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1 Formal properties of admissible representations

fix a (Qp,ΓK)-regular ring B and write E := BΓK .

Theorem 1.1. For every V ∈ RepQp
(ΓK) we have the following statements:

1. The natural map
αV : DB(V )⊗E B → V ⊗Qp

B

is B-linear, ΓK-equivariant, and injective.

2. We have an inequality
dimE DB(V ) ≤ dimQp

V (1)

with equality if and only if αV is an isomorphism.

Proof. The natural αV is given by

αV : DB(V )⊗E B → (V ⊗Qp
B)⊗E B ∼= V ⊗Qp

(B ⊗E B)→ V ⊗Qp
B,

which is B-linear and ΓK-equivariant by inspection. We need to show that αV is injective. The fraction
field C of B is (Qp,ΓK)-regular. We thus have a natural map

βV : DC(V )⊗E C → V ⊗Qp
C

which fits into a commutative diagram

where both vertical maps are injective. Therefore it suffices to prove the injectivity of βV .
Let (xi) be a basis of DC(V ) = (V ⊗Qp

C)ΓK over E. We regard each xi as an element in V ⊗Qp
C.

Note that (xi) spans DC(V )⊗E C over C.
Assume for contradiction that the kernel of βV is not trivial. Then we have a nontrivial relation of
the form

∑
bixi = 0 with bi ∈ C. Let us choose such a relation with minimal length. We may assume

br = 1 for some r. For every γ ∈ ΓK we find

0 = γ(
∑

bixi)−
∑

bixi =
∑

(γ(bi)− bi)xi.

Since the coefficient of xr vanishes, the minimality of our relation yields bi = γ(bi) for each bi, or
equivalently bi ∈ CΓK = E. Hence our relation gives a nontrivial relation for (xi) over E, thereby
yielding a desired contradiction.
Since the extension of scalars from B to C preserves injectivity, αV induces an injective map

DB(V )⊗E C ↪→ V ⊗Qp
C. (2)

The desired inequality now follows by observing

dimC DB(V )⊗E C = dimE DB(V ) and dimC V ⊗Qp
C = dimQp

V. (3)
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Hence it remains to consider the equality condition. If αV is an isomorphism, the map (2) also becomes
an isomorphism, thereby yielding equality in (1) by (3). Let us now assume that equality in (1) holds,
and write

d := dimE DB(V ) = dimQp
V.

By (3) we find that the map (2) is an isomorphism for being an injective map between two vector
spaces of the same dimension. Let us choose a basis (ei) of DB(V ) = (V ⊗Qp

B)ΓK over E and a basis
(vi) of V over Qp. Then we can represent αV by a d × d matrix MV . We have det(MV ̸= 0 as αV

induces an isomorphism (2). We wish to show det(MV ) ∈ B×.
Let us consider the identity

αV (e1 ∧ · · · ∧ ed) = det(MV )(v1 ∧ · · · ∧ vd).

By construction, ΓK acts trivially on e1∧· · ·∧ed and by someQp-valued character η on v1∧· · ·∧vd. Since
αV is ΓK-equivariant, we deduce that ΓK acts on det(MV ) by η−1. Hence we obtain det(MV ) ∈ B×

as B is (Qp,ΓK)-regular, thereby completing the proof.

Proposition 1.2. The functor DB is exact and faithful on RepBQp
(ΓK).

Proof. Let V and W be B-admissible representations. Suppose that f ∈ HomQp
[ΓK ](V,W ) induces

a zero map DB(V ) → DB(W ). Then f induces a zero map V ⊗Qp
B → W ⊗Qp

B by Theorem 1.1,

which means that f must be a zero map. We thus find that the functor DB is faithful on RepBQp
(ΓK).

It remains to verify that DB is exact on RepBQp
(ΓK). Let us consider an arbitrary short exact sequence

of B-admissible representations
0→ U → V →W → 0.

Recall that every algebra over a field is faithfully flat; in particular, B is faithfully flat over both Qp

and E. Therefore we find that the sequence

0→ U ⊗Qp B → V ⊗Qp B →W ⊗Qp B → 0.

is exact, which implies that the sequence

0→ DB(U)⊗E B → DB(V )⊗E B → DB(W )⊗E B → 0

is also exact by Theorem 1.1. The desired assertion now follows by the fact that B is faithfully flat
over E.

Proposition 1.3. The category RepBQp
(ΓK) is closed under taking subquotients.

Proof. Consider a short exact sequence of p-adic representations

0→ U → V →W → 0

with V ∈ RepBQp
(ΓK). We wish to show that both U and W are B-admissible. SInce the functor DB

is left exact by consturction, we have a left exact seuqence

0→ DB(U)→ DB(V )→ DB(W ).

In addition, by Theorem 1.2.1 we have inequalities

dimE DB(U) ≤ dimQp
U and dimE DB(W ) ≤ dimQp

W.

