p-adic Hodge Theory (Spring 2023): Week 6

Xiaorun Wu (xiaorunw@math.columbia.edu)

March 1, 2023

This week: Hodge-Tate Decomposition

In this section, we finally enter the realm of p-adic Hodge theory. Assuming some technical results from algebraic number theory, we prove two fundamental theorems regarding p-divisible groups, namely the Hodge-Tate decomposition for the Tate modules and the fullfaithfulness of the generic fiber functor. The primary reference for this section is Tate's paper [Tat67].

1 Formal point on *p*-divisible groups

For the rest of this section, we fix the base ring $R = \mathcal{O}_K$. We also let L be the *p*-adic completion of an algebraic extension of K, and denote by \mathfrak{m}_L its maximal ideal. We are particularly interested in the case where $L = \mathbb{C}_K$.

Definition 1.1. Let $G = \varinjlim G_v$ be a p-divisible group over \mathcal{O}_K . We define the group of \mathcal{O}_L -valued formal points on G by

$$G(\mathcal{O}_L) := \varprojlim G(\mathcal{O}_L/\mathfrak{m}^i \mathcal{O}_L) = \varprojlim \varinjlim G_v(\mathcal{O}_L/\mathfrak{m}^i \mathcal{O}_L).$$

Example 1.2. $\mu_{p^{\infty}}(\mathcal{O}_L) \cong 1 + \mathfrak{m}_L$.

Remark 1.3. The group of "ordinary" \mathcal{O}_L -valued points on $\mu_{p^{\infty}}$ is given by

$$\varinjlim_{v} \mu_{p^{v}}(\mathcal{O}_{L}) = \varinjlim_{v} \{ x \in \mathcal{O}_{L}^{\times} : x^{p^{v}} = 1 \}$$

which precisely consists of p-power torsion elements in \mathcal{O}_L^{\times} . We thus see that $\mu_{p^{\infty}}(\mathcal{O}_L)$ contains many "non-ordinary" points.

Proposition 1.4. Let $G = \lim_{v \to \infty} G_v$ be a p-divisible group over \mathcal{O}_K .

• Writing $G_v = \operatorname{Spec}(A_v)$ for each v, we have an identification

$$G(\mathcal{O}_L) \cong \operatorname{Hom}_{\mathcal{O}_K \operatorname{-cont}}(\varprojlim_v A_v, \mathcal{O}_L).$$

• $G(\mathcal{O}_L)$ is a \mathbb{Z}_p -module with the torsion part given by

$$G(\mathcal{O}_L)_{\mathrm{tors}} \cong \varprojlim_v \varinjlim_i G_v(\mathcal{O}_L/\mathfrak{m}^i \mathcal{O}_L).$$

• If G is étale, then $G(\mathcal{O}_L)$ is isomorphic to a torsion group $G(k_L)$ where k_L denotes the residue field of \mathcal{O}_L .

Proof. Note that we have $\mathcal{O}_L = \varprojlim_i \mathcal{O}_L / \mathfrak{m}^i \mathcal{O}_L$) by completeness of \mathcal{O}_L . We also have $\varprojlim_i A_v = \varprojlim_{i,v} A_v / \mathfrak{m}^i A_v$ since each A_v is \mathfrak{m} -adically complete for being finite free over \mathcal{O}_K by a general fact as stated in [Sta, Tag 031B]. We thus obtain an identification

$$G(\mathcal{O}_L) \cong \varprojlim_i \varinjlim_v \operatorname{Hom}_{\mathcal{O}_K}(A_v, \mathcal{O}_L/\mathfrak{m}^i \mathcal{O}_L) \cong \varprojlim_i \varinjlim_v \operatorname{Hom}_{\mathcal{O}_K}(A_v/\mathfrak{m}^i A_v, \mathcal{O}_L/\mathfrak{m}^i \mathcal{O}_L)$$
$$\cong \varprojlim_i \operatorname{Hom}_{\mathcal{O}_K}(\varprojlim_v A_v/\mathfrak{m}^i A_v, \mathcal{O}_L/\mathfrak{m}^i \mathcal{O}_L)$$
$$\cong \operatorname{Hom}_{\mathcal{O}_K \operatorname{-cont}}(\varprojlim_{i,v} A_v/\mathfrak{m}^i A_v, \varprojlim_i \mathcal{O}_L/\mathfrak{m}^i \mathcal{O}_L)$$
$$\cong \operatorname{Hom}_{\mathcal{O}_K \operatorname{-cont}}(\varprojlim_v A_v, \mathcal{O}_L)$$

as asserted in (1)

