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This week: Proof of Hodge-Tate Decomposition
In this subsection, we derive the first main result for this chapter by exploiting our accumulated
knowledge of finite flat group schemes and p-divisible groups. Let us first present some easy but useful
lemmas.

1 Proof of Hodge-Tate Decomposition

Lemma 1.1. Let G = lim−→Gv be a p-divisible group over OK . For each v we have canonical isomor-
phisms

Gv(K) ∼= Gv(CK) ∼= Gv(OCK
).

Proof. Since CK is algebraically closed, the first isomorphism follows from the fact that the generic
fiber of Gv is étale. The second isomorphism is a direct consequence of the valuative criterion.

Lemma 1.2. For every p-divisible group G over OK we have

G(OCK
)ΓK = G(OK) and tG(CK)ΓK = tG(K),

Proof. It should follow immediately, recalling that CΓK

K = K and OΓK

CK
= OK .

Lemma 1.3. Given a p-divisible group G over OK we have

∞⋂
n=1

pnG◦(OK) = 0.

Proof. As the valuation on K is discrete, there exists a minimum positive valuation δ; indeed, we have
δ = ν(π) where π is a uniformizer of K. Then an easy induction using Lemma from previous lecture
yields pnG◦(OK) ⊆ FilnδG◦(OK) for all n ≥ 1. We thus deduce the desired assertion by observing
∩∞n=1Fil

nδG◦(OK) = 0.

The main technical ingredient for this subsection is the interplay between the Tate modules and Cartier
duality.

Definition 1.4. Let G = lim−→Gv be a p-divisible group over OK . We define the Tate module of G by

Tp(G) := Tp(G×OK
K) = lim←−Gv(K),

and the Tate comodule G by
Φp(G); = lim−→Gv(K).

Remark 1.5. The Tate comodule Φp(G) is nothing other than G(K), where G is regarded as a fpqc
sheaf.

Example 1.6. Tp(µp∞) = Zp(1), and that Φ(µp∞) = lim−→µpv
(K) = µp∞(K) is the group of p-power

roots of unity in K.

Proposition 1.7. Given a p-divisible group G over OK , Cartier duality induces natural ΓK-equivariant
isomorphisms

Tp(G) ∼= HomZp
(Tp(G

∨),Zp(1)) and ϕp(G) ∼= HomZp
(Tp(G

∨), µp∞(K))

1



ideas of proof. Note that every finite flat group scheme over K is étale. For each v we have a natural
identification

Gv(K) ∼= (G∨
v )

∨(K) = HomK -grp((G
∨
v )K , (µpv )K) ∼= Hom(G∨

v (K), µpv (K))

Then the result is more of plug in of definition.

Proposition 1.8. We have a short exact sequence

0→ Φp(G)→ G(OCK
)

logG−−−→ tG(CK)→ 0.

Proof. We know that Φp(G) = G(K) ⊆ G(OCK
). We need to check that logG is surjective and its

kernel is Φp(G). Recall that logG induces an isomorphism G(OCK
)⊗Qp

∼= tG(CK), so logG is surjective
after inverting p. Since CK is algebraically closed, G(OCK

) is p-divisible (i.e. multiplication by p on
G(OCK

) is surjective). Hence p is already invertible in G(OCK
), showing that logG is surjective. We

now want to show that ker(logG) = Φp(G). Then

as to be shown.

Example 1.9. Let G = µp∞ . Then

0→ µp∞(K)→ 1 +mCK

logµp∞−−−−−→ CK → 0.

Proposition 1.10. Every p-divisible group G over OK gives rise to a commutative diagram of exact
sequence

where α and dα are ΓK-equivariant and injective.

