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This week: p-divisible groups

1 From last time: Frobenius morphism

Let R = k be a perfect field of characteristic p. Let σ be the Frobenius on k.

Definition 1.1. Let G = Spec(A) be a finite k-group. The Frobenius twist is G(p) = G×k,σ k and the
(relative) Frobenius φG of G (over k) is defined by the diagram:

More generally,

G(pr) = (G(pr−1))(p)

φr
G = φG(pr−1) ◦ φr−1

G

The Verschiebung of G is ψG = φ∨
G∨ , where

φG∨ : G∨ → (G∨)(p).

Remark 1.2. Verschiebung ψG is a map G(p) ∼= ((G∨)(p))∨ → G

Remark 1.3. We can check if a finite flat R-group scheme is connected or étale by passing to the
special fiber. There are criteria for connected or étaleness for GK in terms of Frobenius and the
Verschiebung.

Lemma 1.4. • The Frobenius φG induces a map

A(p) = A⊗k,σ k → A

a⊗ c 7→ c · ap.

• For any morphism G→ H as schemes, we have induced maps

• Both φG and ψG are group homomorphisms.
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Recall that: for ring R of characteristic p, αp := Spec(R[t]/tp).

Also, the nth roots of unit over R is µn = Spec(R[t]/(tn − 1)). For any R-algebra B, µn(B) = {b ∈
B|bn = 1}.

And also: M := ⨿m∈M Spec(R) ∼= Spec(
∏

m∈M R).

Example 1.5. We have that:

1. φαp = 0, ψαp = 0.

2. φZ/pZ is an isomorphism, ψZ/pZ = 0.

3. φµp = 0, ψµp is an isomorphism.

Proposition 1.6. We have that

ψG ◦ φG = [p]G, φG ◦ ψG = [p]G(p) .

We shall omit the proof here, but interested reader may check Serin Hong’s notes and Richard Pink’s
notes.

Proposition 1.7. Suppose G is a finite group scheme over k. Then G is connected if and only if
φr
G = 0 for some r. Moreover, G is étale if and only if φG is an isomorphism.

Proof. If G is connected, A is a local Artinian ring. It decomposes as A = k ⊕ I where I = ker(ε).
Since I is a maximal ideal, it is nilpotent, so there is r > 0 such that for all x ∈ I, xpr

= 0. This shows
that φr

G factors through the unit section.

Conversely, suppose φr
G = 0 for some r. Since φr

G induces an isomorphism G(k) ∼= G(pr)(k), we have
that G(k) = 0, so G is connected.

If G is étale, ker(φG) is connected, so ker(φG) ⊆ G0 = 0. This shows that φG is injective. In fact, it
is an injective homomorphism φG : G→ G(p) between groups of the same order, so it is an isomorphism.

Suppose now that φG is an isomorphism. It induces an isomorphism on G0. Hence φG0 is an isomor-
phism, and hence φr

G0 is an isomorphism. Since φr
G0 = 0 at some point (G0 is connected), we see that

G0 = 0, and hence G is étale.

Proposition 1.8. Suppose G is a connected finite flat k-group. Then the order of G is a power of p.

Proof. Let n be the order of G. We induct on n. As usual, let I = ker(ε) be the augmentation ideal.
Choose x1, · · · , xd ∈ I which lifts a basis of I/I2. Since G is connected, d > 0.

Then A be a local ring with maximal ideal I.

Let H = ker(φG). We first claim that the order of H is pd. By Nakayama, x1, · · · , xd generate I.
Hence

H = Spec(A/(xp1, · · · , x
p
d)).

We want to show that
λ : k[t1, · · · td]/(tp1, · · · , t

p
d)

∼=−→ A/(xp1, · · · , x
p
d).

Surjectivity is clear. We have a natural map

π : A = k ⊕ I → I/I2.

