p-adic Hodge Theory (Spring 2023): Week 8

Xiaorun Wu (xiaorunw@math.columbia.edu)

March 23, 2023

This week: Generic Fibers of *p*-divisble groups

1 Generic Fibres of *p*-divisible groups

The main focus of this subsection is to prove the second main result for this chapter, which says that the generic fiber functor on the category of p-divisible groups over \mathcal{O}_K is fully faithful.

Theorem 1.1 (Tate). The generic fiber functor for the category of p-divisible groups over \mathcal{O}_K is fully faithful.

We first note the following result:

Proposition 1.2. Let $G = \varinjlim G_v$ be a *p*-divisible group of height *h* and dimension *d* over \mathcal{O}_K . Let $G_v = \operatorname{Spec}(A_v)$ where A_v is a finite free \mathcal{O}_K -algebra. Then the discriminant ideal of A_v over \mathcal{O}_K is generated by $p^{dvp^{hv}}$.

Sketch of Proof. Recall that we have an exact sequence

$$0 \to G_1 \xrightarrow{i_{v,1}} G_{v+1} \xrightarrow{j_{1,v}} G_v \to 0$$

We can then show that

$$\operatorname{disc}(A_{v+1}/\mathcal{O}_K) = \operatorname{disc}(A_v/\mathcal{O}_K)^{p^h} \cdot \operatorname{disc}(A_1)^{p^{hv}}.$$

By induction, we reduce to the case v = 1. The connected-étale sequence is

$$0 \to G_1^\circ \to G_1 \to G_1^{\text{\'et}} \to 0.$$

We can show that $\operatorname{disc}(A^{\operatorname{\acute{e}t}}/\mathcal{O}_K) = (1)$. It is hence enough to show that $\operatorname{disc}(A_1^{\circ}/\mathcal{O}_K) = (p^{d \cdot p^h})$. Using Serre–Tate correspondence

$$A_1 = \mathcal{O}_K \otimes_{A_1[p]_\mu} A$$

and

$$\operatorname{lisc}(A_1/\mathcal{O}_K) = \operatorname{disc}(\mathcal{A}/[p]\mathcal{A}).$$

For proof of this, check Haines' notes.

Lemma 1.3. Consider a homomorphism $f: G \to H$ between p-divisible groups. If $\tilde{f}: G \times \mathcal{O}_K K \to H \times_{\mathcal{O}_K} K$ is an isomorphism, f is an isomorphism

Proof. Let $G = \varinjlim_v G_v$, $H = \varinjlim_v H_v$, $G_v = \operatorname{Spec}(A_v)$, $H_v = \operatorname{Spec}(B_v)$. The map f consists of maps $\alpha_v : B_v \to A_v$ such that $\alpha_v \otimes 1 : B_v \otimes K \xrightarrow{\cong} A_v \otimes K$. Since both A_v, B_v are finite free over \mathcal{O}_K , $B_v \leftrightarrow A_v$. If $\operatorname{disc}(A_v/\mathcal{O}_K) = \operatorname{disc}(B_v/\mathcal{O}_K)$, then we are done. Recall that $\dim(G)$ is determined by $T_p(G)$.

Remark 1.4. This statement is not true for finite flat \mathcal{O}_K -group schemes. However, if K/\mathbb{Q}_p is finite with e , then Lemma 1.3 also holds (this is a Theorem of Raynaud).

Proposition 1.5. Let G be a p-divisible group over \mathcal{O}_K , and let M a \mathbb{Z}_p -direct summand of $T_p(G)$ which is stable under the action of Γ_K . There exists a p-divisible group H over \mathcal{O}_K with a homomorphism $\iota : H \to G$ which induces an isomorphism $T_p(H) \cong M$.

Proof. There is a *p*-divisible group \widetilde{H} over K with $\widetilde{H} \to G \times_{\mathcal{O}_K} K$ such that $T_p(\widetilde{H}) \cong H$, where $\widetilde{H} = \varinjlim \widetilde{H}_v$

Consider the scheme closure $\underline{H_v}$ of \widetilde{H}_v in G_v .

