p-adic Hodge Theory (Spring 2023): Week 5

Xiaorun Wu (xiaorunw@math.columbia.edu)

February 19, 2023

This week: Serre-Tate Equivalence & Dieudonne-Manin Classification

1 Dieudonné–Manin classification

Let k be a perfect field of characteristic p. Let σ be the Frobenius automorphism over k.

Definition 1.1. We write W(k) for the ring of Witt vectors over k. We write $K_0(k)$ for the fraction field of W(k). The Frobenius $\sigma_{W(k)}$ on W(k) is

$$\sigma\left(\sum_{n\geq 0}\tau(x_n)p^n\right) = \sum_{n\geq 0}\tau(x_n^p)p^n$$

where $\tau : k \to W(k)$ is the Teichmuller lift. Finally, $\sigma_{K_0}(k)$ is the unique field of automorphism on $K_0(k)$ extending $\sigma_{W(k)}$.

Example 1.2. Let $k = \mathbb{F}_q$ and ζ_{q-1} be a primitive (q-1)st root of unity. Then

$$W(k) = \mathbb{Z}_p[\zeta_{q-1}, \ K_0(k) = \mathbb{Q}_p[\zeta_{q-1}]$$

and σ acts on W(k) by

$$\sigma(\zeta_{q-1}) = \zeta_{q-1}^p,$$

and trivially on \mathbb{Z}_p .

Definition 1.3. A Dieudonné module over k is a pair (M, φ) where

- 1. M is a finite free module over W(k),
- 2. $\varphi: M \to M$ is an additive map such that:
 - (a) φ is σ -linear, i.e. $\varphi(am) = \sigma(a)\varphi(m)$ for all $a \in W(k), m \in M$,
 - (b) $\varphi(M) \supseteq pM$.

Theorem 1.4 (Dieudonné). There is an anti-equivalence:

 $\mathbb{D}: \{p\text{-}divisible groups over k\} \to \{Dieudonné modules over k\}$

such that

- 1. $rk(\mathbb{D}(G)) = ht(G)$,
- 2. G is étale if and only if $\varphi_{\mathbb{D}(G)}$ is an isomorphism.
- 3. G is connected if and only if $\varphi_{\mathbb{D}(G)}$ is topologically nilpotent,
- 4. $[p]_G$ induces multiplication by p on $\mathbb{D}(G)$.

We shall omit a proof here. But the interested reader could read [Dem86].

Remark 1.5. There is a notion of duality for Dieudonné modules, compatible with Cartier duality.

Example 1.6. Let σ denote the Frobenius automorphism of W(k).

• $\mathbb{D}(\mathbb{Q}_p/\mathbb{Z}_p)$ is isomorphic to W(k) together with $\varphi_{\mathbb{D}}(\mathbb{Q}_p/\mathbb{Z}_p) = \sigma$.

- $\mathbb{D}(\mu_{p^{\infty}})$ is W(k) together with $\varphi_{\mathbb{D}}(\mu_{p^{\infty}}) = p\sigma$.
- If E is an ordinary elliptic curve over \overline{k} , we have $\mathbb{D}(E[p^{\infty}]) \cong w(\overline{k})^{\oplus 2}$ together with $\varphi_{\mathbb{D}}(E[p^{\infty}]) = \sigma \oplus p\sigma$.

Definition 1.7. A map of p-divisible groups $f : G \to H$ is an isogeny if it is surjective and ker f is finite flat.

Proposition 1.8. A homomorphism $f: G \to H$ of p-divisible groups over k is an isogeny if and only if the following equivalent conditions are satisfied:

- 1. The induced map $\mathbb{D}(H) \to \mathbb{D}(G)$ is injective.
- 2. The induced map $\mathbb{D}(H)[1/p] \to \mathbb{D}(G)[1/p]$ is an isomorphism.

Definition 1.9. An isocrystal over k is a finite-dimensional $K_0(k)$ -vector space N with a σ -linear bijection $\varphi : N \to N$.

Remark 1.10. If G is a p-divisible group over k, D(G)[1/p] is an isocrystal which determines the isogeny class of G.