For each j = 1, · · · , d, define Dj : A→ A as the composition

A
µ−→ A⊗A (id,π)−−−−→ A⊗k I/I

2 xj 7→δij−−−−−→ A

We can check that λ ∂
∂tj

= Djλ for all j by checking on the generators. Hence the kernel kerλ is stable

under ∂
∂tj

. Therefore, kerλ has to contain some constant, which shows that kerλ = 0. This proves

that λ is an isomorphism, and hence the claim that H has order pd.

Since G is connected, φr
G = 0 for some r. Since φr

G on G/H is 0, G/H is connected. Finally, the order
of G is the order of H times the order of G/H. Induction hence completes the proof.
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Recall that if the order of G is invertible in the base, then G is étale. If R is a henselian local ring
with perfect residue field, then there is another proof of the the proposition. Assume R = k is a field.
If k has characteristic p, the connected–étale sequence has G0 = 0 if order is invertible in p. When k
has characteristic 0, G0 ∼= Spec(k[t1, · · · , td]) when d = dim I/I2, so d = 0.

2 p-divisible groups

The reference for this section are [Dem86] and [Tat67]. We assume throughout that the base ring R is
a Henselian local noetherian ring.

2.1 Basic Definitions

Definition 2.1. A p-divisible group of height h over R is an inductive system G = lim−→Gv such that

• Gv is a finite flat R-groups of order pvh.

• there is an exact sequence

0→ Gv
iv−→ Gv+1

[pv]−−→ Gv+1,

i.e. Gv = Gv+1[p
v].

Example 2.2. 1. The constant p-divisible group is

Qp/Zp = lim−→Z/pvZ

with the obvious transfer maps. It is a p-divisible group of height 1.

2. The p-power roots of unity is
µp∞ = lim←−µpv

with the obvious transfer maps. It is a p-divisible group of height 1.

3. If A is an abelian scheme over R,
A[p∞] = lim−→A[p

v]

with the obvious transfer maps is a p-divisible group of height 2g, where g = dimA.

Definition 2.3. A map of p-divisible groups f : G→ H is a homomorphism if f = (fi) is compatible
system of R-group homomorphism:

The kernel of f is ker(f) = lim−→ ker(fv).

Remark 2.4. The kernel of f might not be a p-divisible group.

Example 2.5. The map [n]G = ([n]Gv
) is a homomorphism, called multiplication by n on G.

We want to discuss Cartier duality for p-divisible groups. We first need a lemma

Lemma 2.6. Let G = (Gv) be a p-divisible group over R. Then for any v, t ∈ Z≥0 there exist

iv,t : Gv ↪→ Gv+t,

jv,t : Gv+t → Gt

such that

1. iv,t induces Gv = Gv+t[p
v],
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2. the diagram

commutes.

3. there is a short exact sequence

0→ Gv
iv,t−−→ Gv+t

jv,t−−→ Gr → 0.

Proof. We have that iv,t = iv+t−1 ◦ iv+t−2 ◦ · · · ◦ iv : Gv ↪→ Gv+t. To check (1), we see that

Gv+t[p
v] = Gv+1[[p

v+t−1] ∩Gv+t[p
v]

= Gv+t−1 ∩Gv+t[p
v]

= Gv+t−1][p
v].

To construct jv,t, we first note that [pv+t] kills Gv+t. Hence [pv](Gv+t) is killer by [pt]. Hence

[pv](Gv+t) ⊆ Gv+t[p
t] = Gt.

The composition defines a map jv,t : Gv+t → Gt such that the diagram in (2) commutes.
Finally, it remains to check the surjectivity of jt,v to complete the proof of (3). We have that ker(jv,t) =
ker[pv] = Gv. Hence jv,t induces a map

Gv+t/Gv ↪→ Gt

between two groups of order pv+t/pv = pt. It is hence an isomorphism, showing jv,t is surjective.

Corollary 2.7. The map [p] on G is surjective as a map of fpqc schemes

Proposition 2.8 (Cartier duality for p-divisible groups). Let G = lim−→Gv be a p-divisible groups of
height h over R.

1. The sequence

Gv+1
[pv ]−−→ Gv+1

jv=j1,v−−−−−→ Gv → 0

is exact.