Remark 1.5. The formal scheme $G := Spf(\varprojlim A_v)$ carries the structure of a formal group induced by the finite flat \mathcal{O}_K -group schemes G_v . Moreover, we can write the identification in (1) as $G(\mathcal{O}_L) \cong$ $\operatorname{Hom}_{\mathcal{O}_K\text{-formal}}(Spf(\mathcal{O}_L), G).$

Corollary 1.6. Let G be a connected p-divisible group dimension d over \mathcal{O}_K . We have a canonical isomorphism of \mathbb{Z}_p -modules

$$G(\mathcal{O}_L) \cong \operatorname{Hom}_{\mathcal{O}_K\text{-cont}}(\mathcal{O}_K[[t_1,\cdots,t_d]],\mathcal{O}_L)$$

where the multiplication by p on the target is induced by $[p]_{\mu(G)}$.

Above imply $G(\mathcal{O}_L) \cong \mathfrak{m}_{\mathcal{O}_L}^d$ as a set.

Proposition 1.7. Let $G = \lim_{v \to \infty} G_v$ be a p-divisible group over \mathcal{O}_K . Then we have an exact sequence

$$0 \to G^{\circ}(\mathcal{O}_L) \to G(\mathcal{O}_L) \to G^{\acute{e}t}(\mathcal{O}_L) \to 0.$$

Proof. Let $G_v = \operatorname{Spec}(A_v), G_v^{\circ} = \operatorname{Spec}(A_v^{\circ}), \text{ and } G_v^{\text{\'et}} = \operatorname{Spec}(A_v^{\text{\'et}}).$ Let

$$\mathcal{A} = \underline{\lim} A_v, \quad \mathcal{A}^{\text{\'et}} = \underline{\lim} A_v^{\text{\'et}}.$$

This sequence is left exact since colimits and limits are both left exact. We need to show that $G(\mathcal{O}_L) \to G^{\text{\acute{e}t}}(\mathcal{O}_L)$ is surjective, i.e. the map

$$\operatorname{Hom}_{\operatorname{cibt}}(\mathcal{A}, \mathcal{O}_L) \to \operatorname{Hom}_{\operatorname{cont}}(\mathcal{A}^{\operatorname{\acute{e}t}}, \mathcal{O}_L)$$

is surjective. Recall that

$$G^{\circ}(\mathcal{O}_L) = \operatorname{Hom}_{\operatorname{cont}}(\mathcal{O}_K[\![t_1, \cdots, t_d]\!], \mathcal{O}_L)$$

where $d = \dim(G)$. Moreover,

$$(\mathcal{A}^{\mathrm{\acute{e}t}} \otimes k) \llbracket t_1, \cdots, t_d \rrbracket \cong \mathcal{A} \otimes k$$

since over k the connected-étale sequence splits.

We get $f : \mathcal{A}^{\text{ét}}[\![t_1, \cdots, t_d]\!] \to A$ (by the same argument as in Serre–Tate). We claim that this map is an isomorphism.

For surjectivity, assume $\operatorname{coker}(f) \neq 0$. Then there exists a maximal ideal \mathfrak{M} of A such that $\operatorname{coker}(f)_{\mathfrak{M}} \neq 0$. Hence $\operatorname{coker}(f) \otimes_{\mathcal{O}_{K}} k = 0$, so m $\operatorname{coker}(f) = \operatorname{coker}(f)$, and hence

$$\operatorname{coker}(f)_{\mathfrak{M}} = \mathfrak{m}\operatorname{coker}(f)_{\mathfrak{M}} = \mathfrak{M}\operatorname{coker}(f)_{\mathfrak{M}}.$$

Since coker $(f)_{\mathfrak{M}}$ is finitely-generated over $\mathcal{A}_{\mathfrak{M}}$, we are done by Nakayama's Lemma. For injectivity, let $I = (t_1, \dots, t_d)$ and I be the image of I under f. We have a short exact sequence

$$0 \to \ker(f) / \ker(f) \cap I^j \to \mathcal{A}^{\text{\'et}}\llbracket t_1, \cdots t_d \rrbracket / I^j \to \mathcal{A} / I^j \to 0,$$

so $\ker(f)/\ker(f) \cap I^j = 0$, showing that $\ker(f) \subseteq I^j$. Since $\bigcap I^j = 0$, this shows that $\ker(f) = 0$. We have hence shown that f is an isomorphism. This gives a surjection $\mathcal{A} \to \mathcal{A}^{\text{\'et}}$ which splits the embedding $\mathcal{A}^{\text{\'et}} \to \mathcal{A}$. We hence get a splitting of

$$\operatorname{Hom}_{\operatorname{cont}}(\mathcal{A}, \mathcal{O}_L) \to \operatorname{Hom}_{\operatorname{cont}}(\mathcal{A}^{\operatorname{\acute{e}t}}, \mathcal{O}_L)$$

showing this map is surjective.