Example 1.11. Let $\lambda \in \mathbb{Q}$ be $\lambda = \frac{d}{r}$ with (d, r) = 1, r > 0. The simple isocrystal $N(\lambda)$ of slope λ is the $K_0(k)^{\oplus r}$ space with the σ -semilinear automorphism $\varphi_{N(\lambda)}$ given by

$$\varphi_{N(\lambda)}(e_1) = e_2, \quad \varphi_{N(\lambda)}(e_2) = e_3, \quad \cdots \varphi_{N(\lambda)}(e_{r-1}) = e_r, \varphi_{N(\lambda)}(e_r) = p^d e_1,$$

where e_1, \dots, e_r denote the standard basis vectors. It is straightforward to verify that $N(\lambda)$ is of rank r, degree d.

Theorem 1.12. Let $k = \overline{k}$. The category of isocrystals over k is semisimple with simple objects given by $N(\lambda)$. In other words, any N over k has a decomposition

$$N = \bigoplus_{i=1}^{\ell} N(\lambda_i)^{\oplus m_i},$$

for $\lambda_1 < \cdots < \lambda_\ell$.

Definition 1.13. For $\lambda_i = \frac{d_i}{r_i}, (d_i, r_i) = 1, r_i > 0.$

1. The Newton polygon of N is the lower convex hull of the points

$$(m_1r_1 + \cdots + m_ir_i, m_1d_1 + \cdots + m_id_i), i = 1, 2, \cdots, \ell$$

Here is a schematic diagram of N:

- 2. The dimension of N is $\dim(N) = m_1 d_1 + m_2 d_2 + \dots + m_\ell d_\ell$.
- 3. The slope of N is $\mu(N) = \frac{\dim(N)}{\operatorname{rank}(N)}$.

Proposition 1.14. If G is a p-divisible group over \overline{k} , then $\mathbb{D}(G)[1/p]$ has rank ht(G) and dimension $\dim(G)$. Moreover, if

$$\mathbb{D}(G)][1/p] = \bigoplus_{i=1}^{\iota} N(\lambda_i)^{\oplus} m_i,$$

then

$$\mathbb{D}(G^{\vee})[1/p] = \oplus N(1-\lambda_i)^{\oplus m_i}.$$

WE note the following proposition:

Proposition 1.15. Let N be an isocrystal over K0(k). Then we have $N \cong \mathbb{D}(G)[1/p]$ for some p-divisible group G of height h and dimension d over k if and only if the following conditions are satisfied:

- 1. N is of rank h and degree d.
- 2. Every Newton slope λ of N satisfies $0 \leq \lambda \leq 1$.

Theorem 1.16 (Serre, Honda-Tate, Oort). Let N be an isocrystal over $K_0(\overline{k})$. Then

 $N \cong \mathbb{D}(A[p^{\infty}])[1/p]$

for some abelian variety A over \overline{k} of dimension g if and only if the following conditions are satisfied:

- 1. N is of rank 2g and degree g.
- 2. Every Newton slope λ of N satisfies $0 \leq \lambda \leq 1$.
- 3. If $\lambda \in \mathbb{Q}$ occurs as a Newton slope of N, then 1λ occurs as a Newton slope of N with the same multiplicity.

Remark 1.17. The necessity part is easy to verify by Proposition 1.15. The main difficulty lies in proving the sufficiency part, which was initially conjectured by Manin [Man63].

Definition 1.18. Let A be a principally polarized abelian variety of dimension g over \overline{k} .

- 1. We define its Newton polygon by $Newt(A) := Newt(\mathbb{D}(A[p^{\infty}])[1/p]).$
- 2. We say that A is ordinary if Newt(A) connects the points (0,0), (g,0), and (2g,g).
- 3. We say that A is supersingular if Newt(A) connects the points (0,0) and (2g,g).

Example 1.19. Let A be an ordinary abelian variety of dimension g over k. A priori, this means that there exists an isogeny $A[p^{\infty}] \rightarrow \mu_{p^{\infty}}^g \times (\mathbb{Q}_p/\mathbb{Z}_p)^g$. We assert that there exists an isomorphism

 $A[p\infty]' \mu gp\infty \times (\mathbb{Q}_p/\mathbb{Z}_p)g.$

By Proposition lst time, an exact sequence

$$0 \to A[p^{\infty}]^{\circ} \to A[p^{\infty}] \to A[p^{\infty}]^{\acute{e}t} \to 0.$$

