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This week: Hodge-Tate Decomposition

In this section, we finally enter the realm of p-adic Hodge theory. Assuming some technical results from
algebraic number theory, we prove two fundamental theorems regarding p-divisible groups, namely the
Hodge-Tate decomposition for the Tate modules and the fullfaithfulness of the generic fiber functor.
The primary reference for this section is Tate’s paper [Tat67].

1 Formal point on p-divisible groups

For the rest of this section, we fix the base ring R = O . We also let L be the p-adic completion of an
algebraic extension of K, and denote by my its maximal ideal. We are particularly interested in the
case where L = Cg.

Definition 1.1. Let G = @GU be a p-divisible group over Ok. We define the group of Or-valued
formal points on G by

G(OL) = mG(OL/mlOL) = I&HQGU(OL/ITIIOL)

i
Example 1.2. (1, (O) =1+ my,.
Remark 1.3. The group of “ordinary” Or-valued points on pipe is given by
lim 0 (Op) = lim{a € OF .2’ =1}
v v

which precisely consists of p-power torsion elements in Of . We thus see that pye(Or) contains many
“non-ordinary” points.
Proposition 1.4. Let G = liﬂGv be a p-divisible group over Ok .

o Writing G, = Spec(A,) for each v, we have an identification

G(0Or) = Homp,, _cont(l<i£1AU, Or).

o G(Oy) is a Zy-module with the torsion part given by
G(OL)tors = %inh_n}G’u(OL/nﬂoL)

o If G is étale, then G(OL) is isomorphic to a torsion group G(kr) where ki, denotes the residue
field of Or,.
Proof. Note that we have O = l&nl (’)L/mi(’)L) by completeness of Q. We also have @AU =
@i . A,/m‘A, since each A, is m-adically complete for being finite free over O by a general fact as
stated in [Sta, Tag 031B]. We thus obtain an identification
G(Op) = mligﬂHOmoK (A, OL/miOL) = @@HOTH@K (Av/miA,U, (’)L/miOL)
% v % v

= I-LHHOHIOK (I&H Av/miAvv OL/miOL)

= HOI’II(QK -cont Qﬂl Av/miAln @1 OL/mlOL)
= HOIH@K -cont Qin AU) OL)

v

as asserted in (1) O



Remark 1.5. The formal scheme G := Spf(l'&l A,) carries the structure of a formal group induced
by the finite flat O -group schemes G,,. Moreover, we can write the identification in (1) as G(Or) =
HOI’II(QK —formal(Spf(OL)7 G)

Corollary 1.6. Let G be a connected p-divisible group dimension d over Ox. We have a canonical
isomorphism of Z,-modules

G(OL) = HomOK—cont(OK[[th e atd]]a OL)
where the multiplication by p on the target is induced by [p],(c)-
Above imply G(Or) 2 md, as a set.

Proposition 1.7. Let G = ligGU be a p-divisible group over Ok . Then we have an exact sequence

0— G°(0OL) = G(OL) = G0OL) — 0.
Proof. Let G, = Spec(A,), GS = Spec(A°), and G = Spec(A%). Let

A=limA,, A*=limAF.
This sequence is left exact since colimits and limits are both left exact. We need to show that G(Or) —
G*(0Or) is surjective, i.e. the map
Homgpy (A, OL) — Homeont (.Aét, OL)

is surjective. Recall that

GO(OL) = Homcont(OK [[t17 e 7td]]7 OL)

where d = dim(G). Moreover, )
(Aet®k)[[t17... 7td]] 2 ARk

since over k the connected—étale sequence splits.

We get f: At[ty, - ,tq] — A (by the same argument as in Serre-Tate). We claim that this map is
an isomorphism.

For surjectivity, assume coker(f) # 0. Then there exists a maximal ideal 9% of A such that coker(f)o #
0. Hence coker(f) ®o, k =0, so m coker(f) = coker(f), and hence

coker(f)om = mcoker(f)om = M coker(f)on.