Corollary 1.8. For all $x \in G(\mathcal{O}_L)$, $p^n x \in G^{\circ}(\mathcal{O}_L)$ for some n.

Proof. The group $G^{\text{ét}}$ is torsion. Hence for some some n, the image of $p^n x$ in $G^{\text{ét}}(\mathcal{O}_L)$ is trivial. We are hence done by the connected-étale sequence.

Proposition 1.9. If the field L is algebraically closed (e.g. $L = \mathbb{C}_K$), multiplication by p on $G(\mathcal{O}_L)$ is surjective.

Proof. By the connected-étale sequence, can work on $G^{\circ}(\mathcal{O}_L)$ and $G^{\text{ét}}(\mathcal{O}_L)$ separately. Since $G^{\text{ét}}(\mathcal{O}_L) = G^{\text{ét}}(k_L)$, using equivalence to finite free \mathbb{Z}_p -modules, multiplication by p is surjective. The group $G^{\circ}(\mathcal{O}_L)$ is p-divisible by the p-divisibility of the corresponding p-divisible formal group μ . Surjectivity on $G^{\circ}(\mathcal{O}_L)$ follows.

Remark 1.10. These facts will imply that $\log : G(\mathcal{O}_{\mathbb{C}_K}) \to t_G(\mathbb{C}_K)$ is surjective.

2 The logarithm for p-divisible groups

Definition 2.1. Let G be a p-divisible group over \mathcal{O}_K of dimension d. Let us write $\mathcal{A}^\circ := \mathcal{O}_K[\![t_1, \cdots, t_d]\!]$ and denote by \mathcal{I} the augmentation ideal of $\mu(G)$.

1. Given an \mathcal{O}_K -module M, we define the tangent space of G with values in M by

$$t_G(M) := \operatorname{Hom}_{\mathcal{O}_K \operatorname{-} mod}(\mathcal{I}/\mathcal{I}^2, M).$$

and the contagent space of G with values in M by

$$t^*_G(M) := \mathcal{I}/\mathcal{I}^2 \otimes_{\mathcal{O}_K} M.$$

2. We define the valuation filtration of $G^{\circ}(\mathcal{O}_L)$ by setting

$$\operatorname{Fil}^{\lambda} G^{\circ}(\mathcal{O}_L); + \{ f \in G^{\circ}(\mathcal{O}_L) : \nu(f(x)) \ge \lambda \text{ for all } x \in \mathcal{I} \}$$

for all real number $\lambda > 0$, where we identify $G^{\circ}(\mathcal{O}_L) \cong \operatorname{Hom}_{\mathcal{O}_K\text{-cont}}(\mathcal{A}^{\circ}, \mathcal{O}_L)$ as described in Corollary 1.6.

Remark 2.2. We may identify t_G and t_G^* respectively with the tangent space and cotangent space of the formal group G_{μ} induced by μ .

Lemma 2.3. Let G be a p-divisible group over \mathcal{O}_K . For every $f \in \operatorname{Fil}^{\lambda} G^{\circ}(\mathcal{O}_L)$, we have $pf \in \operatorname{Fil}^{\kappa} G^{\circ}(\mathcal{O}_L)$ where $\kappa = \min(\lambda + 1, 2\lambda)$.

Proof. Let \mathcal{I} denote the augmentation ideal of $\mu(G)$. From lemma a few weeks ago we have that $[p]_{\mu(G)}(x) = px + y$ for some $y \in \mathcal{I}^2$. We thus find

$$(pf)(x) = f([p]_{\mu(G)}(x)) = f(px + y) = pf(x) + f(y),$$

which implies that $\nu((pf)(x)) \ge \min(\lambda + 1, 2\lambda)$.