Moreover, this sequence splits as it splits at every finite level. Hence we have a decomposition

$$A[p^{\infty}] \cong A[p^{\infty}]^{\circ} \times A[p^{\infty}]^{\acute{e}t}.$$

Proposition 1.15 implies that $A[p^{\infty}]^{\acute{e}t}$ should correspond to the slope 0 part of Newt(A), and thus have height g. We then deduce $A[p^{\infty}]^{\acute{e}t} \cong (\underline{\mathbb{Q}}_p/\mathbb{Z}_p)^g$ by the remark after Proposition 1.18, and $A[p^{\infty}]^{\circ} \cong (A[p^{\infty}]^{\acute{e}t})^{\vee} \cong \mu_{p^{\infty}}^g$ by self-duality of $A[p^{\infty}]$.

Proposition 1.20. For an abelian variety A over k, there exist a natural identification

$$H^1_{\operatorname{cris}}(A/W(k)) \cong \mathbb{D}(A[p^\infty]).$$

Remark 1.21. In light of the crystalline comparison theorem as introduced in week 1, this identification provides a powerful tool to study abelian varieties and their moduli spaces, such as (local) Shimura varieties of PEL (polarization, endomorphism, and level structure) or Hodge type, using p-adic Hodge theory and the theory of Dieudonné modules/isocrystals.

2 Hodge-Tate Decomposition

In this section, we finally enter the realm of p-adic Hodge theory. Assuming some technical results from algebraic number theory, we prove two fundamental theorems regarding p-divisible groups, namely the Hodge-Tate decomposition for the Tate modules and the fullfaithfulness of the generic fiber functor. The primary reference for this section is Tate's paper [Tat67].

2.1 The completed algebraic closure of *p*-adic field

Definition 2.1. Let K be extension of \mathbb{Q}_p with a nonarchimedean valuation ν .

- 1. We define the valuation ring of K by $\mathcal{O}_K := \{x \in K : \nu(x) \ge 0\}.$
- 2. K is a p-adic field if it is discrete valued and complete with a perfect residue field.

Example 2.2. 1. Every finite extension of \mathbb{Q}_p is a p-adic field.

2. Given a perfect field k of characteristic p, the fraction field of the ring of Witt vectors W(k) is a p-adic field.

Remark 2.3. The fraction field of $W(\mathbb{F}_p)$ is the p-adic completion of the maximal unramified extension of \mathbb{Q}_p . Hence it is a p-adic field which is not an algebraic extension of \mathbb{Q}_p .

For the rest of this week, let K be p-adic field with abosolute Galois group Γ_K . Let \mathfrak{m} , k be maximum ideal/residue field of \mathcal{O}_K .

Definition 2.4. The completed algebraic closure of K is defined to be $\mathbb{C}_K : \overline{\widehat{K}}$.

So clearly \mathbb{C}_K is not *p*-adic field, as its valuation is not discrete: It is first example of characteristic 0 perfectoid field.

Lemma 2.5. The action of Γ_K on K uniquely extends to a continuous action on \mathbb{C}_K .

Now let's fix a valuation ν on \mathbb{C}_K with $\nu(p) = 1$.

Proposition 2.6. The field \mathbb{C}_K is algebraically closed.

Proof. Let p(t) be an arbitrary non-constant polynomial over \mathbb{C}_K . May assume WLOG p(t) is monic over $\mathcal{O}_{\mathbb{C}_K}$ by scaling, so we can write

$$p(t) = t^d + a_1 t^{d-1} + \dots + a_d$$

for some $a_i \in \mathcal{O}_{\mathbb{C}_K}$. For each *n*, choose a polynomial

$$p_n(t) = t^d + a_{1,n}t^{d-1} + \dots + a_{d,n}$$

with $a_{i,n} \in \mathcal{O}_{\mathbb{C}_K}$. For each *n*, we choose a polynomial

$$p_n(t) = t^d + a_{1,n}t^{d-1} + \dots + a_{d,n}$$

with $a_i \in \mathcal{O}_{\overline{K}}$ and that $\nu(a_i - a_{i,n}) \ge dn$.