Proof. The top row is as described in Proposition 1.8. The bottom row is induced by the short exact
sequence in Example 1.9, and is exact since Tp(G

∨) is free over Zp. The left vertical arrow is the
natural ΓK-equivariant isomorphism given by Proposition 1.7.
Let us now construct the maps α and dα. As usual, we write G = lim−→Gv where Gv is a finite flat
OK-group scheme. Hence we have
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We define map α : G(OCk
)→ HomZp(Tp(G

∨), 1 +mCK
) by setting

α(g)(u) := uOCK
(g) for each g ∈ G(OCK

) and u ∈ Tp(G
∨),

where uOCK
: G(OCk

) → µp∞(OCK
) ∼= 1 + mCK

is the map induced by u under the identification 3.7
above. We also define the map dα : tG(CK)→ HomZp(Tp(G

∨),CK) by setting

dα(z)(u) := duCK
(z) for each z ∈ tG(CK) and u ∈ Tp(G

∨),

where duCK
: tG(CK)→ tµp∞ (CK) ∼= CK is the map induced by u under the identification 3.7.

The maps α and dα are evidently Zp-linear and ΓK-equivariant by construction. The commutativity
of the left square follows by observing that the left vertical arrow can be also defined as the restriction
of α on G(OCK

) ∼= Φp(G). The commutativity of the right square amounts to the commutativity of
the following diagram

which is straightforward to verify by definition; indeed, the logarithm map yields a natural transforma-
tion between the functor ofOCK

-valued formal points and the functor of tangent space with values inK.

It remains to prove that α and dα are injective. By snake lemma we have Zp-linear isomorphisms

ker(α) ∼= ker(dα) coker(α) ∼= coker(dα) (3.8)

Hence it suffices to show that dα is injective.
As both tG(CK) and HomZp

(Tp(G∨),CK) are Qp-vector spaces, the Zp-linear map dα is indeed Qp-
linear. Therefore both ker(dα) and coker(dα) are Qp-vector spaces. The isomorphisms (3.8) then tells
us that both ker(α) and coker(α) are Qp-vector spaces as well. We assert that α is injective on G(OK).
Suppose for contradiction that ker(α) contains a nonzero element g ∈ G(OK). As ker(α) is torsion
free for being a Qp-vector space, we may assume g ∈ G◦(OK). Let us define the map

α◦ : G◦(OCK
)→ HomZp(Tp(G

◦)∨, 1 +mCK
)

in the same way we define the map α. Since the natural map Tp(G
∨) → Tp((G

◦)∨) is surjective, we
obtain a commutative diagram

G◦(OCK
) G(OCK

)

HomZp
(Tp((G

◦))) HomZp
(Tp(G

∨), 1 +mCK
)

α◦ α

where both horizontal arrows are injective. In particular, we have g ∈ ker(α◦) ∩ G◦(OK). Moreover,
we have ker(α◦)∩G◦(OK) = ker(α◦)ΓK , which is a Qp-vector space since ker(α

◦) is a Qp-vector space
by the same argument as in the preceding paragraph.
Therefore for every n ∈ Z there exists an element gn ∈ ker(α◦) ∩ G◦(OK) with g = pngn. However,
this means g = 0 by lemma 1.3, yielding the desired contradiction.

Next we show that dα is injective on tG(K). Since logG(G(OK))⊗Zp
Qp = tG(K) by Proposition from

previous lecture, it is enough to show the injectivity on logG(G(OK)). Choose an arbitrary element
h ∈ G(OK) such that logG(h) ∈ ker(dα). We wish to show that logG(h) = 0. As the isomorphism
ker(α) ∼= ker(dα) in (3.8) is induced by logG, we can find h′ ∈ ker(α) with logG(h) = logG(h

′).

Then by Proposition from last time we have h−h′ ∈ ker(logG) = G(OCK
)tors, which means that there

exists some n with pn(h − h′) = 0, or equivalently pnh = pnh′. We thus find pnh ∈ ker(α) ∩ G(OK),
which implies pnh = 0 by the injectivity of α on G(OK).

Hence we have h ∈ G(OCK
)tors, thereby deducing logG(h) = 0. As tG(K) = tG(CK)ΓK by Lemma 1.2,

we can factor dα as

dα : tG(CK) ∼= tG(K)⊗K CK → HomZp
(Tp(G

∨),CK)ΓK ⊗K CK → HomZp
(Tp(G

∨),CK).
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The first arrow is injective by our discussion in the preceding paragraph. The second arrow is injective
since we have a canonical isomorphism

HomZp(Tp(G
∨),CK) ∼= HomZp(Tp(G

∨),K)⊗K CK

due to the freeness of Tp(G
∨) over Zp. Hence we deduce the injectivity of dα as desired, thereby

completing the proof.

