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This week: Generic Fibers of p-divisble groups

1 Generic Fibres of p-divisible groups

The main focus of this subsection is to prove the second main result for this chapter, which says that
the generic fiber functor on the category of p-divisible groups over OK is fully faithful.

Theorem 1.1 (Tate). The generic fiber functor for the category of p-divisible groups over OK is fully
faithful.

We first note the following result:

Proposition 1.2. Let G = lim−→Gv be a p-divisible group of height h and dimension d over OK . Let
Gv = Spec(Av) where Av is a finite free OK-algebra. Then the discriminant ideal of Av over OK is

generated by pdvp
hv

.

Sketch of Proof. Recall that we have an exact sequence

0→ G1
iv,1−−→ Gv+1

j1,v−−→ Gv → 0

We can then show that

disc(Av+1/OK) = disc(Av/OK)p
h

· disc(A1)
phv

.

By induction, we reduce to the case v = 1. The connected–étale sequence is

0→ G◦
1 → G1 → Gét

1 → 0.

We can show that disc(Aét/OK) = (1). It is hence enough to show that disc(A◦
1/OK) = (pd·p

h

). Using
Serre–Tate correspondence

A1 = OK ⊗A1[p]µ A

and
disc(A1/OK) = disc(A/[p]A).

For proof of this, check Haines’ notes.

Lemma 1.3. Consider a homomorphism f : G → H between p-divisible groups. If f̃ : G × OKK →
H ×OK

K is an isomorphism, f is an isomorphism

Proof. Let G = lim−→v
Gv, H = lim−→v

Hv, Gv = Spec(Av), Hv = Spec(Bv). The map f consists of maps

αv : Bv → Av such that αv ⊗ 1 : Bv ⊗K
∼=−→ Av ⊗K.

Since both Av, Bv are finite free over OK , Bv ←↩ Av. If disc(Av/OK) = disc(Bv/OK), then we are
done. Recall that dim(G) is determined by Tp(G).

Remark 1.4. This statement is not true for finite flat OK-group schemes. However, if K/Qp is finite
with e < p− 1, then Lemma 1.3 also holds (this is a Theorem of Raynaud).

Proposition 1.5. Let G be a p-divisible group over OK , and let M a Zp-direct summand of Tp(G)
which is stable under the action of ΓK . There exists a p-divisible group H over OK with a homomor-
phism ι : H → G which induces an isomorphism Tp(H) ∼= M .
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Proof. There is a p-divisible group H̃ over K with H̃ → G ×OK
K such that Tp(H̃) ∼= H, where

H̃ = lim−→ H̃v

Consider the scheme closure Hv of H̃v in Gv.

Remark 1.6. The injective limit lim−→v
Hv may not be a p-divisible group over OK .

We get maps Hv ↪→ Hv+1 induced from H̃v ↪→ H̃v+1.

We claim that there exists v0 such that

Hv = Hv+v0/Hv0

such that lim−→Hv is a p-divisible group.
On the generic fiber,

Hv ×K ∼= H̃v+v0/H̃v0
∼= H̃v.

The map [p] on Hv+1 factors through Hv, since H̃v+1/H̃v is killed by p, so Hv+1/Hv is killed by p.
Hence [p] induces:

δv : Hv+2/Hv+1 → Hv+1/Hv

On generic fibers, δv is an isomorphism. Writing Hv+1/Hv = Spec(Bv), δv induces a map

Bv → Bv+1

which becomes an isomorphism after tensoring with K. Hence Bv ↪→ Bv+1 and {Bv} is an increasing
order in B1 ⊗K.
Fact. The integral closure of OK in B1 ⊗K is Noetherian. Hence there exists v0 such that

Bv
∼= Bv+1 for all v ≥ v0.

If v ≥ v0, we have that
Hv+2/Hv+1

∼= Hv+1/Hv.

Now,

Finally, ker([pv]) = Hv+v0/Hv0 = Hv.

Proposition 1.7. There is a bijection:

Hom(G,H) ∼= Hom(G×OK
K,H ×OK

K).

Proof. If you have a homomorphism f : G×K → H ×K. Then f̃ uniquely extends to f : G→ H.

For uniqueness: if Gv = Spec(Av), Hv = Spec(Bv), then f̃v : Bv ⊗K → Av ⊗K, so there is at most
one extension to Bv → Av (by choosing generators).
We need to show existence. Consider the graph of T = Tpf : Tp(G)→ Tp(H):

M ⊆ Tp(G)⊕ Tp(H).

