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This week: Foundations of p-adic Hodge Theory
The goal of the next three weeks is to discuss:

1. finite flat group schemes,
2. p-divisible groups.

In particular, we will try to cover the main results of Tate’s p-divisible groups [Tat67].

1 Finite flat group schemes: Basic definition and properties
The main reference for this chapter is Tate’s finite flat group schemes [Tat97].
Definition 1.1. Let S be a base scheme. An S-scheme G is a group scheme if there are maps
1. m: G xg G — G multiplication,
2. e: S — G unit section,
3. 1: G — G inverse.
satisfying the following axioms:

1. associativity:
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2. identity axiom:

GxsS=G id G

\(id,e) m

G x G

and similarly for S xg G = G,
3. inverse:
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Lemma 1.2. Let G be an S-scheme. It is a group scheme if and only if G(T') is a group functorial in
T for all T/S.

—

Proof: Yoneda’s lemma.

Definition 1.3. Let G, H be group schemes over S. A map f: G — H of S-schemes is a homomor-
phism if G(T) — H(T) is a group homomorphism for all T/S.



We define ker(f) to be an S-group scheme such that
ker(f)(T) = ker(G(T) — H(T)).

Equivalently, ker(f) is the fiber of the unit section.
Example 1.4. The multiplication by n map [n]lg : G — G is defined by g — g".
Assume S = Spec(R).
Definition 1.5. Then G = Spec(A) is an R-group scheme if it has

1. p: A— A®gr A comultiplication,

2. ¢: A— R counit,

3. 1:A— A coinverse
that correspond to multiplication, unit section, and inverse.

Example 1.6. 1. The multiplicative group over R is

G = Spec(Rl, 7))

Then G,,,(B) = B* with multiplication for any R-algebra B. Then
p(t) =t@te(t) =1,u(t) =t""

2. The additive group over R is
G, = Spec(RJt])

Then G,(B) = B with addition for any R-algebra B. Then
pt)=1@t+t®1,e(t) =0,u(t) = —t.
3. The nth roots of unity over R is
yu(n) = Spec(RI1)/(t" — 1)).
under multiplication. The functions u,€,t are all as in 1.
4. If R has characteristic p, we can define
a, = Spec(R[t]/tP)
Then a,(B) = {b € B|b’ = 0} with addition for any R-algebra B. The functions u,€,¢ are all as
5. Let A be an abelian scheme over R. Then
Aln] = ker([n].4)
is an affine group scheme over R. This is because [n] 4 is a finite morphism.
6. Let M be a finite abstract group. We can associate to it the constant group scheme M defined by
M =11, Spec(R) = Spec ( H R) .

meM
Writing A =] R, note that

A = {R — valued functions on M}.

meM

For any R-algebra B, we have that
M (B) = {locally constant function Spec(B) — M }.
with the group structure induced by M. To describe u, note that
A®pr A ={R — valued functions onM x M}.

We have that
u(f)(m,m’) = f(mm')
e(f) = f(1m)
(f)(m) = f(m™1).



Assumption. From now on, R is a Noetherian local ring, m is the maximal ideal of R, k is the
residue field. The assumption R local is just for simplicity.

Definition 1.7. Let G = Spec(A) be an R-group scheme. It is a (commutative) finite flat group
scheme of order n if

1. A is a locally free R-module of rank n, A is a locally free R-module of rank n,

2. G is commutative, in the sense that:

GXGMGXG
G

Remark 1.8. (1) implies that G — Spec(R) is finite and flat. (2) implies that G(T) is commutative
for all T over S = Spec(R). Note that G(T) may not be of order n; for example, if T = Spec(B) if B
is highly disconnected.

Example 1.9. 1. The group scheme p, is finite flat of order n.
2. If R has characteristic p, oy, s a finite flat R-group scheme of order p.

3. Let A be an abelian scheme of dimension g over R. Then Aln] is a finite flat group scheme of
order n?9.

We will assume two theorems in this section without proof.

Theorem 1.10 (Grothendieck). Suppose G is a finite flat R-group scheme of order m and H C G is a
closed finite flat R-subgroup scheme of order n. Then the quotient G/H exists as a finite flat R-group
scheme of order m/n.

