on K, Ov be the ring of v, A be the integral closure of Ov in L. Then
w 7→ A ∩ mw gives a bijection from the set of extensions of v to L onto
Max(A), the set of maximal ideals of A, where mw is the ideal of w.

This follows from
I.2.p4I.2.p4
2.14.

Definition 5.13. Let L/K be a finite extension of fields, n = [L : K], w be
a valuation on L, v = w|L. The initial ramification index of w over v is

ε(w/v) =

{
e(w/v) if w is discrete,

1 otherwise.

I.5.p4 Proposition 5.14. Let L/K be a finite extension of fields, w be a valuation
on L, v = w|K, Ow and Ov be the rings of w and v, respectively, and mv be
the ideal of v. Then [Ow/mvOw : Ov/mv] = ε(w/v)f(w/v).

This follows from
I.2.p3cI.2.p3c
2.13.

I.5.p5 Proposition 5.15. Let L/K be a finite extension of fields, v be a valuation
on K, w1, . . . , wg be the extensions of v to L, Ov and mv be the ring and
the ideal of v, respectively, and A be the integral closure of Ov in L. Then
[A/mvA : Ov/mv] =

∑g
i=1 ε(wi/v)f(wi/v).
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This follows from
I.5.p3cI.5.p3c
5.12.

I.5.t2 Theorem 5.16. With the notations of
I.5.p5I.5.p5
5.15, the following conditions are

equivalent
(a) A is a finite Ov-module;
(b) A is a free Ov-module;
(c) [A/mvA : Ov/mv] = n;
(d)

∑g
i=1 e(wi/v)f(wi/v) = n and ε(wi/v) = e(wi/v) for all 1 ≤ i ≤ g,

where n = [L : K]. Moreover, if these conditions are satisfied, then

e(wi/v)f(wi/v) ≤ [L̂wi
: K̂v] for all 1 ≤ i ≤ g and the conditions of

I.5.p2c1I.5.p2c1
5.8 are

satisfied.

This follows from
I.5.t1I.5.t1
5.10,

I.5.p5I.5.p5
5.15, Nakayama’s lemma and the following.

Lemma 5.17. Let K be a field, v be a valuation on K, O be the ring of v.
Then any finite torsion-free O-module M is free.

Proposition 5.18. Let L/K be a finite extension of fields.
(i) If L/K is purely inseparable, then TrL/K(x) = 0 for any x in L.
(ii) If L/K is separable, then (x, y) 7→ TrL/K(xy) is a non-degenerate

K-bilinear form on L.

Definition 5.19. Let L/K be a finite extension of fields. The discriminant
of a finite sequence of elements α1, . . . , αn in L over K is the element in K
given by

DL/K(α1, . . . , αn) = det(TrL/K(αiαj)).

Proposition 5.20. (i) If βj =
∑n

j=1 ajiαi, aij in K, 1 ≤ j ≤ n, then

DL/K(β1, . . . , βn) = (det(aij))
2DL/K(α1, . . . , αn).

(ii) Suppose L/K is separable and n = [L : K]. Let σ1, . . . , σn be K-
embeddings of L into a separable closure K ′ of K. Then DL/K(α1, . . . , αn) =
(det(σiαj))

2. Moreover, DL/K(α1, . . . , αn) 6= 0 if and only if {α1, . . . , αn} is
a K-basis of L.

I.5.6 Proposition 5.21. Let A be a normal domain, K be the fraction field of A,
L/K be a finite separable extension, B be the integral closure of A in L,
{α1, . . . , αn} ⊂ B be a K-basis for L, {β1, . . . , βn} ⊂ L be the dual basis with
respect to TrL/K, d = DL/K(α1, . . . , αn). Then

α1A+ . . . αnA ⊂ B ⊂ β1A+ . . . βnA ⊂ d−1(α1A+ . . . αnA).
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Corollary 5.22. Let A be a Noetherian normal domain, K be the fraction
field of A, L/K be a finite separable extension. Then the integral closure B
of A in L is a finite A-module.

Corollary 5.23. Let A be a principal ideal domain, K be the fraction field
of A, L/K be a finite separable extension. Then the integral closure B of A
in L is a free A-module of rank [L : K].