Let us choose $\alpha_1 \in \mathcal{O}_{\overline{K}}$ with $p_1(\alpha_1) = 0$. We proceed by induction on n to choose $\alpha_n \in \mathcal{O}_{\overline{K}}$ with $p_n(\alpha_n) = 0$ and $\nu(\alpha_n - \alpha_{n-1}) \ge n-1$. Since $a_{i,n} - a_{i,n-1} = (a_{i,n} - a_i) + (a_i - a_{i,n-1})$ has valuation at least d(n-1), we find $\nu(p_n(\alpha_{n-1})) \ge d(n-1)$ by observing

$$p_n(\alpha_{n-1}) = p_n(\alpha_{n-1}) - p_{n-1}(\alpha_{n-1}) = \sum_{i=1}^d (a_{i,n} - a_{i,n-1})\alpha_{n-1}^{d-i}.$$

Moreover, we have

$$p_n(\alpha_{n-1}) = \prod_{i=1}^d (\alpha_{n-1} - \beta_{n,i})$$

where $\beta_{n,1}, \dots, \beta_{n,d}$ are roots of $p_n(t)$. Note that $\beta_{n,i} \in \mathcal{O}_{\overline{K}}$ since $\mathcal{O}_{\overline{K}}$ is integrally closed. As $\nu(p_n(\alpha_{n-1})) \geq d(n-1)$, we deduce that $\nu(\alpha_{n-1}, \beta_{n,i}) \geq n-1$ for some *i*. We thus complete the induction step by taking $\alpha_n := \beta_{n,i}$.

Since the sequence (α_n) is Cauchy by construction, it converges to an element $\alpha \in \mathcal{O}_{\mathbb{C}_K}$. Moreover, for each n we find $\nu(p(\alpha_n)) \geq dn$ by observing

$$p(\alpha_n) = p(\alpha_n) - p_n(\alpha_n) = \sum_{i=1}^d (a_i - a_{i,n}) \alpha_n^{d-i}.$$

We thus have $p(\alpha) = 0$, thereby completing the proof.

Definition 2.7. A p-adic representation of Γ_K is a finite dimensional \mathbb{Q}_p -vector space V together with a continuous homomorphism $\Gamma_K \to GL(V)$. We denote by $\operatorname{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ the category of p-adic Γ_K -representations.

Example 2.8. every p-divisible group G over K gives rise to a p-adic Γ_K representation $V_p(G) :=$ $T_p(G) \otimes \mathbb{Z}_p \mathbb{Q}_p$, called the rational Tate module of G

Definition 2.9 (Tate Twist). Given a $\mathbb{Z}_p[\Gamma_K]$ -module M, we define its n-th Tate twist to be the $\mathbb{Z}_p[\Gamma_K]$ -module

$$M(n): \begin{cases} M \otimes_{\mathbb{Z}_p} T_p(\mu_{p^{\infty}})^{\otimes n} & \text{if } n \ge 0, \\ \operatorname{Hom}_{\mathbb{Z}_p[\Gamma_K]}(T_p(\mu_{p^{\infty}})^{\otimes -n}, M) & \text{if } n < 0, \end{cases}$$

Example 2.10. By definition, we have $\mathbb{Z}_p(1) = T_p(\mu_{p^{\infty}}) = \lim_{k \to \infty} \mu_{p^{\nu}}(\overline{K})$. The homomorphism χ_K : $\Gamma_K \to Aut(\mathbb{Z}_p(1)) \cong \mathbb{Z}_p^{\times}$ which represents the Γ_K -action on $\mathbb{Z}_p(1)$ is called the p-adic cyclotomic character of K. We will often simply write χ instead of χ_K to ease the notation.

Lemma 2.11. Let M be a $\mathbb{Z}_p[\Gamma_K]$ -module. For each $m, n \in \mathbb{Z}$, we have canonical Γ_K equivariant isomorphisms

 $M(m) \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(n) \cong M(m+n)$ and $M(n)^{\vee} \cong M^{\vee}(-n)$.

Lemma 2.12. Let M be a $\mathbb{Z}_p[\Gamma_K]$ -module, and let $\rho: \Gamma_K \to Aut(M)$ be the homomorphism which represents the action of Γ_K on M. For every $n \in \mathbb{Z}$ the action of Γ_K on M(n) is represented by $\chi_n \cdot \rho$.

Proof. Upon choosing a basis element e of $\mathbb{Z}_p(n)$, we obtain an isomorphism $M(n) \cong M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(n) \xrightarrow{\sim}$ M given by $m \otimes e \mapsto m$. The assertion now follows by observing that the Γ_K -action on $M(n) \cong$ $M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(n)$ is given by $\rho \otimes \chi^n$.