Lemma 2.4. For every $x \in \mathcal{I}, f \in G(\mathcal{O}_L)$,

$$\lim_{n \to \infty} \frac{(p^n f)(x)}{p^n}$$

exists in L and equal zero if $x \in \mathcal{I}^2$.

Proof. Recall that for any $f \in G(\mathcal{O}_L)$, $p^n f \in G^{\circ}(\mathcal{O}_L)$ for $n \gg 0$ by Corollary 1.8, hence we can apply lemma 2.3 to $p^n f \in G^{\circ}(\mathcal{O}_L)$.

By an easy induction, there exists c such that

$$p^n f \in \operatorname{Fil}^{n+c} G^{\circ}(\mathcal{O}_L) \text{ for } n \gg 0.$$

Indeed, if $\lambda \geq 1$, $\min(1 + \lambda, 2\lambda) = 1 + \lambda$ and $\lambda < 1$, $\min(1 + \lambda, 2\lambda) = 2\lambda$. We now want to show that $(\frac{(p^n f)(x)}{p^n})$ is Cauchy. We have that

$$\frac{(p^{n+1}f)(x)}{p^{n+1}} - \frac{(p^n f)(x)}{p^n} = \frac{(p^n f)([p]_{\mu}(x))}{p^{n+1}} - \frac{(p^n f)(px)}{p^{n+1}}$$
$$= \frac{(p^n f)([p]_{\mu}(x) - px)}{p^{n+1}}$$
$$= \frac{(p^n f)(y)}{p^{n+1}}$$

has valuation $\geq 2(n+c) - (n+1) = n + 2c - 1$. This shows that the limit exists. We finally want to show that the limit is 0 if $x \in \mathcal{I}^2$. By the same calculation as above,

$$v\left(\frac{(p^n f)(x)}{p^n}\right) \ge 2(n+c) - n \ge n + 2c,$$

so the sequence tends to 0.

So from this, we would able to make the following definition

Definition 2.5. Let G be a p-divisible group over \mathcal{O}_K , and let \mathcal{I} denote the augmentation ideal of $\mu(G)$. We define the logarithm of G to be the map

$$\log_G : G(\mathcal{O}_L) \to t_G(L)$$

such that for every $f \in G(\mathcal{O}_L)$, and that $x \in \mathcal{I}/\mathcal{I}^2$, we have

$$\log_G(f)(x) = \lim_{n \to \infty} \frac{(p^n)(\tilde{x})}{p^n}$$

where \tilde{x} is any lift of x to \mathcal{I} .

Example 2.6. Let us provide an explicit description of $\log_{\mu_{p^{\infty}}}$. As seen in the previous weeks, we have that $\mu_{\widehat{G}_m}[p^{\infty}] \cong \mu_{p^{\infty}}$. Corollary 1.6 gives an identification

 $\mu_{p^{\infty}}(O_L) \cong \operatorname{Hom}_{\mathcal{O}_K\text{-}cont}(\mathcal{O}_L[t], \mathcal{O}_L) \cong \mathfrak{m}_L \cong 1 + \mathfrak{m}_L.$

We thus have the following commutative diagram:

Let us identify $\log_{\mu_{p^{\infty}}}$ with the bottom arrow. We also take an arbitrary element $1 + x \in 1 + \mathfrak{m}_L$. As each $f \in \mu_{p^{\infty}}(\mathcal{O}_L)$ satisfies

$$(p^{n}f)(t) = f\left([p^{n}]_{\widehat{\mathbb{G}}_{m}}(t)\right) = f((1+t)^{p^{n}} - 1) = (1+f(t))^{p^{n}} - 1,$$

the diagram 3.4 yields an expression

$$\log_{\mu_{p^{\infty}}}(1+x) = \lim_{n \to \infty} \frac{(1+x)^{p^n} - 1}{p^n} = \lim_{n \to \infty} \sum_{i=1}^{p^n} \frac{1}{p^n} \binom{p^n}{i} x^i.$$
 (1)

In addition, for each i and n we have that

$$\frac{1}{p^n} \binom{p^n}{i} - \frac{(-1)^{i-1}}{i} = \frac{(p^n - 1)\cdots(p^n - i + 1) - (-1)^{i-1}(i-1)!}{i!}.$$

Since the numerator is divisible by p^n , we obtain an estimate

$$\nu\left(\frac{1}{p^n}\binom{p^n}{i}x^i - \frac{(-1)^{i-1}x^i}{i}\right) \ge n + i\nu(x) - \nu(i!) \ge n + i\nu(x) - \frac{i}{p-1}.$$

Hence we may write the expression (1) as

$$\log_{\mu_{p^{\infty}}}(1+x) = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i} x^{i}$$

which coincides with the p-adic logarithm.

