
p-adic Hodge Theory (Spring 2023): Week 6

Xiaorun Wu (xiaorunw@math.columbia.edu)

March 1, 2023

This week: Hodge-Tate Decomposition
In this section, we finally enter the realm of p-adic Hodge theory. Assuming some technical results from
algebraic number theory, we prove two fundamental theorems regarding p-divisible groups, namely the
Hodge-Tate decomposition for the Tate modules and the fullfaithfulness of the generic fiber functor.
The primary reference for this section is Tate’s paper [Tat67].

1 Formal point on p-divisible groups

For the rest of this section, we fix the base ring R = OK . We also let L be the p-adic completion of an
algebraic extension of K, and denote by mL its maximal ideal. We are particularly interested in the
case where L = CK .

Definition 1.1. Let G = lim−→Gv be a p-divisible group over OK . We define the group of OL-valued
formal points on G by

G(OL) := lim←−
i

G(OL/m
iOL) = lim←− lim−→Gv(OL/m

iOL).

Example 1.2. µp∞(OL) ∼= 1 +mL.

Remark 1.3. The group of “ordinary” OL-valued points on µp∞ is given by

lim−→
v

µpv (OL) = lim−→
v

{x ∈ O×
L : xpv

= 1}

which precisely consists of p-power torsion elements in O×
L . We thus see that µp∞(OL) contains many

“non-ordinary” points.

Proposition 1.4. Let G = lim−→Gv be a p-divisible group over OK .

• Writing Gv = Spec(Av) for each v, we have an identification

G(OL) ∼= HomOK -cont(lim←−
v

Av,OL).

• G(OL) is a Zp-module with the torsion part given by

G(OL)tors ∼= lim←−
v

lim−→
i

Gv(OL/m
iOL).

• If G is étale, then G(OL) is isomorphic to a torsion group G(kL) where kL denotes the residue
field of OL.

Proof. Note that we have OL = lim←−i
OL/m

iOL) by completeness of OL. We also have lim←−Av =

lim←−i,v
Av/m

iAv since each Av is m-adically complete for being finite free over OK by a general fact as

stated in [Sta, Tag 031B]. We thus obtain an identification

G(OL) ∼= lim←−
i

lim−→
v

HomOK
(Av,OL/m

iOL) ∼= lim←−
i

lim−→
v

HomOK
(Av/m

iAv,OL/m
iOL)

∼= lim←−
i

HomOK
(lim←−

v

Av/m
iAv,OL/m

iOL)

∼= HomOK -cont(lim←−
i,v

Av/m
iAv, lim←−

i

OL/m
iOL)

∼= HomOK -cont(lim←−
v

Av,OL)

as asserted in (1)
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Remark 1.5. The formal scheme G := Spf(lim←−Av) carries the structure of a formal group induced
by the finite flat OK-group schemes Gv. Moreover, we can write the identification in (1) as G(OL) ∼=
HomOK-formal(Spf(OL), G).

Corollary 1.6. Let G be a connected p-divisible group dimension d over OK . We have a canonical
isomorphism of Zp-modules

G(OL) ∼= HomOK-cont(OK [[t1, · · · , td]],OL)

where the multiplication by p on the target is induced by [p]µ(G).

Above imply G(OL) ∼= md
OL

as a set.

Proposition 1.7. Let G = lim−→Gv be a p-divisible group over OK . Then we have an exact sequence

0→ G◦(OL)→ G(OL)→ Gét(OL)→ 0.

Proof. Let Gv = Spec(Av), G
◦
v = Spec(A◦

v), and Gét
v = Spec(Aét

v ). Let

A = lim←−Av, Aét = lim←−Aét
v .

This sequence is left exact since colimits and limits are both left exact. We need to show that G(OL)→
Gét(OL) is surjective, i.e. the map

Homcibt(A,OL)→ Homcont(Aét,OL)

is surjective. Recall that
G◦(OL) = Homcont(OKJt1, · · · , tdK,OL)

where d = dim(G). Moreover,
(Aét ⊗ k)Jt1, · · · , tdK ∼= A⊗ k

since over k the connected–étale sequence splits.
We get f : AétJt1, · · · , tdK → A (by the same argument as in Serre–Tate). We claim that this map is
an isomorphism.
For surjectivity, assume coker(f) ̸= 0. Then there exists a maximal idealM of A such that coker(f)M ̸=
0. Hence coker(f)⊗OK

k = 0, so m coker(f) = coker(f), and hence

coker(f)M = m coker(f)M = M coker(f)M.