Corollary 5.24. Let L/K be a finite separable field extension, v be a discrete
valuation of K. Then the conditions of

I.5.t2I.5.t2
5.16 are satisfied.

Proposition 5.25. Let k be a field, K be a finite extension of k(T ), L be a
finite extension of K, v be a discrete valuation on K, trivial on k. Then the
conditions of

I.5.t2I.5.t2
5.16 are satisfied.

This follows from properties of Nagata rings.

I.5.p7 Proposition 5.26. Let A ⊂ B be discrete valuation rings, K and L be the
fraction fields of A and B, p and P the maximal ideals of A and B, respec-
tively, v and w be the corresponding places. Assume either (a) B is a finite
A-module; or (b) K is complete and e = e(w/v) and f = f(w/v) are finite.
Let Π be a uniformizer of w, ω1, . . . , ωf be elements in B such that the images
ω1, . . . , ωf form a A/p-basis of B/P. Then the homomorphism of A-modules

e−1⊕
i=0

f⊕
j=1

A→ B

is an isomorphism. Moreover, if B/P is a separable extension of A/p, then
there exists α in B such that B = A[α].

This follows from
I.5.l1I.5.l1
5.2, (a) Nakayama’s lemma and (b)

I.4.p2I.4.p2
4.6.

Corollary 5.27. Let (K, v) be a complete discrete valuation field, L/K be a
finite extension. Then the conditions of

I.5.t2I.5.t2
5.16 are satisfied.

Definition 5.28. Let (K, v) be a complete valuation field, (L,w) be an
algebraic extension. If L/K is finite, we say L/K is unramified, if the residue
field extension is separable and f(w/v) = [L : K]. In general, we say L/K is
unramified if every finite subextension K ′ ⊂ L over K is unramified.

An unramified extension is separable.
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I.5.pu Proposition 5.29. Let K be a complete valuation field, L1 and L2 be two
unramified extension of K, L be a composition field of L1 and L2 over K.
Then L is unramified over K.

This follows from Hensel’s lemma
I.4.pHI.4.pH
4.10.

Corollary 5.30. Let K be a complete valuation field, L/K be an algebraic
extension. Then there exists a unique maximal unramified subextension.

6 Dedekind domains

I.6.p0 Proposition 6.1. Let A be a ring. The following conditions are equivalent
(a) A is a discrete valuation ring;
(b) A is a normal Noetherian local ring of dimension 1;
(c) A is a Noetherian local ring of dimension ≥ 0 whose maximal ideal is

principal.

I.6.p0c Corollary 6.2. Let A be a Noetherian domain. The following conditions are
equivalent

(a) A is normal of dimension ≤ 1;
(b) Ap is a discrete valuation ring for every nonzero prime ideal p of A.

Definition 6.3. A Dedekind domain is a Noetherian domain satisfying the
conditions of

I.6.p0cI.6.p0c
6.2.

Example 6.4. The ring of rational integers Z is a Dedekind domain. For
any field k, the polynomial ring k[T ] is a Dedekind domain.

I.6.tk Theorem 6.5 (Krull-Akizuki). Let A be a Noetherian domain of dimen-
sion 1, K be the fraction field of A, L/K be a finite extension, B be the
integral closure of A in L. Then B is a Dedekind domain, and above every
maximal ideal p of A, there are only finitely many maximal ideals of B.

Definition 6.6. Let K be a number field. The ring of integers OK of K is
the integral closure of Z in K.

Corollary 6.7. OK is a Dedekind domain.

An ideal of a ring A is a sub-A-module of A. This notion can be gener-
alized as follows.
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Definition 6.8. Let A be an integral domain, K be the fraction field of A. A
fractional ideal of A is a sub-A-module I of K. It is invertible if there exists a
fractional ideal J such that IJ = A. A fractional principal ideal is a fractional
ideal of the form xA, x in K. The group of (Cartier) divisors Div(A) on A is
the group of invertible fractional ideals of A. The group of principal divisors
Prin.Div(A) on A is the group of invertible fractional principal ideals of A.
The Picard group of A is Pic(A) = Div(A)/Prin.Div(A).

We have Prin.Div(A) = K×/A× and hence the following sequence is exact

1→ A× → K× → Prin.Div(A)→ Div(A)→ 0.
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