Remark 1.6. The injective limit $\lim_{v \to 0} H_v$ may not be a p-divisible group over \mathcal{O}_K .

We get maps $\underline{H_v} \hookrightarrow \underline{H_{v+1}}$ induced from $\widetilde{H}_v \hookrightarrow \widetilde{H}_{v+1}$.

We claim that there exists v_0 such that

$$H_v = \frac{H_{v+v_0}}{H_{v_0}}$$

such that $\varinjlim H_v$ is a *p*-divisible group. On the generic fiber,

$$H_v \times K \cong H_{v+v_0}/H_{v_0} \cong H_v.$$

The map [p] on H_{v+1} factors through H_v , since H_{v+1}/H_v is killed by p, so H_{v+1}/H_v is killed by p. Hence [p] induces:

$$\delta_v: \underline{H_{v+2}}/\underline{H_{v+1}} \to \underline{H_{v+1}}/\underline{H_v}$$

On generic fibers, δ_v is an isomorphism. Writing $\underline{H_{v+1}}/\underline{H_v} = \operatorname{Spec}(B_v)$, δ_v induces a map

$$B_v \to B_{v+1}$$

which becomes an isomorphism after tensoring with K. Hence $B_v \hookrightarrow B_{v+1}$ and $\{B_v\}$ is an increasing order in $B_1 \otimes K$.

Fact. The integral closure of \mathcal{O}_K in $B_1 \otimes K$ is Noetherian. Hence there exists v_0 such that

 $B_v \cong B_{v+1}$ for all $v \ge v_0$.

If $v \geq v_0$, we have that

$$\underline{H_{v+2}}/\underline{H_{v+1}} \cong \underline{H_{v+1}}/\underline{H_v}$$

Now,

$$H_{v+1} = \underbrace{H_{v+1+v_0}/\underline{H_{v_0}}}_{\downarrow} \xrightarrow{[p^v]} \underbrace{H_{v+1+v_0}/\underline{H_{v_0}}}_{\uparrow} \cong H_{v+1}$$

$$\underbrace{H_{v+1+v_0}/\underline{H_{v_0+v}}}_{\cong} \xrightarrow{\cong} \underbrace{H_{v_0+1}/\underline{H_{v_0}}}_{\downarrow}$$

Finally, $\operatorname{ker}([p^v]) = \underline{H_{v+v_0}} / \underline{H_{v_0}} = H_v.$

Proposition 1.7. There is a bijection:

$$\operatorname{Hom}(G,H) \cong \operatorname{Hom}(G \times_{\mathcal{O}_K} K, H \times_{\mathcal{O}_K} K).$$

Proof. If you have a homomorphism $f: G \times K \to H \times K$. Then \tilde{f} uniquely extends to $f: G \to H$.

For uniqueness: if $G_v = \text{Spec}(A_v)$, $H_v = \text{Spec}(B_v)$, then $\tilde{f}_v : B_v \otimes K \to A_v \otimes K$, so there is at most one extension to $B_v \to A_v$ (by choosing generators). We need to show existence. Consider the graph of $T = T_p f : T_p(G) \to T_p(H)$:

$$M \subseteq T_p(G) \oplus T_p(H).$$

We claim that M is a \mathbb{Z}_p -direct summand. Note that

$$T_p(G) \oplus T_p(H)/M \xrightarrow{\cong} T_p(H)$$

 $(x, y) \mapsto y - T(x),$

so $T_p(G) \oplus T_p(H)/M$ is torsion-free. Hence the short exact sequence

$$0 \to M \to T_p(G) \oplus T_p(H) \to T_p(G) \oplus T_p(H)/M \to 0$$

splits.

Since $T_p(G \times H) = T_p(G) \oplus T_p(H)$, by Proposition 1.5, there exists a *p*-divisible group G' over \mathcal{O}_K with a homomorphism $\iota : G' \to G \times H$ such that $T_p(G') \cong M$.