We assume the following fundamental result about the Galois cohomology of the Tate twists of \mathbb{C}_K

Theorem 2.13 (Tate-Sen). We have canonical isomorphisms

$$H^{i}(\Gamma_{K}, \mathbb{C}_{K}(n)) \cong \begin{cases} K & \text{if } i = 0 \text{ or } 1, n = 0\\ 0 & \text{otherwise.} \end{cases}$$

We now introduce the first class of *p*-adic Γ_K -representations.

Lemma 2.14 (Serre-Tate). For every $V \in \operatorname{Rep}_{\mathbb{Q}_n}(\Gamma_K)$, the natural \mathbb{C}_K -linear map

$$\tilde{\alpha_V} : \bigoplus_{n \in \mathbb{Z}} \left(V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \right)^{\Gamma_K} \otimes_K \mathbb{C}_K(n) \to V \otimes_{\mathbb{Q}_p} \mathbb{C}_K$$

is Γ_K -equivalent and injective.

Proof. For each $n \in \mathbb{Z}$, we have a Γ_K -equivalent K-linear map

$$(V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n))^{\Gamma_K} \otimes_K K(n) \hookrightarrow V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_K K(n) \cong V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_K K(n) \otimes_K K(n) \cong V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_K K(n) \cong V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_K K(n) \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_K K(n) \cong V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_K K(n) \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_K K(n) \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_K K(n) \otimes_K K(n) \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_K K(n) \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_K K(n) \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_K K(n) \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n) \otimes_{\mathbb{Q}_$$

which give rise to a Γ_K -equivalent \mathbb{C}_K linear map

$$\tilde{\alpha}_{V}^{(n)}: (V \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{K}(-n))^{\Gamma_{K}} \otimes_{K} \mathbb{C}_{K}(n) \to V \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{K}$$
(*)

by extension of scalars. Hence we deduce that $\tilde{\alpha}_V = \bigoplus_{n \in \mathbb{Z}} \tilde{\alpha}_V^{(n)}$ is Γ_K -equivalent. Now for each $n \in \mathbb{Z}$, choose basis $(v_{m,n})$ of $(V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(-n))^{\Gamma_K} \otimes_K K(n)$ over K. We may regard $v_{m,n}$ as a vector in $V \otimes_{\mathbb{Q}_n} \mathbb{C}_K$ via the map (*). Moreover, the source of the map $\tilde{\alpha}_V$ is spanned by the vectors $(v_{m,n})$.

If ker $(\tilde{\alpha}_V)$ non-trivial, then exists nontrivial relation $\sum c_{m,n}v_{m,n} = 0$. Chose one with min length, WLOG suppose $c_{m_0,n_0} = 1$ for some m_0 and n_0 . For every $\gamma \in \Gamma_K$ we find

$$0 = \gamma(\sum c_{m,n}v_{m,n}) - \chi(\gamma)^{n_0}(\sum c_{m,n}v_{m,n}) = \sum (\gamma(c_{m,n})\chi(\gamma)^n - \chi(\gamma)^{n_0}c_{m,n})v_{m,n}$$

by Γ_K -equivariance of $\tilde{\alpha}_V$ and Lemma 2.11. Note that the coefficient of v_{m_0,n_0} in the last expression is 0. Hence the minimality of our relation implies that all coefficients in the last expression must vanish, thereby yielding relations

$$\gamma(c_{m,n})\chi(\gamma)^{n-n_0} = c_{m,n}$$
 for all $\gamma \in \Gamma_K$.

Then by Lemma 2.11 and Theorem 2.12 we find $c_{m,n} = 0$ for $n \neq n_0$ and $c_{m,n} \in K$ for $n = n_0$. Therefore our relation $\sum c_{m,n}v_{m,n} = 0$ becomes a nontrivial K-linear relation among the vectors v_{m,n_0} , thereby yielding a desired contradiction. **Definition 2.15.** We say that $V \in \operatorname{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ is Hodge-Tate if the map $\tilde{\alpha}_V$ in lemma 2.13 is an isomorphism.

We will see next (or next next) week that p-adic representations discussed in example 2.7 are Hodge-Tate in many cases.