Then the exact sequences gives us

dimE DB(V ) ≤ dimE DB(U) + dimE DB(W ) ≤ dimQp U + dimQp W = dimQp V,

which are in fact equalities as V is B-admissible. We thus have equalities in above, thereby deducing
the desired assertion.

In general, the category of RepBQp
(ΓK) is not closed under taking extensions. In fact, there is an

example which is Hodge–Tate but not de Rham given any non-split extension V :

0→ Qp → V → Qp(1)→ 0

We also note the following proposition, for which we will skip the proof, but Serin’s notes contains a
good coverage of the proof.
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Proposition 1.4. Give V,W ∈ RepBQp
(ΓK), we have V ⊗Qp W ∈ RepBQp

(ΓK) with a natural isomor-
phism

DB(V )⊗E DB(W ) ∼= DB(V ⊗Qp
W ).

Proposition 1.5. For every V ∈ RepBQp
(ΓK), we have ∧n(V ) ∈ RepBQp

(ΓK) and that Symn V ∈
RepBQp

(ΓK) with natural isomorphisms

∧n(DB(V )) ∼= DV (∧n(V )) and Symn(DB(V )) ∼= DB(Sym
n(V )).

Proof. Let us only consider exterior powers here, as the same argument works with symmetric powers.
By Proposition 1.4 we have V ⊗n ∈ RepBQp

(ΓK) with a natural isomorphism DB(V
⊗n) ∼= DB(V )⊗n.

Hence by Proposition 1.3 we have ∧n(V ) ∈ RepBQp
(ΓK) with a natural E-linear map

0→ DB(V )⊗n ∼−→ DB(V
⊗n) ↠ DB(∧n(V ))

where the surjectivity of the second arrow follows from the exactness of DB as noted in Proposition 1.2.
It is then straightforward to check that this map factors through the natural surjection DB(V )⊗n ↠
∧n(DB(V )). We thus obtain a natural surjective E-linear map

∧n(DB(V )) ↠ DV (∧n(V )),

which turns out to be an isomoprhism since we have

dimE ∧n(DB(V )) = dimE DB(∧n(V ))

by the B-admissibility of V and ∧n(V ).

Proposition 1.6. If V ∈ RepBQp
(ΓK), V ∨ ∈ RepBQp

(ΓK) with a perfect pairing:

DB(V )⊗E DB(V
∨)

∼=−→ DB(V ⊗Qp
V ∨) ∼= DB(Qp) = E

Proof. Case 1: dimQp
V = 1. We want to show dimE DB(V

∨) = 1 = dimQp
V ∨. Choose a basis v of

V over Qp. There exists a character η : ΓK → Q×
p such that

γ(v) = η(γ)v for all γ ∈ ΓK .

Since V is B-admissible, DB(V ) = (V ⊗Qp B)ΓK is 1-dimensional. Hence, there exists b ∈ B such that
v ⊗ b is a ΓK-invariant E-basis of DB(V ).

Since V is B-admissible, then the map αV : DB(V )⊗E B
∼=−→ V ⊗Qp

B is an isomorphism, and hence
it maps v ⊗ b to a basis V ⊗Qp B. Hence b ∈ B×. Finally, we note that

γ(v ⊗ b) = γ(v)⊗ γ(b) = η(γ)v ⊗ γ(b) = v ⊗ η(γ)γ(b) for every γ ∈ ΓK ,

Hence b = η(γ)γ(b) for all γ ∈ ΓK . This shows that

DB(V
∨) = (V ∨ ⊗Qp

B)ΓK

contains a non-zero v∨ ⊗ b−1 where v∨ is a dual basis. Hence V ∨ is B-admissible and DB(V
∨) is

spanned by v∨ ⊗ b−1. One easily checks that hte pairing is perfect.

Case 2. General case. Let d = dimQp
V . There is a natural ΓK-equivalent isomorphism

given by
(f1 ∧ · · · ∧ fd)⊗ (w2 ∧ · · · ∧ wd) 7→ (w1 7→ det(fi(wj))).

Since V is B-admissible, det(V ) =
∧d

V is B-admissible, hence

det(V ∨) = det(V )∨
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is B-admissible by case 1.

Since
∧d−1

V is B-admissible by Proposition 1.5, this shows that V ∨ is also B-admissible. We finally
want to show that the pairing is perfect.

Fact: If W,W ′ are vector spaces with d = dimE W = dimE W ′ then W ×W ′ → E is perfect if and
only if

det(W )× det(W ′)→ E

is perfect. But we have the induced pairing:

Since dimdet(V ) = 1, this completes the proof.

2 De Rham representations

The goal is to define and study:

1. The de Rham period ring BdR.

2. de Rham representations.