Now we have the famous theorem from Tate:

Theorem 1.11 (Tate, 1967). The maps α, dα from Proposition 1.10 induce isomorphisms on ΓK-
invariants:

αK : G(OK)→ HomZp[ΓK ](Tp(G
∨), 1 +mCK

),

dαK : tG(OK)→ HomZp[ΓK ](Tp(G
∨),CK).

Proof. By proposition 1.10, we have the following commutative diagram with the following exact rows:

Applying (◦)ΓK , we get a commutative diagram

By exactness, we have the following commutative diagram

Since coker(αK) ↪→ coker(dαK), it is enough to show that dαK is surjective. Let

W = HomZp(Tp(G),CK).

V = HomZp(Tp(G
∨),CK).

Then dαK : tG(K) → V ΓK . so dimK(V Γ
K) ≥ dimK tG(K) = dimG = d. We want to show that

dimK(V Γ
K) = dimK(tG(K)). We also know that

dimK(WΓK ) ≥ dimK(tG∨(K)) = dim(G∨) = d∨

and hence
dimK(V ΓK ) + dimK(WΓK ) ≥ d+ d∨ = h.

It is therefore enough to show that

dimK(V ΓK ) + dimK(WΓK ) ≤ h

Note that dimCK
(V ) = h = dimCK

(W ). Recall that

Tp(G) ∼= HomZp(Tp(G
∨),Zp(1))

as ΓK=module, which induces a perfect ΓK-equivalent pairing

Tp(G)× Tp(G
∨)→ Zp(1).

4



This gives a perfect ΓK-equivariant pairing

V ×W → CK(−1).

Taking ΓK equivariant, we get

V ΓK ×WΓK → CK(−1)ΓK = 0.

This shows that V ΓK ⊗K CK and WΓK ⊗K CK are orthogonal under this pairing. Hence

dimCK
(V ΓK ⊗ CK) + dimCK

(WΓK ⊗ CK) ≤ dimCK
(V ) = h,

completing the proof.

Corollary 1.12. We have that

dim(G) = dimK(HomZp[ΓK ](Tp(G
∨),CK)) = dimK(Tp(G)⊗Zp CK(−1))ΓK .

Proof. The first equality immediately follows from Theorem 3.4.10. The second equality follows by an
identification

Tp(G)⊗Zp CK(−1) ∼= HomZp(Tp(G
∨),Zp(1))⊗Zp CK(−1) ∼= HomZp(Tp(G

∨),CK)

where the isomorphisms are given by Proposition 1.7 and the freeness of Tp(G
∨) over Zp.

We are finally ready to prove the first main result for this chapter.

Theorem 1.13 (Tate, 1967). Let G be a p-divisible group over OK . There is a canonical isomorphism
of CK [ΓK ]-modules

Hom(Tp(G),CK) ∼= tG∨(CK)⊕ t∗G(CK)(−1).

Proof. From the theorem 1.11, we have that

tG(CK) ∼= HomZp
(Tp(G

∨),CK)ΓK ⊗K CK ,

tG∨(CK) ∼= HomZp
(Tp(G

),CK)ΓK ⊗K CK ,

Moreover, from the proof of theorem 1.11 shows that tG(CK) and tG∨(CK) are orthogonal under the
perfect pairing

HomZp
(Tp(G),CK)×HomZp

(Tp(G
∨),CK)→ CK(−1)

as constructed in the proof of theorem 1.11, with equality

dimCK
(tG(CK)) + dimCK

(tG∨(CK)) = dimCK
(HomZp

(Tp(G),CK)).