Since coker(f)m is finitely-generated over Agy, we are done by Nakayama’s Lemma. For injectivity,
let I = (t1, - ,tq) and I be the image of I under f. We have a short exact sequence

0 — ker(f)/ ker(f) N I7 — A%ty ta] /T — A/T3 -0,

so ker(f)/ker(f) N I7 = 0, showing that ker(f) C I7. Since (I’ = 0, this shows that ker(f) = 0.
We have hence shown that f is an isomorphism. This gives a surjection A — A" which splits the
embedding A* — A. We hence get a splitting of

Homcont (-A7 OL) — Homcont (Aét7 OL),
showing this map is surjective. O
Corollary 1.8. For allz € G(Opr),p"x € G°(OL) for some n.

Proof. The group G is torsion. Hence for some some n, the image of p"z in G¢(Op) is trivial. We
are hence done by the connected—étale sequence. O

Proposition 1.9. If the field L is algebraically closed (e.g. L = Cg ), multiplication by p on G(Or)
18 surjective.

Proof. By the connected—étale sequence, can work on G°(Op,) and G¢(Op,) separately. Since G¢*(0r) =
G*(kr), using equivalence to finite free Zp-modules, multiplication by p is surjective. The group
G°(0Oyp) is p-divisible by the p-divisibility of the corresponding p-divisible formal group p. Surjectivity
on G°(Oy) follows. O

Remark 1.10. These facts will imply that log : G(Oc, ) — ta(Ck) is surjective.



2 The logarithm for p-divisible groups

Definition 2.1. Let G be a p-divisible group over Ok of dimension d. Let us write A° := Ok [t1, - ,td]
and denote by T the augmentation ideal of u(G).

1. Given an Ok -module M, we define the tangent space of G with values in M by
ta(M) = Homo, mod(Z/I?, M).
and the contagent space of G with values in M by

te(M) :=T)1° ®0, M.

2. We define the valuation filtration of G°(Or) by setting
Fil* G°(Op); +{f € G°(Or) : v(f(x)) > X for all x € T}

for all real number A > 0, where we identify G°(Or) = Homo, _cont(A°, Or) as described in
Corollary 1.6.

Remark 2.2. We may identify tq and tf, respectively with the tangent space and cotangent space of
the formal group G, induced by .

Lemma 2.3. Let G be a p-divisible group over O. For every f € Fil* G°(0Op), we have pf €
Fil" G°(Or) where k = min(A + 1,2)).

Proof. Let Z denote the augmentation ideal of p(G). From lemma a few weeks ago we have that
[ () (x) = px 4 y for some y € 7%, We thus find

(@) = f([Plue) (@) = flpx +y) = pf(z) + f(y),
which implies that v((pf)(z)) > min(A + 1, 2\). O

Lemma 2.4. For everyx € Z, f € G(OL),

@)
n—o0o pn

exists in L and equal zero if x € I°.

Proof. Recall that for any f € G(Opr), p"f € G°(Op) for n > 0 by Corollary 1.8, hence we can apply
lemma 2.3 to p"f € G°(Op).
By an easy induction, there exists ¢ such that

p"f € Fil"T°G°(Oy) for n > 0.

Indeed, if A > 1,min(1+ A, 2A) =1+ X and A < 1, min(1 + A, 2A) = 2.
We now want to show that (%) is Cauchy. We have that

(" @) e )) e Hplu() ") (px)

pn+ 1 pn n+1 anrl

([Pl () — p)

n—+1

~—~ 3

(" f

3

(" f)y)

anrl

has valuation > 2(n + ¢) — (n + 1) = n + 2c — 1. This shows that the limit exists.
We finally want to show that the limit is 0 if € Z2. By the same calculation as above,

U(W) >2(n+c)—n>n+2c

so the sequence tends to 0. O

So from this, we would able to make the following definition



Definition 2.5. Let G be a p-divisible group over Ok, and let T denote the augmentation ideal of
w(G). We define the logarithm of G to be the map

loge; : G(OL) — ta(L)

such that for every f € G(Or), and that x € T/I?, we have

logg (/) (x) = timy L)

n—o00 p"
where T is any lift of © to L.

