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This week: Generic Fibers of p-divisble groups

1 Generic Fibres of p-divisible groups

The main focus of this subsection is to prove the second main result for this chapter, which says that
the generic fiber functor on the category of p-divisible groups over Ok is fully faithful.

Theorem 1.1 (Tate). The generic fiber functor for the category of p-divisible groups over Ok is fully
faithful.

We first note the following result:

Proposition 1.2. Let G = @Gv be a p-divisible group of height h and dimension d over Ok. Let
G, = Spec(A,) where A, is a finite free Ok -algebra. Then the discriminant ideal of A, over Ok is

generated by pd”ph“.
Sketch of Proof. Recall that we have an exact sequence

Ty,1 Ji,v

0—>G1—>Gv+1—>Gv_>O

We can then show that
disc(Ayi1/Ox) = disc(Ay /O )P" - disc(Ap )"
By induction, we reduce to the case v = 1. The connected—étale sequence is

0G5 =G — G =0

We can show that disc(A%/Of) = (1). It is hence enough to show that disc(AS/Ok) = (pd"’h). Using
Serre-Tate correspondence
A1 = Ok ®app), 4

and
disc(A1/Ok) = disc(A/[p|A).

For proof of this, check Haines’ notes.
O

Lemma 1.3. Consider a homomorphism f : G — H between p-divisible groups. If f: G xOgK —
H %o, K is an isomorphism, f is an isomorphism

Proof. Let G = ligv G,, H= ligv H,, G, = Spec(A,), H, = Spec(B,). The map f consists of maps

a, : B, — A, such that o, ® 1 :BU®KE>AU®K.
Since both A,, B, are finite free over Ok, B, <+ A,. If disc(A,/Ok) = disc(B,/Ok), then we are
done. Recall that dim(G) is determined by T,,(G). O

Remark 1.4. This statement is not true for finite flat O -group schemes. However, if K/Q, is finite
with e < p — 1, then Lemma 1.3 also holds (this is a Theorem of Raynaud).

Proposition 1.5. Let G be a p-divisible group over Ok, and let M a Z,-direct summand of T,(G)
which is stable under the action of T'c. There exists a p-divisible group H over Ok with a homomor-
phism v : H — G which induces an isomorphism T,(H) = M.



Proof. There is a p-divisible group H over K with H - G X0, K such that Tp(ﬁ' ) & H, where
H = MHU O]
Consider the scheme closure H, of ﬁv in G,.

Remark 1.6. The injective limit li%m” H, may not be a p-divisible group over Ok .
We get maps H, — H,;; induced from PNIU — ﬁv+1~

We claim that there exists vy such that
H, = HU+UO/HU0

such that lim H, is a p-divisible group.
On the generic fiber, B B B
H, x K >~ Hyty,/Hy, = H,.

The map [p] on H, 41 factors through H,, since EIUH/EIU is killed by p, so H,41/H, is killed by p.
Hence [p] induces:
57} : Hv+2/HU+1 — Hv—i-l/&

On generic fibers, 6, is an isomorphism. Writing H,41/H, = Spec(B,), d, induces a map
BU — Bv+1

which becomes an isomorphism after tensoring with K. Hence B, — B, and {B,} is an increasing
order in B; ® K.
Fact. The integral closure of Ok in By ® K is Noetherian. Hence there exists vy such that

B, = By for all v > vy.

If v > v, we have that
Hyyo/Hyp1 = Hypr/Hy.

Now,

("] ~
Hyp = Hv+1+vo/% B HD+1+UO/% =yt

l J

HU+1+UQ/H11()+U _— H1)0+1/Hvo

Finally, ker([p*]) = Hytv,/Hv, = Ho-
Proposition 1.7. There is a bijection:
Hom(G, H) = Hom(G x o, K,H X0, K).
Proof. If you have a homomorphism f: G x K — H x K. Then funiquely extends to f: G — H.

For uniqueness: if G, = Spec(A4,), H, = Spec(B,), then ﬁ, : B, ® K — A, ® K, so there is at most
one extension to B, — A, (by choosing generators).
We need to show existence. Consider the graph of T' =T, f : T,(G) — T,(H):

M C T,(G) © T,(H).
We claim that M is a Z,-direct summand. Note that
Ty(G) & T,(H)/M — T,(H)

(.’II,y) =Y - T(.’IJ),
so T,(G) @ T,(H)/M is torsion-free. Hence the short exact sequence

0—M—=T,(G)®Ty(H) = T,(G) ® T,(H)/M — 0



splits.
Since T,(G x H) = T,(G) ® T,,(H), by Proposition 1.5, there exists a p-divisible group G’ over O
with a homomorphism ¢ : G’ — G x H such that T,,(G') = M
Consider the projection maps
m :Gx H—G.

m:Gx H— H.