Consider the projection maps

$$\pi_1: G \times H \to G.$$
$$\pi_2: G \times H \to H.$$

Then $\pi_1 \circ \iota : G' \to G$ is an isomorphism by lemma 1.3. Then $f = \pi_2 \circ \iota \circ (\pi_1 \circ \iota)^{-1}$ extends \tilde{f} . \Box

Remark 1.8. As a related fact, the special fiber functor on the category of p-divisible groups over \mathcal{O}_K is faithful. In other words, for arbitrary p-divisible groups G and H over \mathcal{O}_K , the natural map

 $\hom(G, H) \to \operatorname{Hom}(G \times_{\mathcal{O}_K} k, H \times_{\mathcal{O}_K} k)$

is injective. A complete proof of this fact can be found in [CCO14, Proposition 1.4.2.3].

It is also worthwhile to mention that Proposition 1.7 remains true if the base ring \mathcal{O}_K is replaced by any ring R that satisfies the following properties:

- 1. R is integrally closed and noetherian,
- 2. R is an integral domain whose fraction field has characteristic 0.

In fact, it is not hard to deduce the general case from Theorem 1.7 by algebraic Hartog's Lemma.

Corollary 1.9. For arbitrary p-divisible groups G and H over OK, the natural map

$$\operatorname{Hom}(G, H) \to \operatorname{Hom}_{\mathbb{Z}_p[\Gamma_K]}(T_p(G), T_p(H))$$

is bijective.

We conclude this section by stating a fundamental theorem which provides a classification of p-divisible groups over \mathcal{O}_K when K is unramified over \mathbb{Q}_p . We write W(k) for the ring of Witt vectors over k.

Definition 1.10. A Honda system over W(k) is a Dieudonné module M over k together with a W(k)-submodule L such that φM induces an isomorphism $L/pL \cong M/\varphi_M(M)$.

Theorem 1.11. If p > 2, there exists an anti-equivalence of categories

 $\{ p\text{-divisible groups over } W(k) \} \xrightarrow{\cong} \{ Honda systems over W(k) \}$

such that for every p-divisible group G over W(k) with the mod p reduction $G := G \times_{W(k)} k$, the Dieudonné module of the associated Honda system coincides with $\mathbb{D}(\overline{G})$.

2 Period rings and functors

The goal is to define and study:

- period rings B_{HT} , B_{dR} , B_{cris} .
- de Rham and crystalline representations.

There is another important period ring, B_{st} , related to semistable representations. We will omit this here entirely.

2.1 Fontaine's formalism on Period rings

The reference for this section is [BC09, Section 5]. Let K be a p-adic field and Γ_K be the absolute Galois group $Gal(\overline{K}/K)$ and $I_K = Gal(\overline{K}/K^{un})$ be the inertia group of K.

Definition 2.1. Let B be a \mathbb{Q}_p -algebra with an action of Γ_K and let C be the fraction field of B with the natural Γ_K -action. We say that B is (\mathbb{Q}_p, Γ_K) -regular if

- $B^{\Gamma_K} = C^{\Gamma_K}$
- any $b \in B$ with $b \neq 0$ is a unit if $\mathbb{Q}_p \cdot b$ is stable under the Γ_K -action.

Example 2.2. Every field extension of \mathbb{Q}_p under any Γ_K -action is (\mathbb{Q}_p, Γ_K) -regular.

Remark 2.3. If F is a field and G is a group, we can define (F,G)-regular rings by replacing \mathbb{Q}_p with F and Γ_K with G in the above definition.

We can also extend our formalism to this setting.

Definition 2.4. Suppose B is a (\mathbb{Q}_p, Γ_K) -regular ring and $E = B^{\Gamma_K}$. Then

1. for all $V \in \operatorname{Rep}_{\mathbb{Q}_p}(\Gamma_K)$, define

$$D_B(V) = (V \otimes_{\mathbb{O}_{-}} B)^{\Gamma_K}.$$

2. a representation $V \in \operatorname{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ is B-admissible if

$$\dim_E D_B(V) = \dim_{\mathbb{Q}_n} V.$$

We denote by $\operatorname{Rep}_{\mathbb{Q}_p}^B(\Gamma_K)$ the category of *B*-admissible *p*-adic representations.