As a result, we have a short exact sequence
0—-H—-G—-G/H—O0

of R-group schemes.

Theorem 1.11 (Serre). Let G be a finite flat R-group scheme of order n. Then [n)g kills G, i.e. [n]g
factors through the unit section of G.

Remark 1.12. This is unknown for noncommutative finite flat group schemes.

Theorem 1.13. Suppose G is as above. Then Gp = G Xg B for any R-algebra B is a finite-flat
B-group scheme.

Proof. If G = Spec(A) with p,€,t, then Gg = Spec(Ap) with p® 1, e®1, 1 ® 1. O

2 Cartier duality

Definition 2.1. Let G be as above. The Cartier dual GV of G is
GY(B) = Homp_group(Gp, (Gm)B)

with group structure induced by (G,,)p.

Using this definition, it is hard to see that GV is a finite flat group scheme. We will describe it
differently soon which will make this apparent.

Remark 2.2. We could have defined GV = Hom(G, G,,), where the sheaf Hom is on the big fppf site.
Lemma 2.3. If [n]¢ kills G, then

GV(B) = HomB—group(GBv (MH)B)'

Proof. Recall that p, = ker([n]g,, ). O

m



Theorem 2.4 (Cartier duality). Let G = Spec(A) be an R-group scheme of order n with p, €t as
comultiplication, counit, coinverse. Define

ma:ARr A— A right multiplication,
p:R— A structure morphism,
AY = Homp_med(4, R).
Then:

1. the maps u" and " given an R-algebra structure on AV,
2. GY = Spec(AY) with mX,p¥,.V as comultiplication, count, coinverse,
3. GV is a finite flat R-group scheme of order n,
4. (GV)Y 2 G canonically.

Proof. Part (1) is straightforward. Parts (3) and (4) are consequences of (2). It suffices to prove (2)
but we will do this next time. O

Example 2.5. 1. We have that p), = Z/nZ.
2. We have that oy = a,.
As a consequence, we have the following result.

Proposition 2.6. Suppose R =k is a field. Let f : A — B be an isogeny between abelian varieties
over k. Then
ker(f)" = ker(f").

We shall omit the proof here (but for reference see Serin Hong’s notes).

Corollary 2.7. Let R =k be a field. Then A[n]Y = A6V [n]. This gives
Aln] x AY[n] = pn,

called the Weil pairing.

Later, we will use a pairing
Tp(A) x Tp(AY) = ppee = Zp(1)

obtained from the above corollary.

Proof of Cartier duality theorem 2.4. Let G = Spec(A) and p, €, ¢ be the comultiplication, counit, and
coinverse.

Let p: R — A be the structure morphism, m4 : A ®g A — A be the right multiplication. Consider
AY = Hompg (A4, R)
with R-algebra structure given by pV and €Y. Consider
GY = Spec(AY)

V' as comultiplication, counit, and coninverse. We want to show that

with mY, p¥, ¢

GY(B) = GY(B)

for all R-algebra B. We have that:

GY(B) = Homyg,, (G, (G,)B)

es(f(t))=1,

= € Homp_. (B[t t7'], A
{f pug(Blt: 171, Ap) e (F(0)=F(1) !

us(f(f)]f(f)-xf(f].-}

= {u € A}

={ue Ay | p(u) = u @ u},

(u)=u@u,
F w1, } via f = f(t)

t(u)=u—1




where the last equality follows from
(idB & 63) oup =1idpg,

(idp ® ) opup =ppoep.
Now, the right hand side of equation 2 is

GV (B) = Homp ., (A", B)
= Homp ., (AY @ B, B)
= {f € Homp_,0q(B, Ag) | compatible with m}, p%, ug,eg}
={ue Ay | pp(u) =u®@u, eg(u) =1}
={uec Ay | p(u) =u®u}.

This completes the proof if we check that the isomorphism respects the group structure.
Lemma 2.8. Suppose f: H — G is a closed embedding of finite flat R-groups. Then
ker(f)" = (G/H)".
Proof. We have that
ker(f)Y(B) = ker(Hom(Gp, Gy, B) ERN Hom(Hp, G B))

= Hom((G/H)5,Gy.5)
= (G/H)"(B),

as required.
Proposition 2.9. Taking the Cartier dual is an exact functor.