2. The injective limit G∨ = lim−→G∨
v , the Cartier dual of G, is a p-divisible group of height h over R

with transfer maps j∨v .

3. There is a canonical isomorphism G∨∨ ∼= G.

Proof. We start with (1). We have a commutative diagram with an exact row:

We have that ker(j1,v) = G1 = im([pv]Gv+1
). We hence get (1).

For (2), we dualize to get an exact sequence

0→ G∨
v

j∨v−→ G∨
v+1

pv

−→ G∨
v+1

by Cartier duality. Hence, G∨
i = lim−→G∨

v is a p-divisible group. For part (3), it’s similar to the proof of
Cartier duality.
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Example 2.9. We have that:

1. (Qp/Zp)
∨ ∼= µp∞ ,

2. A[p∞]∨ ∼= A∨[p∞].

Proposition 2.10 (Connected–étale sequence for p-adic groups). Let G = lim−→Gv be a p-divisible
group over R. Then there are p-divisible groups over R:

G0 = lim−→G0
v,

Gét = lim−→Gét
v

such that
0→ G0 → G→ Gét → 0.

Proof. We have a diagram:

where the dotted maps are to be constructed. There is a unique iétv such that the top right square
commutes. For exactness, we can pass to k-points and see that it follows the middle column on k-points.
There is also a unique closed embedding i0v such that the left top square commutes.
We want to show that G0

v = G0
v+1[p

v]. Obviously, G0
v ⊆ G0

v+1[p
v]. Also, G0

v+1[p
v] ⊆ G0

v and G0
v+1[p

v] ⊂
Gv+1[p

v] = Gv. Finally, G
0
v+1[p

v](k) ⊆ G0
v+1(k) = 0.

Definition 2.11. Let R = k be a perfect field of characteristic p. There is a Frobenius twist:

G(p) = lim−→G(p)
v .

There is a Frobenius morphism φG = (φGv ) and a Verschiebung morphism ψG = (ψGv ).

Proposition 2.12. If G is a p-divisible group of height h,

1. G(p) is a p-divisible group of height h,

2. φG and ψG are homomorphisms,

3. ψG ◦ φG = [p]G,

4. φG ◦ ψG = [p]G(p) .

Definition 2.13. Let R = k be a field. The Tate module of G is

Tp(G) = lim←−Gv(k),

where the transfer maps are given by jv : Gv+1 → Gv.

Proposition 2.14. Let R = k be a field of characteristic not equal to p. Then there is an equivalence:

{p-divisible groups over k} =⇒ { finite free Zp-modules with continuous ΓK-action},

G 7→ Tp(G).

Proof. Use the corresponding equivalence for finite flat k-groups and the fact that groups with invertible
orders are étale.
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3 Serre–Tate equivalence for connected p-divisible groups.

A key correspondence for p-divisible groups is the Serre–Tate equivalence:

{connected p-divisible group over R} ↔ {formal group laws over R} ↔ {p-divisible formal Lie groups}.

Let R be a complete local noetherian ring, with residue characteristic p.

Definition 3.1. Let G = lim−→Gv be a p-divisible group over R. We say that G is:

• connected if each Gv is connected,

• étale if Gv is étale.

Example 3.2. 1. The p-divisible group µp∞ is connected.

2. The p-divisible group Qp/Zp is étale.

Definition 3.3. Let A = RJt1, · · · , tdK. Then define

A⊗̂A = RJt1, · · · , td, u1, · · · , udK.

We will also write T = (t1, · · · , td), U = (u1, · · · , uD) for the variables.
A formal group law of dimension d over R is a (continuous) map µ : A → A⊗̂A such that Φ(T,U) =
(Φi(T,U)) for each Φi(T, V ) a power series of 2d variables and

Φi(T, V ) = µ(ti)

satisfying the following properties:

1. associativitiy: Φ(T,Φ(V, V )) = Φ(Φ(T, V ), V ),

2. unit section: Φ(T, 0d) = Φ(0d, T ) = T ,

3. commutativity: Φ(T, V ) = Φ(V, T ).