The references for this section are [BC09, Sections 4, 6] and [Sch12]. Outline of consturction of BdR

The field CK is perfectoid. Hence F = C♭
K is a perfectoid field of characteristic p. Let OF be the

valuation ring of F .
We get a surjective ring homomorphism:

θ : W (OF ) ↠ OCK

which gives
θ : W (OF )[1/p] ↠ CK

and we may consider ker(θ). Then

B+
dR = lim←−

j

W (OF )[1/p]/(ker θ)
j

BdR = Frac(B+
dR)

3 Perfectoid fields and tilting.

Definition 3.1. Let C be a complete non-archimedean field of residue characteristic p with valuation
ring OC . Then C is a perfectoid field if:

1. the valuation on C is non-discrete,

2. the pth power map on OC/pOC is surjective.

Lemma 3.2. Let C be a complete non-archimedean field of residue characteristic p with non-trivial
valuation. Assume that the pth power map is surjective on C. Then C is perfectoid.

Proof. We first check property (1). Let v be the valuation on C and suppose v is discrete. Then there
exists x ∈ C with minimal positive valuation. Also, x = yp for some y ∈ C by the surjecitivity of the
pth power map.

Then

0 < v(y) =
1

p
v(x) < v(x)

4



which is a contradiction.

For (2), it suffices to show surjectivity on OC . For all x ∈ OC , there exists y ∈ C such that x = yp.
Then v(y) = 1

pv(x) > 0, so y ∈ OC .

Proposition 3.3. The field CK is perfectoid.

Proof. This follows from Lemma 3.2, since CK is algebraically closed.

Proposition 3.4. A non-archimedean field of characteristic p is perfectoid if and only if it is complete
and perfect.

Fix a perfectoid field C. Write OC for the valuation ring of C and v for the valuation on C.

Definition 3.5. The tilt of C is
C♭ = lim←−

x 7→xp

C

with the natural multiplication.

A priori, C♭ is a multiplicative monoid. We will later define a topology on it, which turns out to be
equivalent to the inverse limit topology. We want to show C♭ is a perfectoid field of characteristic p.

Lemma 3.6. Fix φ ∈ C× such that 0 < v(φ) ≤ v(p). For all x, y ∈ OC with x− y ∈ φOC , then

xpn

− yp
n

∈ φn+1OC .

Proof. By the inequality, φ divides p in OC . We have that

xpn

− yp
n

= (yp
n−1

− (yp
n−1

− xpn−1

))p − yp
n

which shows the result by induction.

In practice, if C has characteristic 0, then we may choose ϖ = p. If C has characteristic p, C♭ ∼= C, so
in practice, we might as well assume C has characteristic 0.

Proposition 3.7. Fix φ ∈ C× such that 0 < v(ϖ) ≤ v(p). Then we have a multiplicative bijection:

lim←−
x 7→xp

OC → lim←−
x 7→xp

OC/ϖOC

induced by OC ↠ OC/ϖOC .

Proof. The map is clearly multiplicative, so we only need to construct an inverse. Define

ℓ : lim←−
x 7→xp

OC/ϖOC → lim←−
x 7→xp

OC

by setting for c = (cn) ∈ lim←−OC/ϖOC for cn ∈ OC/ϖOC : ℓ(c) = (ℓn(c)) and that (ℓn(c)) =

limm→∞ cp
m

n+m, where cn ∈ OC lifts cn.

For ℓ,m, n≫ 0,

cp
ℓ

n+m+ℓ − cn+m ∈ ϖOC ,

because

cp
ℓ

n+m+ℓ − cn+m = cn+m − cm+n = 0.

Hence Lemma 3.6 shows that
cp

ℓ+m

n+m+ℓ − cp
m

n+m ∈ ϖm+1OC .

Therefore, for all n, (cp
m

n+m) is a Cauchy sequence in OC . Therefore,

lim
m→∞

cp
m

n+m exists.

To check ℓ is well-defined, choose another lift c′n of cn. Then

cn − c′n ∈ ϖOC ,
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so lemma 3.6 implies that

cp
m

n+m − c′
pm

n+m ∈ ϖm+1OC .

Hence the limit does not depend on the choice. Finally, we need to show that ℓ is inverse to the
reduction map in the statement. We have that:

(cn) 7→ (cn) 7→ ( lim
m→∞

cp
m

n+m) = ( lim
n→∞

cn) = (cn),

(cn) 7→ ( lim
m→∞

cp
m

n+m) 7→ ( lim
m→∞

cp
m

n+m) = ( lim
m→∞

cn) = (cn).

showing that ℓ is the inverse.