We claim that M is a Zp-direct summand. Note that

Tp(G)⊕ Tp(H)/M
∼=−→ Tp(H)

(x, y) 7→ y − T (x),

so Tp(G)⊕ Tp(H)/M is torsion-free. Hence the short exact sequence

0→M → Tp(G)⊕ Tp(H)→ Tp(G)⊕ Tp(H)/M → 0
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splits.
Since Tp(G × H) = Tp(G) ⊕ Tp(H), by Proposition 1.5, there exists a p-divisible group G′ over OK

with a homomorphism ι : G′ → G×H such that Tp(G
′) ∼= M .

Consider the projection maps
π1 : G×H → G.

π2 : G×H → H.

Then π1 ◦ ι : G′ → G is an isomorphism by lemma 1.3. Then f = π2 ◦ ι ◦ (π1 ◦ ι)−1 extends f̃ .

Remark 1.8. As a related fact, the special fiber functor on the category of p-divisible groups over OK

is faithful. In other words, for arbitrary p-divisible groups G and H over OK , the natural map

hom(G,H)→ Hom(G×OK
k,H ×OK

k)

is injective. A complete proof of this fact can be found in [CCO14, Proposition 1.4.2.3].

It is also worthwhile to mention that Proposition 1.7 remains true if the base ring OK is replaced by
any ring R that satisfies the following properties:

1. R is integrally closed and noetherian,

2. R is an integral domain whose fraction field has characteristic 0.

In fact, it is not hard to deduce the general case from Theorem 1.7 by algebraic Hartog’s Lemma.

Corollary 1.9. For arbitrary p-divisible groups G and H over OK, the natural map

Hom(G,H)→ HomZp[ΓK ](Tp(G), Tp(H))

is bijective.

We conclude this section by stating a fundamental theorem which provides a classification of p-divisible
groups over OK when K is unramified over Qp. We write W (k) for the ring of Witt vectors over k.

Definition 1.10. A Honda system over W (k) is a Dieudonné module M over k together with a
W (k)-submodule L such that φM induces an isomorphism L/pL ∼= M/φM (M).

Theorem 1.11. If p > 2, there exists an anti-equivalence of categories

{ p-divisible groups over W(k) }
∼=−→ { Honda systems over W(k) }

such that for every p-divisible group G over W (k) with the mod p reduction G := G ×W (k) k, the

Dieudonné module of the associated Honda system coincides with D(G).

2 Period rings and functors

The goal is to define and study:

• period rings BHT , BdR, Bcris.

• de Rham and crystalline representations.

There is another important period ring, Bst, related to semistable representations. We will omit this
here entirely.

2.1 Fontaine’s formalism on Period rings

The reference for this section is [BC09, Section 5]. Let K be a p-adic field and ΓK be the absolute
Galois group Gal(K/K) and IK = Gal(K/Kun) be the inertia group of K.

Definition 2.1. Let B be a Qp-algebra with an action of ΓK and let C be the fraction field of B with
the natural ΓK-action. We say that B is (Qp,ΓK)-regular if

• BΓK = CΓK

• any b ∈ B with b ̸= 0 is a unit if Qp · b is stable under the ΓK-action.
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Example 2.2. Every field extension of Qp under any ΓK-action is (Qp,ΓK)-regular.

Remark 2.3. If F is a field and G is a group, we can define (F,G)-regular rings by replacing Qp with
F and ΓK with G in the above definition.

We can also extend our formalism to this setting.

Definition 2.4. Suppose B is a (Qp,ΓK)-regular ring and E = BΓK . Then

1. for all V ∈ RepQp
(ΓK), define

DB(V ) = (V ⊗Qp
B)ΓK .

2. a representation V ∈ RepQp
(ΓK) is B-admissible if

dimE DB(V ) = dimQp V.

We denote by RepBQp
(ΓK) the category of B-admissible p-adic representations.

Remark 2.5. Let R be a topological ring with a continuous ΓK-action, then

H1(ΓK , GLd(R)) = { continuous d-dimensional semilinear ΓK representations over R}/ ∼= .

For V ∈ RepQp
(ΓK), we can consider the class [V ] ∈ H1(ΓK , GLn(Qp)). Let [V ]B be its image in

H1(ΓK , GLn(B)). Then V is B-admissible if and only if [V ]B is trivial.

Example 2.6. 1. For any (Qp,ΓK)-regular B, V = Qp with trivial ΓK-action is B-admissible.
Indeed, DB(V ) = BΓK = E.

2. Consider B = K. Then V ∈ RepQp
(ΓK) is K-admissible if and only if V is potentially trivial

(i.e. the action of ΓK on V factors through some finite quotient). This follows from the group
cohomology interpretation and Hilbert 90.

3. Consider B = CK . Then V ∈ RepQp
(ΓK) is CK-admissible if and only if V is potentially

unramified, i.e. the action of the inertia group factors through a finite quotient. This fact is
quite difficult; it follows from Sen theory and is almost as difficult as the Tate–Sen theorem.