Lemma 3.4. If µ is a formal group law over R, then

1. the diagrams

commute,

2. the map ϵ : A → R given by ti 7→ 0 makes the diagram

and a symmetric diagram commute,

3. there is a continuous map ι : A → A such that

commutes.
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Proof. Parts (1) and (2) are clear. For (3), we need to define Ii(T ) = ι(ti), I(T ) = Ii(T ) such that

Φ(I(T ), T ) = 0 = Φ(T, I(T )).

We want Pj(T ): a family of polynomials of degree j such that I(T ) = limPj(T ), i.e.

1. Pj(T ) = Pj−1(T ) mod degree j,

2. Φ(Pj(T ), T ) = 0 mod degree j + 1.

Since Φ(T,U) = T + U mod degree 2, we may take P1(T ) = −T . We define Pj(T ) by recursion on j.
We have that

Φ(Pj(T ), T ) = ∆j(T ) mod degree j + 2,

where ∆j(T ) is a homogeneous polynomial of degree j + 1. Define

Pj+1(T ) = Pj(T ) + ∆j(T ).

Then (i) is clearly satisfied. For (ii), we note that

Φ(Pj+1(T ), T ) = Φ(Pj(T ) + ∆j(T ), T ) ∼= Φ(Pj(T ), T ) + ∆j(T ) ≡ 0 mod degree j + 2.

This proves (3).

Remark 3.5 (Formal schemes and groups). A formal scheme is a scheme together with an infinitesimal
neighborhood.
If A is a ring, we define Spec(A) as the set of prime ideals.
If A is a topological ring, we define Spf(A), the formal spectrum, as the set of open prime ideals of A.
Formal groups are group objects in the category of formal schemes. The lemma says that any formal
group law over R defines a formal group structure on Spf(A), written Gµ.

Example 3.6. The multiplicative formal group law is

µĜm
: RJtK→ RJt, uK,

t 7→ (1 + t)(1 + u)− 1.

Definition 3.7. Let µ, ν be formal group laws of dimension d over R. A continuous map γA→ A is
a homomorphism from µ to ν if the diagram

commutes.

Lemma 3.8. A continuous map γ : A → A given by Ξ(T ) = (Ξi(T )) where Ξi(T ) = γ(ti) if a
homomorphism if and only if, writing Φ(T, V ) and Ψ(T, V ) for the functions associated to µ and ν,
we have that

Ψ(Ξ(T ),Ξ(V )) = Ξ(Φ(T, V )).

Example 3.9. The multiplication by n map [n]µ on µ is a homomorphism.

Definition 3.10. 1. The ideal I = (t1, · · · , td) = ker ϵ is the augmentation ideal of µ.

2. A formal group law µ is p-divisible if [p]µ is finite flat in the sense that A is a free module of
finite rank over itself.

Remark 3.11. A formal group law µ is p-divisible if and only if [p] on Gµ is surjective with finite
kernel.
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Proposition 3.12. Let µ be a p-divisible formal group law of dimension d over R. Define

Av = A/([pv]µ(I)),

A[pv] = Spec(Av).

Then

1. each µ[p∨] is a connected finite flat R-group,

2. µ[p∞] = lim−→µ[p∨] is a connected p-divisible group over R.

Proof. We may write

Av = A/[p∨]µ(I)
= (A/I)⊗A,[pv] A
= R⊗A,[pv] A.

Then 1⊗ µ, 1⊗ ϵ, 1⊗ ι define comultiplication, counit, and coinverse on AV .
Let r be the rank of A over [p](A). Then rv is the rank of A over [pv](A). Hence Spec(Av) is a finite
flat R-group scheme of order rv.
Since R is complete, A is also a lcoal ring. Hence each Av is a local ring, showing that Spec(Av) is
connected over R. Since Spec(A1) has order p

h = r, and Spec(Av) has order p
hv. This completes the

proof of (1).
For (2), we need to check that µ[pv] is the pv-torsion of µ[pv+1]. The natural surjective map

Av = A/[pv](I) ↠ [p]A/[pv+1](I)

is an isomorphism as it is an R-linear map between R-modules of the same rank. We hence have a
surjection

Av+1 = A/[pv+1](I) ↠ [p]A/[pv+1](I) ∼= Av

induced by [p], and hence [pv] will be 0.