This means that tG(CK) and tG∨(CK) are orthogonal complements with respect to the above pairing,
thereby yielding an exact sequence

0→ tG∨(CK)→ HomZp(Tp(G),CK)→ t∗G(CK)(−1)→ 0 (1)

where for the last term we use the identification HomCK
(tG(CK),CK(−1)) ∼= t∗G(CK)(−1) that fol-

lows by observing that t∗G(CK) is the CK-dual tG(CK). Writing d := dimCK
(tG(CK)) and d∨ :=

dimCK
(tG∨(CK)) we find

Ext1CK [ΓK ](t
∗
G(CK)(−1), tG∨(CK)) ∼= Ext1CK [ΓK ](CK(−1)⊕d∨

,C⊕d
K ) ∼= H1(ΓK ,CK(1))⊕dd∨

= 0

thereby deducing that the exact sequence (1) above splits. Moreover, such a splitting is unique since
we have

HomCK [ΓK ](t
∗
G(CK)(−1), tG∨(CK)) ∼= HomCk[ΓK ](CK(−1)⊕d∨

,C⊕d
K ) ∼= H0(ΓK ,CK(1))⊕dd∨

= 0

Hence we obtain the desired assertion.

Definition 1.14. Given a p-divisible group G over OK , we refer to the isomorphism in Theorem 1.13
as the Hodge-Tate decomposition for G.
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Corollary 1.15. For every p-divisible group G over OK , the rational Tate-module

Vp(G) := Vp(G×OK
K) = Tp(G)⊗Zp

Qp

is a Hodge-Tate p-adic representation of ΓK .

Proof. As the CK-duals of tG∨(CK) and t∗G(CK) are respectively given by t∗G∨(CK) and tG(CK),
Theorem 1.13 yields a decomposition

Vp(G)⊗Qp CK
∼= t∗G∨(CK)⊕ tG(CK)(1)

Then for each n we find

(Vp(G)⊗Qp CK(−n))ΓK


(t∗G∨(CK) if n = 0,

tG(CK) if n = 1,

0 otherwise

by theorem from previous lecture. The assertion is now obvious by definition from the previous
lectures.

Proposition 1.16. Suppose A is an abelian variety over K with good reduction. Then

Hn
ét(AK ,Qp)⊗Qp

CK
∼=

⊕
i+j=n

Hi(A,Ωj
A/K)⊗K CK(−j).

Proof. Since A has good reduction, there is an abelian scheme A over OK such that the generic fiber
is A×K ∼= A. Moreover, we know that

A∨[p∞] ∼= A[p∞]∨.

We have the following facts:

1. H1
ét(AK ,Qp) = HomZp

(Tp(A[p∞]),Zp)⊗Zp
Qp,

2. the formal completion of A at the unit element gives the formal group law corresponding to
A[p∞]◦ under the Serre-Tate equivalence

3. we have the isomorphism

H0(A,Ω1
A/K) ∼= t∗e(A) and H1(A,OA) ∼= te(A

∨)

where t∗e(A) and te(A) respectively denote the cotangent space of A and tangent space of A∨ (at
the unit section).

4. We have identifications

Hn
ét(AK ,Qp) ∼=

n∧
H1

ét(AK ,Qp),

Hi(A,Ωj
A/K) ∼=

i∧
H1(A,OA)⊗

j∧
H0(A,Ω1

A/K).

The statements (2) and (3) together yield identifications

H0(AK ,Ωj
A/K) ∼= t∗A[p∞](K) and H1(A,OA) ∼= tA∨[p∞](K).

Hence Theorem 1.13 yields a canonical ΓK-equivariant isomorphism

H1
ét(AK ,Qp)⊗Qp CK

∼= (H1(A,OA)⊗K CK)⊕ (H0(A,Ω1
A/K)⊗K CK(−1)).

We then obtain the desired isomorphism by (4)

Proposition 1.16 is a special case of the general Hodge-Tate decomposition theorem that we intro-
duced during the first week. The original proof by Faltings in [Fal88] relies on the language of almost
mathematics. Recently, inspired by the work of Faltings, Scholze [Sch13] extended the Hodge-Tate de-
composition theorem to rigid analytic varieties using his theory of perfectoid spaces. A good exposition
of Scholze’s work can be found in Bhatt’s notes [Bha].

Corollary 1.17. For every abelian variety A over K with good reduction, the étale cohomology
Hn

ét(AK ,Qp) is a Hodge-Tate p-adic representation of ΓK .

For each j we have the identification

(Hn
ét(AK ,Qp)⊗Qp CK(j))ΓK ∼=

{
Hn−j(X,Ωj

X/K) if 0 ≤ j ≤ n,

0 otherwise
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