Definition 2.7. Let η : ΓK → Q×
p be a character. For every Qp[ΓK ]-module M , we define its twist by

η to be the Qp[ΓK ]-module
M(η) := M ⊗Qp Qp(η)

where Qp(η) denotes the ΓK-representation on Qp given by η.

Example 2.8. Given a Qp[ΓK ]-module M , we have an identification M(n) ∼= M(χn) for every n ∈ Z

Lemma 2.9. The group χ(IK) is infinite.

Proof. By definition χ encodes the action of ΓK on µp∞(K). In particular, we have ker(χ) =
Gal(K(µp∞(K))/K). Hence it suffices to show that K(µp∞(K)) is infinitely ramified over K.
Let en be the ramification degree of K(µpn(K)) over K, and let e be the ramification degree of K over
Qp. Then en · e is greater than or equal to the ramification degree of Qp(µpn−1(K)) over Qp, which is
equal to pn−1(p − 1). We thus find that en grows arbitrarily large as n goes to ∞, thereby deducing
the desired assertion.

Theorem 2.10. Let η : ΓK → Z×
p be a continuous character. Then for i = 0, 1 we have canonical

isomorphisms

Hi(ΓK ,CK(η)) ∼=

{
K if η(IK) is finite,

0 otherwise.

Remark 2.11. Theorem 1.1.8 recovers the essential part of the Tate-Sen theorem: indeed, if we take
η = χn for some n ∈ Z, then Theorem 2.10 yields canonical isomorphisms

H0(ΓK ,CK(n)) ∼= H1(ΓK ,CK(n)) ∼=

{
K for n = 0,

0 for n ̸= 0.

by Example 2.8 and Lemma 2.9. Moreover, for i = 0 Theorem 2.10 says that Qp(η) is CK-admissible
if and only if it is potentially unramified, as we have already mentioned in Example 2.6.
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Definition 2.12. We define the Hodge-Tate period ring by

BHT :=
⊕
n∈Z

CK(n).

Proposition 2.13. The Hodge-Tate period ring BHT is (Qp,ΓK)-regular.

Proposition 2.14. A p-adic representation V of ΓK is Hodge-Tate if and only if it is BHT -admissible.

Proof. By definition we have

DBHT
(V ) = (V ⊗Qp

BHT )
ΓK =

⊕
n∈Z

(V ⊗Qp
CK(n))ΓK .

Define α̃V as in the theorem of Serre-Tate. Since α̃V is injective, it is an isomorphism if and only
if the source and the target have the same dimension over CK , which amounts to the identity
dimK DBHT

(V ) = dimQp
V . The desired assertion now follows from definition of Hodge-Tate rep-

resentations and BHT -admissibility.

Example 2.15. Let V be a p-adic representation of ΓK which fits into an exact sequence

0→ Qp(ℓ)→ V → Qp(m)→ 0

where ℓ and m are distinct integers. We assert that V is Hodge-Tate. For every n ∈ Z we obtain an
exact sequence

0→ CK(ℓ+ n)→ V ⊗Qp
CK(n)→ CK(m+ n)→ 0

as CK(n) is flat over Qp, and consequently get a long exact sequence

0→ CK(l + n)ΓK → (V ⊗Qp CK(n))ΓK → CK(m+ n)ΓK → H1(ΓK ,CK(m+ n))

Then from Hodge-Tate theorem in chapter 2 we have

(V ⊗Qp
CK(n))ΓK ∼=

{
K for n = −ℓ,−m
0 for n ̸= −ℓ,−m

Hence we have
dimK DBHT

(V ) =
∑
n∈Z

dimK(V ⊗Qp CK(n))ΓK = 2 = dimQp V

thereby deducing the desired assertion.

Note a self extension of Qp may not be Hodge-Tate.

Proposition 2.16. Let η : ΓK → Z×
p be a continuous character. Then Qp(η) is HodgeTate if and only

if there exists some n ∈ Z such that (ηχn)(IK) is finite.

Definition 2.17. Let V be a Hodge-Tate representation. We say that an integer n ∈ Z is a Hodge-Tate
weight of V with multiplicity m if we have

dimK(V ⊗Qp
CK(n))ΓK = m > 0.

Example 2.18. We record the Hodge-Tate weights for some Hodge-Tate representations.

1. For every n ∈ Z the Tate twist Qp(n) of Qp is a Hodge-Tate representation with the Hodge-Tate
weight −n.

2. For every p-divisible group G over OK , the rational Tate module Vp(G) is a HodgeTate represen-
tation with the Hodge-Tate weights 0 and −1.

3. For an abelian variety A over K with good reduction, the ´etale cohomology Hn
ét(AK ,Qp) is a

Hodge-Tate representation with the Hodge-Tate weights 0, 1, · · · , n.
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