Remark 3.13. We have that Gµ[p
v] = Spec(Av).

Theorem 3.14 (Serre-Tate equivalence). There functor

{p-divisible formal group laws over R} → {connected p-divisible groups over R}

µ 7→ µ[p∞]

is an equivalence of categories.

The map above is really the following. We have a formal group scheme Gµ associated to µ. Then the
connected p-divisible group over R associated to µ is

lim−→Gv
∼= lim−→Gµ[p

v],

where we recall that
Gv = Spec(A/[pv](I)).

Remark 3.15. Local class field theory can be stated in terms of Lubin–Tate formal group laws. Local
Langlands for GL1 is local class field theory. It can hence be stated in terms of certain p-divisible
groups.
For GLn, Michael Harris and Richard Taylor proved the local Langlands correspondence via moduli
spaces of p-divisible groups: Rapoport–Zink spaces and local Shimura varieties.

We now work towards the proof of the Serre–Tate equivalence. The following proposition shows the
essential surjectivity over k in the Serre–Tate equivalence.

Proposition 3.16. Let G = lim−→Gv be a connected p-divisible group over R, where Gv = Spec(Av).
Then

lim←−Av ⊗ k ∼= kJt1, · · · , tdK.
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Proof. Let G = G×R k. Define Hv = ker(φv) and note that Hv ⊆ ker([pv]) = Gv. Since

φv ◦ φv = [pv],

writing Hv = Spec(Bv) and we have Av ⊗ k ↠ Bv.
We have that Gv is a connected finite flat k-group. Hence φw = 0 on Gv, so Gv ⊂ Hw showing that
Bw ↠ Av ⊗ k. Hence

lim←−Av ⊗ k ∼= lim←−Bv.

Let Jv be the augmentation ideal of Hv and J = lim←− Jv. Then Bv/Jv ∼= k. Let y1, · · · , yd ∈ J lift a

basis of J1/J
2
1 . We have a commutative diagram:

so
B1
∼= Bv/J

(p)
v ,

where J
(p)
v is the ideal generated by p-powers of elements in J . Since J1/J

2
1
∼= Jv/J

2
v , the images of

y1, · · · , yd generate Jv/J
2
v . By Nakayma’s Lemma, they generate Jv. We hence have a map

k[t1, · · · , td] ↠ Bv.

We hence have
k[t1, · · · , td]/(tp

v

1 , · · · , t
pv

d ) ↠ Bv,

since Hv = ker(φv). We want to show this is an isomorphism.
We proceed by induction on v. When v = 1, we checked this in the proof of Proposition 1.8. For the
induction step, we argue on ranks. We want to show that pvd is the order of Hv. For that, we observe
that the sequence

0→ H1 → Hv+1
φ−→ H(p)

v → 0

is exact. Since H1 = ker(φ), we just need to check that φ is surjective. Recall that [p] is surjective by
Corollary 2.7. We know that φ◦ψ = [p], so φ is surjective. Recall that Hv+1 = ker(φv+1), soφ(Hv+1) ⊆
ker(φ∨

G
(p)), and the preimage of H

(p)
v is ker(φ∨

G
(p)).

This shows that the order of Hv+1 is pd· pvd = pd(v+1), completing the proof.

Lemma 3.17. Let µ be a p-divisible formal group law R. Letting

Av = A/[pv](I),

we have that
A ∼= lim←−Av.

Proof. Let m be the maximal ideal of R. Then M = mA + I is a maximal ideal of A. For each v, i,
we have that

[pv](I) +miA ⊇Mw

for some w, since
A/([pv](I) +miA) = Av/m

iAv,

which is local Artinian.