Then 71 0t : G’ — G is an isomorphism by lemma 1.3. Then f = w010 (7 01)~! extends f O

Remark 1.8. As a related fact, the special fiber functor on the category of p-divisible groups over O
is faithful. In other words, for arbitrary p-divisible groups G and H over Ok, the natural map

hom(G, H) — Hom(G X, k, H X0, k)
is injective. A complete proof of this fact can be found in [CCO14, Proposition 1.4.2.3].

It is also worthwhile to mention that Proposition 1.7 remains true if the base ring O is replaced by
any ring R that satisfies the following properties:

1. R is integrally closed and noetherian,
2. R is an integral domain whose fraction field has characteristic 0.
In fact, it is not hard to deduce the general case from Theorem 1.7 by algebraic Hartog’s Lemma.

Corollary 1.9. For arbitrary p-divisible groups G and H over OK, the natural map
HOHI(G, H) — HomZp[FK] (TP(G)7 TP(H))
is bijective.

We conclude this section by stating a fundamental theorem which provides a classification of p-divisible
groups over O when K is unramified over Q,. We write W (k) for the ring of Witt vectors over k.

Definition 1.10. A Honda system over W (k) is a Dieudonné module M over k together with a
W (k)-submodule L such that M induces an isomorphism L/pL = M /@y (M).

Theorem 1.11. If p > 2, there exists an anti-equivalence of categories

{ p-divisible groups over W(k) } =N { Honda systems over W(k) }

such that for every p-divisible group G over W (k) with the mod p reduction G := G Xy k, the

Dieudonné module of the associated Honda system coincides with D(G).

2 Period rings and functors
The goal is to define and study:

e period rings By, Bggr, Beris-

e de Rham and crystalline representations.

There is another important period ring, B, related to semistable representations. We will omit this
here entirely.

2.1 Fontaine’s formalism on Period rings

The reference for this section is [BCO9,§ection 5]. Let K be a p-adic field and 'y be the absolute
Galois group Gal(K /K) and Ix = Gal(K/K"™) be the inertia group of K.

Definition 2.1. Let B be a Qp-algebra with an action of I'x and let C be the fraction field of B with
the natural Ik -action. We say that B is (Qp, 'k )-regular if

e Bl = (CT'x

o any b e B with b# 0 is a unit if Qp - b is stable under the I'k-action.



Example 2.2. Every field extension of Q, under any I x-action is (Qp, I'x)-regular.

Remark 2.3. If F is a field and G is a group, we can define (F, G)-regular rings by replacing Q, with
F and U'x with G in the above definition.

We can also extend our formalism to this setting.
Definition 2.4. Suppose B is a (Qp,T'x)-reqular ring and E = BY% . Then

1. for all'V € Repg, (T'k), define
Dp(V) = (V &g, B)'™.

2. a representation V € Repg, (Tk) is B-admissible if

dimE DB(V) = dime V.

We denote by Repgp (T'k) the category of B-admissible p-adic representations.

Remark 2.5. Let R be a topological ring with a continuous Ik -action, then
H'(Tg,GL4(R)) = { continuous d-dimensional semilinear T g representations over R}/ = .

For V € Repg, (I'x), we can consider the class [V] € HY(Tk,GL,(Qp)). Let [V]p be its image in
HY(Tg,GL,(B)). Then V is B-admissible if and only if [V]p is trivial.

Example 2.6. 1. For any (Qp,Tk)-reqular B,V = Q, with trivial T k-action is B-admissible.
Indeed, Dp(V) = BI'x = E.

2. Consider B =K. ThenV € Repg, (T'k) is K-admissible if and only if V' is potentially trivial
(i.e. the action of ' on V factors through some finite quotient). This follows from the group
cohomology interpretation and Hilbert 90.

3. Consider B = Cg. Then V € Repg, (Tk) is Cx-admissible if and only if V is potentially
unramified, i.e. the action of the inertia group factors through a finite quotient. This fact is
quite difficult; it follows from Sen theory and is almost as difficult as the Tate-Sen theorem.