Since coker(f)M is finitely-generated over AM, we are done by Nakayama’s Lemma. For injectivity,
let I = (t1, · · · , td) and I be the image of I under f . We have a short exact sequence

0→ ker(f)/ ker(f) ∩ Ij → AétJt1, · · · tdK/Ij → A/Ĩj → 0,

so ker(f)/ ker(f) ∩ Ij = 0, showing that ker(f) ⊆ Ij . Since
⋂

Ij = 0, this shows that ker(f) = 0.
We have hence shown that f is an isomorphism. This gives a surjection A → Aét which splits the
embedding Aét → A. We hence get a splitting of

Homcont(A,OL)→ Homcont(Aét,OL),

showing this map is surjective.

Corollary 1.8. For all x ∈ G(OL), p
nx ∈ G◦(OL) for some n.

Proof. The group Gét is torsion. Hence for some some n, the image of pnx in Gét(OL) is trivial. We
are hence done by the connected–étale sequence.

Proposition 1.9. If the field L is algebraically closed (e.g. L = CK), multiplication by p on G(OL)
is surjective.

Proof. By the connected–étale sequence, can work onG◦(OL) andGét(OL) separately. SinceG
ét(OL) =

Gét(kL), using equivalence to finite free Zp-modules, multiplication by p is surjective. The group
G◦(OL) is p-divisible by the p-divisibility of the corresponding p-divisible formal group µ. Surjectivity
on G◦(OL) follows.

Remark 1.10. These facts will imply that log : G(OCK
)→ tG(CK) is surjective.
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2 The logarithm for p-divisible groups

Definition 2.1. Let G be a p-divisible group over OK of dimension d. Let us write A◦ := OKJt1, · · · , tdK
and denote by I the augmentation ideal of µ(G).

1. Given an OK-module M , we define the tangent space of G with values in M by

tG(M) := HomOK-mod(I/I2,M).

and the contagent space of G with values in M by

t∗G(M) := I/I2 ⊗OK
M.

2. We define the valuation filtration of G◦(OL) by setting

Filλ G◦(OL); +{f ∈ G◦(OL) : ν(f(x)) ≥ λ for all x ∈ I}

for all real number λ > 0, where we identify G◦(OL) ∼= HomOK-cont(A◦,OL) as described in
Corollary 1.6.

Remark 2.2. We may identify tG and t∗G respectively with the tangent space and cotangent space of
the formal group Gµ induced by µ.

Lemma 2.3. Let G be a p-divisible group over OK . For every f ∈ Filλ G◦(OL), we have pf ∈
Filκ G◦(OL) where κ = min(λ+ 1, 2λ).

Proof. Let I denote the augmentation ideal of µ(G). From lemma a few weeks ago we have that
[p]µ(G)(x) = px+ y for some y ∈ I2. We thus find

(pf)(x) = f([p]µ(G)(x)) = f(px+ y) = pf(x) + f(y),

which implies that ν((pf)(x)) ≥ min(λ+ 1, 2λ).

Lemma 2.4. For every x ∈ I, f ∈ G(OL),

lim
n→∞

(pnf)(x)

pn

exists in L and equal zero if x ∈ I2.

Proof. Recall that for any f ∈ G(OL), p
nf ∈ G◦(OL) for n≫ 0 by Corollary 1.8, hence we can apply

lemma 2.3 to pnf ∈ G◦(OL).
By an easy induction, there exists c such that

pnf ∈ Filn+c G◦(OL) for n≫ 0.

Indeed, if λ ≥ 1,min(1 + λ, 2λ) = 1 + λ and λ < 1,min(1 + λ, 2λ) = 2λ.

We now want to show that ( (p
nf)(x)
pn ) is Cauchy. We have that

(pn+1f)(x)

pn+1
− (pnf)(x)

pn
=

(pnf)([p]µ(x))

pn+1
− (pnf)(px)

pn+1

=
(pnf)([p]µ(x)− px)

pn+1

=
(pnf)(y)

pn+1

has valuation ≥ 2(n+ c)− (n+ 1) = n+ 2c− 1. This shows that the limit exists.
We finally want to show that the limit is 0 if x ∈ I2. By the same calculation as above,

v

(
(pnf)(x)

pn

)
≥ 2(n+ c)− n ≥ n+ 2c,

so the sequence tends to 0.