Moreover, [p](I) ⊂ pI + I2, because [n] acts as multiplication by n on I/I2. Alternatively, recall that
Φ(T,U) = T + U + (deg ≥ 2). This shows that

[pv](I) +miA ⊆Mw′

for some w′.
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Altogether, we see that

A ∼= lim←−A/M
w

= lim←−
v,i

A/([pv](I) +miA)

= lim←−
v,i

Av/m
iAv

∼= lim←−
v

Av

where the last congurence follows from the fact that Av is m-adically complete. This completes the
proof.

Proof of Serre-Tate Equivalence. We first check that the functor is fully faithful. Let µ, ν be p-divisible
formal group laws over R. Then for Bv = A/[pv]ν(I):

Hom(µ, ν) = Homν,µ(A,A)
= Homν,µ(lim←−Bv, lim←−Av) by lemma 3.17

= lim←−Homνv,µv
(Bv, Av)

= lim−→Homgrp(µ[p
v], ν[pv])

= Hom(µ[p∞], ν[p∞]).

For essential surjectivity, consider G = lim−→Gv be a connected p-divisible group. Let

G = G×R k,

and Gv = Spec(Av), then by proposition 3.16, we have

kJt1, t2, · · · tdK ∼= lim←−Av ⊗ k.

We want to lift to f : A → lim←−Av. We hence need lifts fv : A → Av, which lifts the above isomorphism,
such that

Let f1 be any lift over kJt1, · · · , tdK→ A1⊗k. We define fv by recursion on v. Choose y1, · · · , yd ∈ Av+1

which lift images of t1, · · · , td under

kJt1, · · · tdK→ Av+1 ⊗ k.

Then pv(y1), · · · pv(yd) must lift the images of t1, · · · td after the map

kJt1, · · · tdK→ Av ⊗ k.

We know that fv(t1), · · · , fv(td) also lift the images of t1, · · · , td under this map. Then fv(ti)−pv(yi) ∈
mAv, so there exist zi ∈ mAv+1 such that

pv(zv) = fv(ti)− pv(yi).

Defining fv+1 by fv+1(ti) = yi + zi gives the desired lift. We want to show that the resulting map

f : A → lim←−Av

is an isomorphism. Surjectivity is clear by Nakayama’s Lemma. We want to show that ker(f) = 0.
We know that ker(f)⊗R k = 0, i.e. m ker(f) = ker(f). We now note that

M ker(f) = (mA+ I)(ker f) = ker f.

so f is injective by Nakayama’s Lemma.
We have an isomorphism

f : A → lim←−Av.

To prove essential surjectivity, We define G = lim−→Gv for Gv = Spec(Av). Then µv is a comultiplication
on Gv, and µ = lim←−µv defines a formal group law over R such that µ[pv] = Gv.
We just need to check that G is p-divisible. We omit the details of this; roughly, ones uses that the
map jv,t : Gv,t ↠ Gt induces an injection At ↪→ Av+t. For details, check Serin Hong’s notes.
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Definition 3.18. For a p-divisible group G = lim−→Gv over R,

dim(G) = dimension of the formal group la associated to G0

via the Serre-Tate equivalence 3.14.

In the course of the proof of Theorem 3.14, we showed the following result:

Corollary 3.19. Let G = G×R k. Then ker(φG) has order pdim(G).

Example 3.20. Recall that µ
Ĝm

(t, u) = (1 + t)(1 + u)− 1. Then [pv](t) = (1 + t)p
v − 1, so

µ
Ĝm

[p∞] = µp∞ .

Theorem 3.21. Let G be a p-divisible group over R. Then

ht(G) = dim(G) + dim(G∨).

Proof. By passing to the residue field, we may assume that R = k is a perfect field of characteristic p.
Then

is commutative with exact rows, since φ is surjective, because φ ◦ ψ = [p]G(p) and ker(φ) is killed by
[p] because ψ ◦ φ = [p]. Snake Lemma then gives a short exact sequence

0→ kerφ→ ker([p])→ kerψ → 0.