Definition 2.7. Let n:T'x — Q) be a character. For every Q,[I'k]-module M, we define its twist by
7 to be the Qp[I' k]-module

M(n) == M ®q, Qp(n)

where Q,(n) denotes the Tk -representation on Q, given by 7.
Example 2.8. Given a Q,[I'x|-module M, we have an identification M(n) = M(x") for every n € Z
Lemma 2.9. The group x(Ix) is infinite.

Proof. By definition x encodes the action of I'x on g, (K). In particular, we have ker(y) =
Gal(K (up~(K))/K). Hence it suffices to show that K (uy~(K)) is infinitely ramified over K.

Let e,, be the ramification degree of K (up»(K')) over K, and let e be the ramification degree of K over
Qp- Then e, - e is greater than or equal to the ramification degree of Q,(p,n-1(K)) over Q,, which is
equal to p"~1(p — 1). We thus find that en grows arbitrarily large as n goes to oo, thereby deducing
the desired assertion. O

Theorem 2.10. Let 1 : I'x — Z; be a continuous character. Then for i = 0,1 we have canonical
isomorphisms

K ifn(Ik) is finite,
0 otherwise.

H'(Tk,Ck(n)) = {

Remark 2.11. Theorem 1.1.8 recovers the essential part of the Tate-Sen theorem: indeed, if we take
n=x" for somen € Z, then Theorem 2.10 yields canonical isomorphisms

K  forn=0,

H(Tk,Cxg(n)) = H Tk, Cx(n)) = {0 forn # 0.

by Example 2.8 and Lemma 2.9. Moreover, for ¢ = 0 Theorem 2.10 says that Q,(n) is Cx-admissible
if and only if it is potentially unramified, as we have already mentioned in Example 2.6.



Definition 2.12. We define the Hodge-Tate period ring by

BHT = @CK(H)

nez
Proposition 2.13. The Hodge-Tate period ring Bur is (Qp, I k)-regular.
Proposition 2.14. A p-adic representation V of I'ic is Hodge-Tate if and only if it is Byr-admissible.

Proof. By definition we have

Dy (V) = (V ®g, Bur)'™* = @P(V @q, Ck(n))"<.
nez

Define @y as in the theorem of Serre-Tate. Since ay is injective, it is an isomorphism if and only
if the source and the target have the same dimension over Cpg, which amounts to the identity
dimg Dp,. (V) = dimg, V' . The desired assertion now follows from definition of Hodge-Tate rep-
resentations and Bpgp-admissibility. O

Example 2.15. Let V be a p-adic representation of I' i which fits into an exact sequence
0—-Qy0) >V = Qp(m) =0

where £ and m are distinct integers. We assert that V is Hodge-Tate. For every n € Z we obtain an
exact sequence
0—-Cx(l+n)—V Xq, Ck(n) - Cg(m+n)—0

as Cx(n) is flat over Qp, and consequently get a long exact sequence
0= Cx(l+n)'" — (V &g, Ckx(n))'™ = Cx(m+n)'"* - H' (T'g,Cx(m +n))
Then from Hodge-Tate theorem in chapter 2 we have

K forn=—{,—m

'k ~
(V &g, Cx(n)) —{0 forn 4 b —m

Hence we have
dimg Dp,,, (V) = dimg (V @, Cx(n))"* =2 = dimg, V
nez

thereby deducing the desired assertion.
Note a self extension of Q, may not be Hodge-Tate.

Proposition 2.16. Letn:I'x — Z,; be a continuous character. Then Qp(n) is HodgeTate if and only
if there exists some n € Z such that (nx")(Ix) is finite.

Definition 2.17. Let V be a Hodge-Tate representation. We say that an integer n € Z is a Hodge-Tate
weight of V' with multiplicity m if we have

dimg (V ®g, Cx(n))"* =m > 0.
Example 2.18. We record the Hodge-Tate weights for some Hodge-Tate representations.

1. For every n € Z the Tate twist Q,(n) of Q, is a Hodge-Tate representation with the Hodge-Tate
weight —n.

2. For every p-divisible group G over Ok, the rational Tate module V,,(G) is a HodgeTate represen-
tation with the Hodge-Tate weights 0 and —1.

3. For an abelian variety A over K with good reduction, the ’etale cohomology H7,(Azw,Qp) is a
Hodge-Tate representation with the Hodge-Tate weights 0,1,--- . n.
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