So from this, we would able to make the following definition
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Definition 2.5. Let G be a p-divisible group over OK , and let I denote the augmentation ideal of
µ(G). We define the logarithm of G to be the map

logG : G(OL)→ tG(L)

such that for every f ∈ G(OL), and that x ∈ I/I2, we have

logG(f)(x) = lim−→
n→∞

(pn)(x̃)

pn

where x̃ is any lift of x to I.

Example 2.6. Let us provide an explicit description of logµp∞
. As seen in the previous weeks, we

have that µĜm
[p∞] ∼= µp∞ . Corollary 1.6 gives an identification

µp∞(OL) ∼= HomOK-cont(OLJtK,OL) ∼= mL
∼= 1 +mL.

We thus have the following commutative diagram:

Let us identify logµp∞
with the bottom arrow. We also take an arbitrary element 1 + x ∈ 1 +mL. As

each f ∈ µp∞(OL) satisfies

(pnf)(t) = f
(
[pn]Ĝm

(t)
)
= f((1 + t)p

n

− 1) = (1 + f(t))p
n

− 1,

the diagram 3.4 yields an expression

logµp∞
(1 + x) = lim

n→∞

(1 + x)p
n − 1

pn
= lim

n→∞

pn∑
i=1

1

pn

(
pn

i

)
xi. (1)

In addition, for eahc i and n we have that

1

pn

(
pn

i

)
− (−1)i−1

i
=

(pn − 1) · · · (pn − i+ 1)− (−1)i−1(i− 1)!

i!
.

Since the numerator is divisible by pn, we obtain an estimate

ν

(
1

pn

(
pn

i

)
xi − (−1)i−1xi

i

)
≥ n+ iν(x)− ν(i!) ≥ n+ iν(x)− i

p− 1
.

Hence we may write the expression (1) as

logµp∞
(1 + x) =

∞∑
i=1

(−1)i−1

i
xi.

which coincides with the p-adic logarithm.

Let us collect some basic properties of the logarithm for p-divisible groups.

Proposition 2.7. Let G be a p-divisible group over OK . Denote by I the augmentation ideal of µ(G).

1. logG is a group homomorphism

2. logG is a local isomorphism in the sense that for each real number λ ≥ 1, it induces an isomor-
phism

Filλ G◦(OL)
∼−→ {τ ∈ tG(L) : ν(τ(x)) ≥ λ for all x ∈ I/I2}.

3. The kernel of logG is the torsion subgroup G(OL)tors of G(OL).

4. logG induces an isomorphism G(OL)⊗Zp
Qp
∼= tG(L).
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Proof. We first check (1). For all f, g ∈ G(OL), we want to show that

logG(f + g) = logG(f) + logG(g).

We have that
pn(f + g)(x)

pn
=

(pnf ⊗ png)(µ(x))

pn
=

(pnf)(x) + (png)(x) + y

pn

for all y ∈ (pnf)I ⊗ (png)(I).

Since the valuation of y gets really large as n→∞, this shows that

pn(f + g)(x)

pn
− (pnf)(x)

pn
− (png)(x)

pn
→ 0.

Let us now fix an arbitrary real number λ ≥ 1 and write

Filλ tG(L) := {τ ∈ tG(L) : ν(τ(x)) ≥ λ for all x ∈ I/I2}.

If f ∈ Filλ G◦(OL), then lemma 2.3 implies that ν( (p
nf)(x)
pn ) ≥ λ for all x ∈ I and that n > 0, thereby

implying logG(f) ∈ Filλ tG(L). It is then straightforward to verify that logG on Filλ G◦(OL) admists
an inverse Filλ tG(L) → Filλ G◦(OL) which sends each τ ∈ Filλ tG(L) to the unique f ∈ Filλ G◦(OL)
with f(ti) = τ(ti). Therefore we deduce (2).

Next we show ker(logG) = G(OL)tors as asserted in (3). We clearly have G(OL)tors ⊆ ker(logG) since
tG(L) is torsion free for being a vector space over L. Hence we only need to establish the reverse
inclusion ker(logG) ⊂ G(OL). Let f be an element in ker(logG). By (1) we have pnf ∈ ker(logG) for
all n. Moreover, Corollary 1.8 and Lemma 2.3 together yield pnf ∈ Fil1 G◦(OL) for all sufficiently
large n. We then find pnf = 0 for all sufficiently large n by (2), thereby deducing that f is a torsion
element as desired.

Now (3) readily implies the injectivity of the map G(OL) ⊗ ZpQp → tG(L) induced by logG. We
also deduce the surjectivity of the map from (2) by observing that every element τ ∈ tG(L) satisfies
pnτ ∈ Fil1 tG(L) for all sufficiently large n.
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