Proof. We want to show that if
0-aLashae o
then , .
0= (G L 6v L @)Y = o
is exact. Injectivity of gV is easy to check, since ker(fY) = (G”)V.
To check that fV is surjective, note that f¥ : G¥ — (G’)Y induces
G\//(Gl/)\/ N (G/)\/'

Its dual is
(@)Y = (GY/(G"))" = ker(g") = ker(g) = @,

which is an isomorphism.

3 Finite étale group schemes
Proposition 3.1. For R is Henselian, we have that:

{finite étale group over R} «+ {finite abelian groups with a continuous I k-action}

G GR).
Proof. Consider m : Spec(k) — R, a geometric point. Then
T (Spec(R),ﬁ) =

Hence
{finite étale group over R} <> {finite sets with a continuous I'k-action}

Passing to group objects gives the result.



Remark 3.2. 1. This bijection is compatible with the order on each side.
2. If k = k, we have that T'j, = 1.

Definition 3.3. Let G = Spec(A). Then augmentation ideal is I = ker(e).

Lemma 3.4. As R-modules, A2 R&® I.

Proof. The structure morphism R — A splits the short exact sequence:
01—+ AS5—>R—0,

giving the desired isomorphism. O

Proposition 3.5. Let G = Spec(A) and I be the augmentation ideal. Then
Qa/r 21/I? @R A,
I/I? = Q404 A/

Remark 3.6. The multiplication on G defines an action on Q4/g. The invariant forms under the
G-action are determined by the values along the unit section. Any other form is an invariant form
times a form on A.

Proof. We have the commutative diagram:
-1
Gx G2t )G

X%@)
G

which corresponds to the commutative diagram

A®rA ————— A@pA
x®y% A—)we(y)
A

Let J be the kernel of the left map. Then Q4/r = J/J 2 by definition. The kernel of the right hand
side map is J = A ®p [ since
ARr A (A®RrR)® (AR I)

and I = ker(e). Hence
J?=(A@rI)?=A®gI?

and so
JI PP =(ARD)/(ARI?) 2 AogI/I?
showing that
Qur@a A/l =(I/IPorA) @A/ =(I/I*) @ AJI =1/
This gives the result. O

Corollary 3.7. Let G = Spec(A) be a finite flat R-group scheme. Then G is étale if and only if
I=12

Proposition 3.8. FEvery constant group scheme is étale

Proof. If A =1] R, then I =] R, so that I = I?. O

meM meidnr

Corollary 3.9. Let R =k = k be a field of characteristic p. Then Z/pZ is the unique finite étale k-
group scheme of order p. In particular, Z/pZ, i, oy are mutually non-isomorphic as finite flat groups
of order p.

Proposition 3.10. Let G = Spec(A) be a finite flat R-group scheme. Then G is étale if and only if
the image of the unit section is open. Moreover, if the order of G is invertible in R, then G is étale.

Proof. We have € : Spec(R) — Spec(A). The image of the unit section is Spec(A/I) which is open if
and only if I = I2. O



Proposition 3.11. Let G = Spec(A) be a finite flat R-group scheme. If the order G is invertible in
R, then G is étale.

Corollary 3.12. FEwvery finite flat group scheme over a field of characteristic 0 is étale.

Proof of proposition 3.11. Let n be the order of G. We claim that [n]s induces multiplication by n on
I/I%. We have the diagrams

Spec(R) —— G G —4 .
l(e,e% (id,g)u(e,%
GxG GxG
which corresponds to
Spec(R) —— G G —4 .
l(% (id:ri)u(e;%
GxG GxG

Forallz € I, e ® e(u(x)) = 0.
Since A = R ® I, we have that

AQAZRIRPRRIIGPIQORPIR®I,

o
pr)=a®@1+10b+1®1

for a,b € I. For x = a = b, we get
pr) =1+ 1+1®1

for all # € I. Hence p acts as 1 @ x + 2 ® 1 on I/I?. By induction, the assertion follows (indeed,
[n] =mo ([n —1],id) and we can run a similar argument).