Proposition 3.8. The tilt C♭ of C is naturally a complete valued field of characteristic p with the
valuation ν♭ given by ν♭(c) = ν(c♯) for every c ∈ C♭. Moreover, the valuation ring of C♭ is given by

OC♭ = lim←−
x 7→xp

OC

Proof. Fix an element ϖ ∈ C× with 0 < ν(ϖ) ≤ ν(p). The ring OC/ϖOC is of characteristic p since
ϖ divides p in OC by construction. Hence the ring structure on OC/ϖOC induces a natural ring
structure on lim−→x 7→xp

OC/ϖOC , which in turn yields a ring structure on

O := lim←−
x7→xp

OC
∼= lim←−

x7→xp

OC/ϖOC

where the isomorphism is given by Proposition 3.7. Moreover, this ring structure on O does not
depend on the choice of ϖ; indeed, by the proof of Proposition 3.7 we find that the sum of two
arbitrary elements a = (an) and b = (bn) in O is given by

(a+ b)n = lim
m→∞

(am+n + bm+n)
pm

.

We then identify C♭ as the fraction field of O. It is clear by construction that C♭ is perfect of
characteristic p.
We assert that C♭ admits a valuation ν♭ given by ν♭(c) := ν(c♯) for every c ∈ c♭. It is evident
by construction that ν♭ is a multiplicative homomorphism. Let us now consider arbitrary elements
a = (an) and b = (bn) in c♭. We wish to establish an inequality

ν♭(a+ b) ≥ min(ν♭(a), ν♭(b)).

May assume ν♭(a) ≥ ν♭(b), equivalently ν(a0) ≥ ν(b0). Then for each n ≥ 0 we have

ν♭(a+ b) = ν♭((r + 1)b) = ν♭(r + 1) + ν♭(b) ≥ ν♭(b) = min(ν♭(a), ν♭(b))

where the inequality follows by observing r + 1 ∈ O.

Let us now take an arbitrary element c = (cn) ∈ C♭. We have an inequality

ν(cn) =
1

pn
ν(c0) =

1

pn
ν♭(c) for each n ≥ 0.

Hence we deduce that O is indeed the valuation ring of C♭. Moreover, given any N > 0 the inequality
above implies that we have ν(cn) ≥ ν(ϖ) for all n ≤ N if and only if ν♭(c) ≥ pNν(ϖ). Therefore the
bijection O := lim←−x7→xp

OC
∼= lim←−x 7→xp

OC/ϖOC becomes a homeomorphism if we endow OC♭ = O
and lim←−x 7→xp

OC/ϖOC respectively with the ν♭-adic topology and the inverse limit topology. As the

latter topology is complete, it follows that C♭ is complete.

Remark 3.9. Proof remains valid if C is replaced by complete nonarchimediean field L. But L not
perfectoid then L♭ becomes trivial.

Proposition 3.10. The map OC♭ → OC/pOC which sends each c ∈ OC♭ to the image of c♭ in
OC/pOC is a ring homomorphism.

Lemma 3.11. For every y ∈ OC there exists an element z ∈ OC♭ with y − z♯ ∈ pOC .

Proposition 3.12. The valued fields C and C♭ have the same value groups.
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Proof. Let ν♭ be the valuation on C♭ given by ν♭(c) = ν(c♯) for every c ∈ C♭. Since we have ν♭((C♭)×)
by construction, we only need to show ν(C×) ⊆ ν♭((C♭)×). Let us consider an arbitrary element
y ∈ C×. We wish to find an element z ∈ (C♭)× with ν♭(z) = ν(y). Since ν is nondiscrete, we can
choose an element ϖ ∈ OC with 0 < ν(ϖ) < ν(p).

Let us write y = ϖnu for some n ∈ Z and u ∈ OC with ν(u) < µ(ϖ). By Lemma 3.11 there exist
elements ϖ♭ and u♭ in OC♭ with ϖ − (ϖ♭)♯ ∈ pOC and u− (u♭)♯ ∈ pOC . Then we find

ν♭(ϖ♭) = ν((ϖ♭)♯) = ν
(
(ϖ)− (ϖ − (ϖ♭)♯)

)
= ν(ϖ),

ϖ♭(u♭) = ν((u♭)♯) = ν
(
(u)− (u− (u♭)♯)

)
= ν(u).

Hence we obtain the desired assertion by taking z = (ϖ♭)nu♭.

Corollary 3.13. The field C♭ is a perfectoid field of characteristic p.

Corollary 3.14. If C is of characteristic p, there exists a natural identification C♭ ∼= C.

Example 3.15. Let ̂Qp(p1/p
∞) denote the p-adic completions of

⋃
n≥1 Qp(p

1/pn

). The p-adic valuation

of ̂Qp(p1/p
∞) is not descrete. In addition, the valuation ring of ̂Qp(p1/p

∞) is ̂Zp[p1/p
∞ ], the p=adic

completion of Zp-algebra obtained by adjoining all p=th power roots of p. We also have an isomorphism

̂Zp[p1/p
∞ ] ∼= Zp[p

1/p∞
]/p ∼= Fp[u

1/p∞
]/u

where Fp[u
1/p∞

] denotes the perfection of the polynomial ring Fp[u]. Since the p-th power map on

Fp[u
1/p∞

]/u is surjective, we deduce ̂Qp(p1/p
∞) is perfectoid.

lim
x 7→xp

̂Zp[p1/p
∞ ] ∼= lim

x 7→xp
Fp[u

1/p∞
]/u ∼= ̂Fp[u1/p∞ ]

where ̂Fp[u1/p∞ ] denotes the u-adic compleition of Fp[u
1/p∞

], and hence ̂Qp(p1/p
∞) is isomorphic to

̂Fp((u1/p∞)), the u-adic completion of the operfection of the Laurent series ring Fp((u)).