Example 2.6. Let us provide an explicit description of logupm. As seen in the previous weeks, we
have that g [p™°] = pipee. Corollary 1.6 gives an identification

hpoo (OL) = Hom(’)K-cont(OL[[tﬂ70L) “mp, 21+myg.

We thus have the following commutative diagram:

logu o
e (O1) —2 s 4, (L)

f'—>1+f(t)l2 zlgHg(t) (3.4)

l+my ——— L

Let us identify log#poo with the bottom arrow. We also take an arbitrary element 1 +x € 1+ my. As
each [ € ppe(OL) satisfies

" Nt)=f ([p"]@m (t)> =fA+" =) =0+ fO)"" -1,

the diagram 3.4 yields an expression
o A+t —-1 | P\
log, .(1+z)= nh%ngo T ”113;021 prl W x’. (1)
In addition, for eahc i and n we have that

W G e V PRUY VAt i Rl G i BV
(7) - |

pn \ i

i 7!

Since the numerator is divisible by p™, we obtain an estimate

v <1<p.n>xi - m) > 4 i) — v > 0+ iv(e) — —

P\ i i p—1

Hence we may write the expression (1) as

— (1),
log, ..(1+2)= Z x'.

i=1 ¢
which coincides with the p-adic logarithm.
Let us collect some basic properties of the logarithm for p-divisible groups.
Proposition 2.7. Let G be a p-divisible group over Ok . Denote by T the augmentation ideal of u(QG).
1. logq is a group homomorphism

2. logq is a local isomorphism in the sense that for each real number X > 1, it induces an isomor-
phism
Fil* G°(0r) = {1 € ta(L) : v(r(z)) > A for all x € T)T%}.

3. The kernel of logg is the torsion subgroup G(OL)tors of G(OL).

4. logg induces an isomorphism G(OL) ®z, Qp = tg(L).



Proof. We first check (1). For all f,g € G(Op,), we want to show that

logg(f + g) = logg(f) + logg(9)-

We have that
p"(f+g)(x) @ "feptg =) @)+ @"g)(z)+y

p" p" "
for all y € (p"f)I @ (p"g)(I).

Since the valuation of y gets really large as n — oo, this shows that

p"(f+g)(x) @ f)x) (p"g)(z)

- — — 0.
" " "

Let us now fix an arbitrary real number A\ > 1 and write
Fil* tg(L) := {7 € to(L) : v(r(z)) > \ for all 2 € T/77%}.

If f € Fil* G°(O1), then lemma 2.3 implies that V(W) > A for all € Z and that n > 0, thereby

implying log(f) € Fil* tg(L). Tt is then straightforward to verify that log, on Fil* G°(Oy) admists
an inverse Fil* t(L) — Fil* G°(Oy) which sends each 7 € Fil* t¢(L) to the unique f € Fil* G°(Oy)
with f(¢;) = 7(¢;). Therefore we deduce (2).

Next we show ker(logs) = G(OL)tors as asserted in (3). We clearly have G(Op)tors C ker(log) since
tg(L) is torsion free for being a vector space over L. Hence we only need to establish the reverse
inclusion ker(logs) C G(OL). Let f be an element in ker(logs). By (1) we have p" f € ker(log) for
all n. Moreover, Corollary 1.8 and Lemma 2.3 together yield p"f € Fil' G°(Op) for all sufficiently
large n. We then find p™ f = 0 for all sufficiently large n by (2), thereby deducing that f is a torsion
element as desired.

Now (3) readily implies the injectivity of the map G(Op) ® Z,Q, — tc(L) induced by log,. We
also deduce the surjectivity of the map from (2) by observing that every element 7 € tg (L) satisfies
p"7 € Fil' tg(L) for all sufficiently large n.

O



	Formal point on p-divisible groups
	The logarithm for p-divisible groups