We know that [n] kills G by Serre’s Theorem (Recall in the remark). Hence [n] factors as follows:
n]:G—-RSG.

This gives
Qa/r = Qr/r =0 — Qu/r,

so the induced map on Q4,5 is 0. Thus [n]¢ induces the zero map on

Qa/r®aAJT=1/T°.
As n is invertible, multiplication by n on I/I? should be an isomorphism. O
Recall Serre’s theorem:

Theorem 3.13 (Serre). Let G be a finite flat R-group scheme of order n. Then [n)q kills G, i.e. [n]g
factors through the unit section of G.

4 The connected étale sequence

Let R be a Henselian local ring with residue field k.
Lemma 4.1. An R-group G is étale if and only if Gy, is étale.

Proof. Etaleness is a fiberwise property. O



Lemma 4.2. Let T = Spec(B) be a finite scheme over R. The following are equivalent
1. T is connected,
2. B is a henselian local finite R-algebra,

3. Tk acts transitively on T'(k).

Proof. Clearly, (2) implies (1), because local implies connected. For (1) implies (2), suppose B = [[ B;
for henselian local finite R-algebras. Then Spec(B;) is a connected component of Spec(B). To show
that (1) is equivalent to (3), let k; be the residue field of B;. Then

T(E) = HOmR_alg(B,E) = HHOmk(ki,E),
and Hom(k;, k) is a I'y-orbit. O

Proposition 4.3. Let G = Spec(A) and G° be a connected component of the unit section. Then
GO(k) =0.

Proof. Let G° = Spec(A°%). Then AY is a henselian local finite R-algebra. We get a surjective homo-
morphism A° — R. The residue field of A® is k. Then G°(k) = Homy(k, k) = 0. O

Theorem 4.4 (Connected—étale sequence). Let G = Spec(A) be a finite-flat R-group scheme. Then
GY is a closed subgroup of G G¢ = G /G is a finite étale group over R. We have a short exact sequence

0-G°=G—G%=0.
Proof. We have that G° x GO is connected, since
(G° x G°) (k) = G°(k) x G°(k) = 0.

We hence have that m(GY x G°) C G° and «(G°) C G, so GV is a closed subgroup. The unit section
of G* is G/G° which is open, since G° is open in G. O

Corollary 4.5. A finite flat group scheme G is connected if and only G(k) = 0.
Corollary 4.6. A finite flat group scheme G is étale if and only if G° = 0.

Corollary 4.7. If f : G — H is a group homomorphism with H 1is étale, then f uniquely factors
through G°.

Proof. We have that f(G%) C H® = 0, so we get the result using the universal property of G¢'. O

Proposition 4.8. Let R = k = k be a field. Then the connected—étale sequence splits. (This is also
true if R =k is a perfect field.)

Proof. We want to show that there is a section of G — G®. Consider
G4 = Spec(A/n)
O

where n is the nilradical of A. We claim that G™? is a subgroup of G. Since a product of reduces
schemes is reduced, G™¢ x G™*? is reduced. Hence

m(Gred X Gred) g Gred’ L(Gred) g Gred'

Moreover, G™? is étale because it is finite and reduced over k.
It suffices to show that the map G — G¢* induces G"*? =2 G, Since k is reduced, G™*4(k) = G(k) and
we also know that G(k) = G (k).

Example 4.9. Consider an elliptic curve E over F,. We have a connected—étale sequence for the
p-torsion: )
0— E[p® — Elp] — E[p]* — 0.

We know that E[p|(F,) has order 1 or p. Hence E[p|(F,) has order p if E is ordinary of 1 if E is
supersingular. Assume E is ordinary. Hence E[p] ét is étale of order p. By corollary 3.9, we have

E[p|® = Z/pZ.



Moreover,
(Elp))Y = (2/pZ)" = pp = Elp]" = E"[p] = Elp].

Since p, is connected, p, — E[p]®, so p, = E[p]°. Hence the connected-étale sequence is
0— u, = Elp| = Z/pZ — 0.

By proposition 4.8,
Elp] = pp x Z/pZ.

Remark 4.10. If E is supersingular, we know that E[p|® is trivial. Then El[p] is self-dual and we
have a short exact sequence:
0— ap = E[p] = o, — 0.
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