4 De Rham Period Ring BdR

Write F := C♭
K for the tilt of CK . In addition, for every element c = (cn)n≥0 in F we write c♯ := c0. We

also fix a valuation ν on CK with ν(p) = 1, and let ν♭ denote the valuation on F given by ν♭(c) = ν(c♯)
for every c ∈ F .

Definition 4.1. We define the infinitesimal period ring, denoted by Ainf , to be the ring of Witt vectors
over OF . For every c ∈ OF , we write [c] for its Teichmuller lift in Ainf .

Note that ring Ainf is not (Qp,ΓK)-regular in any meaningful way.

Proposition 4.2. There exists a surjective ring homomorphism θ : Ainf → OCK
, with

θ

( ∞∑
n=0

[cn]p
n

)
=

∞∑
n=0

c♯np
n for all cn ∈ OF .

Proof. Let us define a map θ : OF → OCK
/pOCK

by

θ(c) = c♯ for every c ∈ OF

where c♯ denotes the image of c♯ in OCK
/pOCK

. Then θ is a ring homomorphism as noted in proposition

3.10. Moreover, by construction θ lifts to a map θ̂ : OF → OCK
by

θ̂(c) = c♯ for every c ∈ OF .

Since θ̂ is multiplicative, then hence we yield a ring homomorphism θ : Ainf → OCK
satisfying the

proposition.
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It remains to establish the surjectivity of θ. Let x be an arbitrary element in OCK
. Since OCK

is
p-adically complete, it is enough to find elements c0, c1, · · · ∈ OF with

x−
m∑

n=0

c♯np
n ∈ pm+1OCK

for each m = 0, 1, · · · ,

In fact, by lemma 3.11 we can inductively define each cm to be any element in OF with

1

pm

(
x−

m−1∑
n=0

c♯np
n

)
− c♯m ∈ pOCK

,

thereby completing the proof.

For the rest of this section, we let θ : Ainf → OCK
be the ring homomorphism constructed in Proposi-

tion 4.2, and let θ[1/p] : Ainf [1/p]→ CK be the induced map on Ainf [1/p]. We also choose an element
p♭ ∈ OF with (p♭)♯ = p, and set ξ := [p♭]− p ∈ Ainf .

Definition 4.3. We define the de Rham local ring by

B+
dR; + lim←−

j

Ainf [1/p]/ ker(θ[1/p])
j

We denote by θ+dR the natural projection B+
dR ↠ Ainf [1/p]/ ker(θ[1/p]).

Goal: Verfiy that B+
dR is a DVR. Define BdR as the fraction field of B+

dR.

Recall de Rham cohomology admits a canonical filtration (Hodge filtration). also recall hodge-tate
decomposition can be stated in terms of Hodge-Tate period ring BHT . Hence construction BdR as a
ring with canonical filtration which recovers BHT as associated graded algebra.

So construct subring B+
dR as a complete discrete valuation ring with an action of ΓK such that there

exist ΓK-equivariant isomorphisms

B+
dR/mdR

∼= CK and mdR/m
2
dR
∼= CK(1)

where mdR is the max ideal. In char p, look at W (OF ). Fontaine applied the Witt vector construction
to the field CK of characteristic 0 by passing to characteristic p. So what he does is, he defined Ainf

as ring of Witt vectors over the perfect ring

RK := lim←−
x 7→xp

OCK
/pOCK

,

which he called the perfection of OCK
/pOCK

, then constructed the homomorphism θ[1/p] as above to
realize CK as a quotient of Ainf [1/p]; indeed, since RK is naturally isomorphic to OF by Proposition
3.7, our construction provides a modern interpretation for the construction of RK and Ainf . Fontaine
then define B+

dR as the completion of Ainf [1/p] with respect to ker(θ[1/p]) as in Definition 4.3, and
showed that B+

dR satisfies all the desired properties. We now aim to show that B+
dR is a complete

discrete valuation ring with CK as the residue field. To this end we study several properties of ker(θ).

We now aim to show that B+
dR is a complete discrete valuation ring with CK as the residue field. To

this end we study several properties of ker(θ).

Lemma 4.4. For each n ≥ 0 we have ker(θ) ∩ pnAinf = pn ker(θ).