Remark 2.5. Let R be a topological ring with a continuous Γ_K -action, then

 $H^1(\Gamma_K, GL_d(R)) = \{ \text{ continuous } d \text{-dimensional semilinear } \Gamma_K \text{ representations over } R \} / \cong .$

For $V \in \operatorname{Rep}_{\mathbb{Q}_p}(\Gamma_K)$, we can consider the class $[V] \in H^1(\Gamma_K, GL_n(\mathbb{Q}_p))$. Let $[V]_B$ be its image in $H^1(\Gamma_K, GL_n(B))$. Then V is B-admissible if and only if $[V]_B$ is trivial.

- **Example 2.6.** 1. For any (\mathbb{Q}_p, Γ_K) -regular $B, V = \mathbb{Q}_p$ with trivial Γ_K -action is B-admissible. Indeed, $D_B(V) = B^{\Gamma_K} = E$.
 - 2. Consider $B = \overline{K}$. Then $V \in \operatorname{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ is K-admissible if and only if V is potentially trivial (i.e. the action of Γ_K on V factors through some finite quotient). This follows from the group cohomology interpretation and Hilbert 90.
 - 3. Consider $B = \mathbb{C}_K$. Then $V \in \operatorname{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ is \mathbb{C}_K -admissible if and only if V is potentially unramified, i.e. the action of the inertia group factors through a finite quotient. This fact is quite difficult; it follows from Sen theory and is almost as difficult as the Tate–Sen theorem.

Definition 2.7. Let $\eta : \Gamma_K \to \mathbb{Q}_p^{\times}$ be a character. For every $\mathbb{Q}_p[\Gamma_K]$ -module M, we define its twist by η to be the $\mathbb{Q}_p[\Gamma_K]$ -module

$$M(\eta) := M \otimes_{\mathbb{Q}_p} \mathbb{Q}_p(\eta)$$

where $\mathbb{Q}_p(\eta)$ denotes the Γ_K -representation on \mathbb{Q}_p given by η .

Example 2.8. Given a $\mathbb{Q}_p[\Gamma_K]$ -module M, we have an identification $M(n) \cong M(\chi^n)$ for every $n \in \mathbb{Z}$

Lemma 2.9. The group $\chi(I_K)$ is infinite.

Proof. By definition χ encodes the action of Γ_K on $\mu_{p^{\infty}}(K)$. In particular, we have $\ker(\chi) = \operatorname{Gal}(K(\mu_{p^{\infty}}(\overline{K}))/K)$. Hence it suffices to show that $K(\mu_{p^{\infty}}(K))$ is infinitely ramified over K.

Let e_n be the ramification degree of $K(\mu_{p^n}(K))$ over K, and let e be the ramification degree of K over \mathbb{Q}_p . Then $e_n \cdot e$ is greater than or equal to the ramification degree of $\mathbb{Q}_p(\mu_{p^{n-1}}(K))$ over \mathbb{Q}_p , which is equal to $p^{n-1}(p-1)$. We thus find that en grows arbitrarily large as n goes to ∞ , thereby deducing the desired assertion.

Theorem 2.10. Let $\eta : \Gamma_K \to \mathbb{Z}_p^{\times}$ be a continuous character. Then for i = 0, 1 we have canonical isomorphisms

$$H^{i}(\Gamma_{K}, \mathbb{C}_{K}(\eta)) \cong \begin{cases} K & \text{if } \eta(I_{K}) \text{ is finite,} \\ 0 & \text{otherwise.} \end{cases}$$

Remark 2.11. Theorem 1.1.8 recovers the essential part of the Tate-Sen theorem: indeed, if we take $\eta = \chi^n$ for some $n \in \mathbb{Z}$, then Theorem 2.10 yields canonical isomorphisms

$$H^{0}(\Gamma_{K}, \mathbb{C}_{K}(n)) \cong H^{1}(\Gamma_{K}, \mathbb{C}_{K}(n)) \cong \begin{cases} K & \text{for } n = 0, \\ 0 & \text{for } n \neq 0. \end{cases}$$

by Example 2.8 and Lemma 2.9. Moreover, for i = 0 Theorem 2.10 says that $\mathbb{Q}_p(\eta)$ is \mathbb{C}_K -admissible if and only if it is potentially unramified, as we have already mentioned in Example 2.6.