Since ker(φ) has order pdim(G) and ker([p]) = G1 has order pht(G), and ψ = φ∨
G∨ implies that ker(ψ)

has order pdim(G∨), we are done by multiplicativity of orders in short exact sequences.

Corollary 3.22. Let G be a p-divisible group over R with residue field k = k of height 1. Then G is
isomorphic to µp∞ or Qp/Zp.

Proof. By theorem 3.21, we know that dimG = 0 or dimG∨ = 0. If dimG = 0, G is étale, so
G ∼= Qp/Zp. Otherwise, dimG∨ = 0, so G∨ ∼= Qp/Zp, so G ∼= µp∞ .

One can also prove this result using Dieudonné theory, which we will soon explain.

Example 3.23. Let E be an ordinary elliptic curve over Fp. Then there is a short exact sequence

0→ E[p∞]0 → E[p∞]→ E[p∞]ét → 0.

Since E[p]0 and E[p]ét are both non-trivial, so are E[p∞] and E[p∞]ét. Finally, E[p∞] is of height 2,
so Corollary 3.22 shows that

E[p∞]0 = µp∞ , E[p∞]ét = Qp/Zp.

The short exact sequence splits, because it splits at each finite level. Hence

E[p∞] = µp∞ ×Qp/Zp.

Remark 3.24. We discuss Serre–Tate deformation theory for ordinary elliptic curves.
In general, Serre–Tate deformation theory says that the deformations of an abelian variety A/k are
equivalent to the deformations of A[p∞] (i.e. p-divisible groups G/R such that G×R k ∼= A[p∞]).

Therefore a deformation of an elliptic curve E over k = k corresponds to a deformation of E[p∞].
The deformation space of E[p∞] is

Ext1(Qp/Zp, µp∞),

since if G is a deformation over R, the connected–étale sequence

0→ G0 → G→ Gét → 0

and G0 = µp∞ and Gét = Qp/Zp.
We also have a short exact sequence

0→ Zp → Qp → Qp/Zp → 0

The long exact sequence after applying Ext(−, µp∞) gives

Ext1(Qp/Zp, µp∞) ∼= Hom(Zp, µp∞).

Therefore, the deformation space has the structure of a formal torus of dimension 1, given by µ
Ĝm

.
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4 Dieudonné–Manin classification

Let k be a perfect field of characteristic p. Let σ be the Frobenius automorphism over k.

Definition 4.1. We write W (k) for the ring of Witt vectors over k. We write K0(k) for the fraction
field of W (k). The Frobenius σW (k) on W (k) is

σ

∑
n≥0

τ(xn)p
n

 =
∑
n≥0

τ(xpn)p
n

where τ : k → W (k) is the Teichmuller lift. Finally, σK0
(k) is the unique field of automorphism on

K0(k) extending σW (k).

Example 4.2. Let k = Fq and ζq−1 be a primitive (q − 1)st root of unity. Then

W (k) = Zp[ζq−1, K0(k) = Qp[ζq−1]

and σ acts on W (k) by
σ(ζq−1) = ζpq−1,

and trivially on Zp.

Definition 4.3. A Dieudonné module over k is a pair (M,φ) where

1. M is a finite free module over W (k),

2. φ :M →M is an additive map such that:

(a) φ is σ-linear, i.e. φ(am) = σ(a)φ(m) for all a ∈W (k),m ∈M ,

(b) φ(M) ⊇ pM .

Theorem 4.4 (Dieudonné). There is an anti-equivalence:

D :{p-divisible groups over k} → {Dieudonné modules over k}

such that

1. rk(D(G)) = ht(G),

2. G is étale if and only if φD(G) is an isomorphism.

3. G is connected if and only if φD(G) is topologically nilpotent,

4. [p]G induces multiplication by p on D(G).

We shall omit a proof here. But the interested reader could read [Dem86].

Remark 4.5. There is a notion of duality for Dieudonn´e modules, compatible with Cartier duality.
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