Lemma 4.5. Every element a ∈ ker(θ) is of the form a = cξ + dp for some c, d ∈ Ainf .

Proposition 4.6. The ideal ker(θ) in Ainf is generated by ξ.

Proof. By definition we have

θ(ξ) = θ([p♭]− p) = (p♭)♯ − p = p− p = 0.

Hence we only need to show that ker(θ) lies in the ideal ξAinf . Let a be an arbitrary element in ker(θ).
Since Ainf is p-adically separated and complete by construction, it suffices to show that there exist
elements c0, c1, · · · ,∈ Ainf with

a−
m∑

n=0

cnξp
n ∈ pm+1Ainf for each m ≥ 0.
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We proceed by induction on m to find such c0, c1, · · · ∈ Ainf . As both ξ and a lie in ker(θ), we have

a−
m−1∑
n=0

cnξp
n ∈ ker(θ) ∩ pmAinf = pm ker(θ)

by the induction hypothesis and Lemma 4.4. Then by Lemma 4.5 we find some cm, dm ∈ Ainf with

a−
m−1∑
n=0

cnξp
n = pm(cmξ + pdm),

or equivalently

a−
m∑

n=0

cnξp
n = pm+1dm

as desired.

The above yields Ainf/ξAinf
∼= OCK

as valuation rings.It shows ξAinf allows us to recover CK from
its tilt F .

Corollary 4.7. The ideal ker(θ[1/p]) in Ainf [1/p] is generated by ξ.

Proof. For every a ∈ ker(θ[1/p]), we have pna ∈ ker(θ) for some n > 0. Hence the assertion follows
from Proposition 4.6.

In fact, our proof shows every generator of ker(θ) generates ker(θ[1/p]).

Lemma 4.8. Every a ∈ Ainf [1/p] with ξa ∈ Ainf is an element in Ainf .

Lemma 4.9. For all j ≥ 1 we have Ainf ∩ ker(θ[1/p])j = ker(θ)j .

Proof. We only need to show Ainf ∩ ker(θ[1/p])j ⊆ ker(θ)j since the reverse containment is obvious.
Let a be an arbitrary element in Ainf ∩ ker(θ[1/p])j . Corollary 4.7 implies that there exists some
r ∈ Ainf [1/p] with a = ξjb. Then we find b ∈ Ainf by Lemma 4.8, and consequently obtain a ∈ ker(θ)j

by Proposition 4.6.

Proposition 4.10. We have
⋂∞

j=1 ker(θ)
j =

⋂∞
j=1 ker(θ[1/p])

j = 0.

Proof. By Lemma 4.9 we find that

∞⋂
j=1

ker(θ[1/p])j =

 ∞⋂
j=1

ker(θ)j

 [1/p]

Hence it suffice to show that
⋂∞

j=1 ker(θ)
j = 0. Take an arbitrary element c ∈

⋂∞
j=1 ker(θ)

j . As usual,
let us write c =

∑
[cn]p

n for some cn ∈ OF . By proposition 4.6 we find that c is divisible by arbitrarily
high powers of ξ = [p♭]− p. This implies that c0 is divisible by arbitrarily high powers of p♭, which in
turn means c0 = 0 as we have

ν♭(p♭) = ν((p♭)♯) = ν(p) = 1 > 0/

Hence we find some c′ ∈ Ainf with c = pc′. Moreover, Lemma 4.9 and the above together yield

c′ ∈ Ainf ∩

 ∞⋂
j=1

ker(θ)j

 [1/p] = Ainf ∩ (

∞⋂
j=1

ker(θ[1/p])j) =

∞⋂
j=1

ker(θ)j .

Then an easy induction shows that c is infinitely divisible by p, which in turn implies c = 0 as Ainf is
p-adically complete.

Corollary 4.11. The natural map

Ainf [1/p]→ lim←−
j

Ainf [1/p]/ ker(θ[1/p])
j = B+

dR

is injective. In particular, we may canonically identify Ainf [1/p] as a subring of B+
dR.

We also state the following theorem without proof:
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Proposition 4.12. The ring B+
dR is a complete discrete valuation ring with ker(θ+dR) as the maximal

ideal and CK as the residue field. Moreover, the element ξ is a uniformizer of B+
dR.

The most important part to notice is that

B+
dR/ ker(θ

+
dR)
∼= Ainf [1/p]/ ker(θ[1/p]) ∼= CK .

Definition 4.13. We define the de Rham period ring BdR as the fraction field of B+
dR.

Our argument so far in this subsection remains valid if CK is replaced by any algebraically closed
perfectoid field of characteristic 0. Hence we may regard BdR as a functor from the category of
algebraically closed perfectoid fields over Qp to the category of complete valued fields.