Definition 2.12. We define the Hodge-Tate period ring by

$$B_{HT} := \bigoplus_{n \in \mathbb{Z}} \mathbb{C}_K(n).$$

Proposition 2.13. The Hodge-Tate period ring B_{HT} is (\mathbb{Q}_p, Γ_K) -regular.

Proposition 2.14. A p-adic representation V of Γ_K is Hodge-Tate if and only if it is B_{HT} -admissible.

Proof. By definition we have

$$D_{B_{HT}}(V) = (V \otimes_{\mathbb{Q}_p} B_{HT})^{\Gamma_K} = \bigoplus_{n \in \mathbb{Z}} (V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n))^{\Gamma_K}.$$

Define $\tilde{\alpha}_V$ as in the theorem of Serre-Tate. Since $\tilde{\alpha}_V$ is injective, it is an isomorphism if and only if the source and the target have the same dimension over \mathbb{C}_K , which amounts to the identity $\dim_K D_{B_{HT}}(V) = \dim_{\mathbb{Q}_p} V$. The desired assertion now follows from definition of Hodge-Tate representations and B_{HT} -admissibility. \Box

Example 2.15. Let V be a p-adic representation of Γ_K which fits into an exact sequence

$$0 \to \mathbb{Q}_p(\ell) \to V \to \mathbb{Q}_p(m) \to 0$$

where ℓ and m are distinct integers. We assert that V is Hodge-Tate. For every $n \in \mathbb{Z}$ we obtain an exact sequence

$$0 \to \mathbb{C}_K(\ell + n) \to V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n) \to \mathbb{C}_K(m + n) \to 0$$

as $\mathbb{C}_K(n)$ is flat over \mathbb{Q}_p , and consequently get a long exact sequence

$$0 \to \mathbb{C}_K(l+n)^{\Gamma_K} \to (V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n))^{\Gamma_K} \to \mathbb{C}_K(m+n)^{\Gamma_K} \to H^1(\Gamma_K, \mathbb{C}_K(m+n))$$

Then from Hodge-Tate theorem in chapter 2 we have

$$(V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n))^{\Gamma_K} \cong \begin{cases} K & \text{for } n = -\ell, -m \\ 0 & \text{for } n \neq -\ell, -m \end{cases}$$

Hence we have

$$\dim_K D_{B_{HT}}(V) = \sum_{n \in \mathbb{Z}} \dim_K (V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n))^{\Gamma_K} = 2 = \dim_{\mathbb{Q}_p} V$$

thereby deducing the desired assertion.

Note a self extension of \mathbb{Q}_p may not be Hodge-Tate.

Proposition 2.16. Let $\eta : \Gamma_K \to \mathbb{Z}_p^{\times}$ be a continuous character. Then $\mathbb{Q}_p(\eta)$ is HodgeTate if and only if there exists some $n \in \mathbb{Z}$ such that $(\eta \chi^n)(I_K)$ is finite.

Definition 2.17. Let V be a Hodge-Tate representation. We say that an integer $n \in \mathbb{Z}$ is a Hodge-Tate weight of V with multiplicity m if we have

$$\dim_K (V \otimes_{\mathbb{O}_n} \mathbb{C}_K(n))^{\Gamma_K} = m > 0.$$

Example 2.18. We record the Hodge-Tate weights for some Hodge-Tate representations.

- 1. For every $n \in \mathbb{Z}$ the Tate twist $\mathbb{Q}_p(n)$ of \mathbb{Q}_p is a Hodge-Tate representation with the Hodge-Tate weight -n.
- 2. For every p-divisible group G over \mathcal{O}_K , the rational Tate module $V_p(G)$ is a HodgeTate representation with the Hodge-Tate weights 0 and -1.
- 3. For an abelian variety A over K with good reduction, the 'etale cohomology $H^n_{\acute{e}t}(A_{\overline{K}}, \mathbb{Q}_p)$ is a Hodge-Tate representation with the Hodge-Tate weights $0, 1, \dots, n$.