Let us collect some basic properties of the logarithm for p-divisible groups.

Proposition 2.7. Let G be a p-divisible group over \mathcal{O}_K . Denote by \mathcal{I} the augmentation ideal of $\mu(G)$.

- 1. \log_G is a group homomorphism
- 2. \log_G is a local isomorphism in the sense that for each real number $\lambda \ge 1$, it induces an isomorphism

$$\operatorname{Fil}^{\wedge} G^{\circ}(\mathcal{O}_L) \xrightarrow{\sim} \{ \tau \in t_G(L) : \nu(\tau(x)) \geq \lambda \text{ for all } x \in \mathcal{I}/\mathcal{I}^2 \}.$$

- 3. The kernel of \log_G is the torsion subgroup $G(\mathcal{O}_L)_{tors}$ of $G(\mathcal{O}_L)$.
- 4. \log_G induces an isomorphism $G(\mathcal{O}_L) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \cong t_G(L)$.

Proof. We first check (1). For all $f, g \in G(\mathcal{O}_L)$, we want to show that

$$\log_G(f+g) = \log_G(f) + \log_G(g)$$

We have that

$$\frac{p^n(f+g)(x)}{p^n} = \frac{(p^n f \otimes p^n g)(\mu(x))}{p^n} = \frac{(p^n f)(x) + (p^n g)(x) + y}{p^n}$$

for all $y \in (p^n f)I \otimes (p^n g)(I)$.

Since the valuation of y gets really large as $n \to \infty$, this shows that

$$\frac{p^n(f+g)(x)}{p^n} - \frac{(p^n f)(x)}{p^n} - \frac{(p^n g)(x)}{p^n} \to 0.$$

Let us now fix an arbitrary real number $\lambda \geq 1$ and write

$$\operatorname{Fil}^{\lambda} t_G(L) := \{ \tau \in t_G(L) : \nu(\tau(x)) \ge \lambda \text{ for all } x \in \mathcal{I}/\mathcal{I}^2 \}.$$

If $f \in \operatorname{Fil}^{\lambda} G^{\circ}(\mathcal{O}_{L})$, then lemma 2.3 implies that $\nu(\frac{(p^{n}f)(x)}{p^{n}}) \geq \lambda$ for all $x \in \mathcal{I}$ and that n > 0, thereby implying $\log_{G}(f) \in \operatorname{Fil}^{\lambda} t_{G}(L)$. It is then straightforward to verify that \log_{G} on $\operatorname{Fil}^{\lambda} G^{\circ}(\mathcal{O}_{L})$ admists an inverse $\operatorname{Fil}^{\lambda} t_{G}(L) \to \operatorname{Fil}^{\lambda} G^{\circ}(\mathcal{O}_{L})$ which sends each $\tau \in \operatorname{Fil}^{\lambda} t_{G}(L)$ to the unique $f \in \operatorname{Fil}^{\lambda} G^{\circ}(\mathcal{O}_{L})$ with $f(t_{i}) = \tau(t_{i})$. Therefore we deduce (2).

Next we show ker(\log_G) = $G(\mathcal{O}_L)_{tors}$ as asserted in (3). We clearly have $G(\mathcal{O}_L)_{tors} \subseteq \text{ker}(\log_G)$ since $t_G(L)$ is torsion free for being a vector space over L. Hence we only need to establish the reverse inclusion ker(\log_G) $\subset G(\mathcal{O}_L)$. Let f be an element in ker(\log_G). By (1) we have $p^n f \in \text{ker}(\log_G)$ for all n. Moreover, Corollary 1.8 and Lemma 2.3 together yield $p^n f \in \text{Fil}^1 G^{\circ}(\mathcal{O}_L)$ for all sufficiently large n by (2), thereby deducing that f is a torsion element as desired.

Now (3) readily implies the injectivity of the map $G(\mathcal{O}_L) \otimes \mathbb{Z}_p \mathbb{Q}_p \to t_G(L)$ induced by \log_G . We also deduce the surjectivity of the map from (2) by observing that every element $\tau \in t_G(L)$ satisfies $p^n \tau \in \operatorname{Fil}^1 t_G(L)$ for all sufficiently large n.