Proposition 4.14. For every uniformizer π of B+
dR, the filtration {πnB+

dR}n∈Zof BdR satisfies the
following properties:

1. πn+1B+
dR ⊆ πnB+

dR for all n ∈ Z

2.
⋂

n∈Z π
nB+

dR = 0 and
⋃

n∈Z π
nB+

dR = BdR.

3. (πmB+
dR) · (πnB+

dR) ⊆ πm+nB+
dR for all m,n ∈ Z.

Remark. The filtration {πiB+
dR}n∈Z does not depend on the choice of π; indeed, we have an identifi-

cation πiB+
dR = ker(θ+dR)

n for each n ∈ Z.

Proposition 4.15. Let W (k) denote the ring of Witt vectors over k, and let K0 denote the fraction
field of W (k).

1. The field K is a finite totally ramified extension of K0.

2. There exists a natural commutative diagram:

where the diagonal map is the natural inclusion.

Proof. Let m denote the maximal ideal of OK . The natural projection OK/pOK ↠ OK/m = k admits
a canonical section s : k → OK/pOK ; indeed, the ring OK/pOK is a vector space over k with basis
given by 1, π, · · · , πe−1, where π is a uniformizer in OK with ν(π) = 1/e. In addition, the map s
induces a homomorphism of discretely valued fields K0 → K. We thus obtain the statement (1) by
observing that both K0 and K are complete with the residue field k.

Let us now prove the statement (2). Since k is perfect, the section s : k → OK/pOK induces a natural
map

k → lim←−
x7→xp

OCK
/pOCK

∼= OF

where the isomorphism is given by Proposition 3.7. We then obtain the top horizontal arrow in diagram
above, and the upper right vertical arrow in the diagram above by Corollary 4.11. Hence B+

dR is a
complete discrete valuation ring over K0. Moreover, the statement (1) implies that K is a separable
algebraic extension of K0, thereby yielding the left vertical map in the diagram above. Now we deduce
by Hensel’s lemma that the subfield K of the residue field CK uniquely lifts to a subfield of B+

dR over
K0, thereby obtaining the middle horizontal arrow in above.

Final goal: describe and study the natural action of ΓK on BdR.

Proposition 4.16. There exists a refinement of the discrete valuation topology on B+
dR that satisfies

the following properties:

1. The natural map Ainf → B+
dR identifies Ainf as a closed subring of B+

dR.
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2. The map θ[1/p] is continuous and open with respect to the p-adic topology on CK .

3. There exists a continuous map log : Zp(1)→ B+
dR with

log(ε) =

∞∑
n=1

(−1)n+1 ([ϵ]− 1)n

n
for every ε ∈ Zp(1)

under the natural identification Zp(1) = lim←−µpv (K) = {ε ∈ OF : ε♯ = 1}.

4. The multiplication by any uniformizer yields a closed embedding on B+
dR.

5. The ring B+
dR is complete.

Here we provide an indication on why Proposition 4.16 is necessary for our discussion. As we will soon
describe, the natural ΓK-action on BdR is induced by the action of ΓK on CK such that the map θ+dR is
ΓK-equivariant. Proposition 4.16 ensures that the map θ+dR is furthermore continuous with respect to
the p-adic topology on CK , thereby allowing us to exploit the topological properties of the ΓK-action
on CK .

For the rest of this chapter, we consider the map log : Zp(1) → B+
dR as given by Proposition 4.16. In

addition, we fix a Zp-basis element ε ∈ Zp(1) and write t := log(ε). We often regard ε as an element
in OF via the identification Zp(1) = {c ∈ OF : c♯ = 1} as noted in Proposition 4.16. We also regard
Ainf [1/p] as a subring of B+

dR in light of Corollary 4.11.

Lemma 4.17. We have v♭(ε− 1) = p
p−1 .

Proof. By construction we may write ε = (ξpn) where each ξpn is a primitive pn-th root of unity in K.
Then we find

by the continuity of the valuation ν.

Lemma 4.18. The element ξ divides [ε]− 1 in Ainf .

Proof. By consturction we have

θ([ε]− 1) = ε♯ − 1 = 1− 1 = 0.

Proposition 4.19. The element t ∈ B+
dR is a uniformizer.

Proof. By Lemma 4.18 we have

[ε]− 1 ∈ ξAinf and t =

∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
∈ ξB+

dR.

We also find ([ε]−1)n

n ∈ ξ2B+
dR for each n ≥ 2. Since ξ is a uniformizer of B+

dR as noted in Proposition

4.12, it suffices to prove [ε]− 1 ̸∈ ξ2B+
dR.

Suppose for contradiction that [ε]−1 lies in ξ2B+
dR. Then the proof of Proposition 4.12 shows that the

image of [ε]− 1 under the projection B+
dR ∈ Ainf [1/p]/ ker(θ[1/p])

2 is zero. Since [ε]− 1 is an element
of Ainf , we find [ε] − 1 ∈ ker(θ[1/p])2 ∩ Ainf . Hence Proposition 4.6 and Lemma 4.9 together imply
that [ε]− 1 is divisible by ξ2 in Ainf .

Since the first coefficients in the Teichmuller expansions for [ε] − 1 and ξ2 are respectively equal to
[ε− 1] and [(p♭)2], we obtain

ν♭(ε− 1) ≥ ν♭((p♭)2) = 2ν♭(p♭) = 2ν((p♭)♯) = 2ν(p) = 2.
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On the other hand, if p is odd we have ν♭(ε − 1) < 2 by Lemma 4.17. Therefore we find p = 2. Let
us now take an element c ∈ Ainf with [ε] − 1 = ξ2c. We then compare the coefficients of p in the
Teichmuller expansions of both sides and find ε − 1 = c1(p

♭)4 where c1 denote the coefficient of p in
the Teichmuller expansion of c. Hence we have

ν♭(ε− 1) ≥ ν♭((p♭)4) = 4ν♭(p♭) = 4ν((p♭)♯) = 4ν(p) = 4,

thereby obtaining a desired contradiction since Lemma 4.17 yields ν♭(ε− 1) = 2.

The proof above shows that the power series
∑∞

n=1(−1)n+1 ([ε]−1)n

n converges with respect to te discete

valuation topology on B+
dR.

Lemma 4.20. For every m ∈ Zp we have log(εm) = m log(ε).

Theorem 4.21 (Fontaine(Fon82)). The natural action of ΓK on BdR satisfies the following properties:

1. The logarithm map and θ+dR are ΓK-equivariant.

2. For every γ ∈ ΓK , we have γ(t) = χ(γ)t.

3. Each tnB+
dR is stable under the action of ΓK .

4. There exists a canonical ΓK-equivariant isomorphism⊕
n∈Z

tnB+
dR/t

n+1BdR
∼=
⊕
n∈Z

CK(n) = BHT .

5. BdR is (Qp,ΓK)-regular with a natural identification BΓK

dR
∼= K.

Proof. Let us first describe the natural action of ΓK on BdR. The action of ΓK on CK naturally
induces an action on F = lim←−x 7→xp

CK as the p-th power map on CK is ΓK-equivariant.

More precisely, given an arbitrary element x = (xn) ∈ F we have γ(x) = (γ(xn)) for every γ ∈ ΓK . It
is then evident that OF is stable under the action of ΓK . Hence by functoriality of Witt vectors we
obtain a natural action of ΓK on Ainf [1/p] with

Γ(
∑

[cn]p
n) =

∑
[γ(cn)]p

n for all γ ∈ ΓK , cn ∈ OF .

We then find that θ and θ[1/p] are both ΓK-equivariant by construction, and consequently deduce
that both ker(θ) and ker(θ[1/p]) are stable under the action of ΓK . Therefore ΓK naturally acts on
B+

dR = lim←−j
Ainf [1/p]/ ker(θ[1/p])

j and its fraction field BdR.

With our discussion in the preceding paragraph, it is straightforward to verify the property (i). More-
over, for every γ ∈ ΓK we use Lemma 4.20 to find

γ(t) = γ(log(ε)) = log(γ(ε)) = log(εχ(γ)) = χ(γ) log(ε) = χ(γ)t,

thereby deducing the property (ii). The property (iii) then immediately follows as B+dR is stable
under the action of ΓK .

Let us now prove the property (iv). We note that the natural isomorphism

B+
dR/ ker(θ

+
dR) = B+

dR/tB
+
dR
∼= Ainf [1/p]/ ker(θ[1/p]) ∼= CK .

is ΓK-equivariant, and consequently obtain ΓK-equivariant isomorphisms

ker(θ+dR)
n/ ker(θ+dR)

n+1 = tnB+
dR/t

n+1B+
dR
∼= CK(n)

for all n ∈ Z by the property (ii)
These isomorphisms are canonical since t is uniquely determined up to Z×

p -multiple by Lemma 4.20.
We thus obtain the desired ΓK-equivariant isomorphism by taking the direct sum of the above isomor-
phisms.
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It remains to verify the property (v). The field BdR is (Qp,ΓK)-regular. In addition, since the map θ+dR
is ΓK-equivariant by construction, the natural injective homomorphism K → B+

dR given by Proposition
4.15 is also ΓK-equivariant, thereby inducing an injective homomorphism

K = K
ΓK

↪→ (B+
dR)

ΓK ↪→ BΓK

dR . (4)

Then by properties (iii) and (iv) we get an injective K-algebra homomorphism⊕
n∈Z

(BΓK

dR ∩ tnB+
dR)/(B

ΓK

dR ∩ tn+1B+
dR) ↪→ BΓK

HT

Since we have BΓK

HT
∼= K, the K-algebra on the source has dimension at most 1. Hence we find

dimK BΓK

dR ≤ 1, thereby completing the proof by (4).
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