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This week: Foundations of p-adic Hodge Theory
The goal of the next three weeks is to discuss:

1. finite flat group schemes,

2. p-divisible groups.

In particular, we will try to cover the main results of Tate’s p-divisible groups [Tat67].

1 Finite flat group schemes: Basic definition and properties

The main reference for this chapter is Tate’s finite flat group schemes [Tat97].

Definition 1.1. Let S be a base scheme. An S-scheme G is a group scheme if there are maps

1. m : G×S G → G multiplication,

2. e : S → G unit section,

3. i : G → G inverse.

satisfying the following axioms:

1. associativity:

G×G×G G×G

G×G G

(id,m)

(m,id) m

m

2. identity axiom:

G×S S ∼= G G

G×G

(id,e)

id

m

and similarly for S ×S G ∼= G,

3. inverse:

G G×G

S G

(id,i)

m

e

Lemma 1.2. Let G be an S-scheme. It is a group scheme if and only if G(T ) is a group functorial in
T for all T/S.

Proof: Yoneda’s lemma.

Definition 1.3. Let G,H be group schemes over S. A map f : G → H of S-schemes is a homomor-
phism if G(T ) → H(T ) is a group homomorphism for all T/S.
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We define ker(f) to be an S-group scheme such that

ker(f)(T ) = ker(G(T ) → H(T )).

Equivalently, ker(f) is the fiber of the unit section.

Example 1.4. The multiplication by n map [n]G : G → G is defined by g 7→ gn.

Assume S = Spec(R).

Definition 1.5. Then G = Spec(A) is an R-group scheme if it has

1. µ : A → A⊗R A comultiplication,

2. ϵ : A → R counit,

3. ι : A → A coinverse

that correspond to multiplication, unit section, and inverse.

Example 1.6. 1. The multiplicative group over R is

Gm = Spec(R[t,
1

t
])

Then Gm(B) = B× with multiplication for any R-algebra B. Then

µ(t) = t⊗ t, ϵ(t) = 1, ι(t) = t−1

2. The additive group over R is
Ga = Spec(R[t])

Then Ga(B) = B with addition for any R-algebra B. Then

µ(t) = 1⊗ t+ t⊗ 1, ϵ(t) = 0, ι(t) = −t.

3. The nth roots of unity over R is

µ(n) = Spec(R[t]/(tn − 1)).

under multiplication. The functions µ, ϵ, ι are all as in 1.

4. If R has characteristic p, we can define

αp = Spec(R[t]/tp)

Then αp(B) = {b ∈ B|bp = 0} with addition for any R-algebra B. The functions µ, ϵ, ι are all as
in (2).

5. Let A be an abelian scheme over R. Then

A[n] = ker([n]A)

is an affine group scheme over R. This is because [n]A is a finite morphism.

6. Let M be a finite abstract group. We can associate to it the constant group scheme M defined by

M = ⨿m∈M Spec(R) ∼= Spec

( ∏
m∈M

R

)
.

Writing A =
∏

m∈M R, note that

A ∼= {R− valued functions on M}.

For any R-algebra B, we have that

M(B) = {locally constant function Spec(B) → M}.

with the group structure induced by M . To describe µ, note that

A⊗R A = {R− valued functions onM ×M}.

We have that
µ(f)(m,m′) = f(mm′)

ϵ(f) = f(1M )

ι(f)(m) = f(m−1).
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Assumption. From now on, R is a Noetherian local ring, m is the maximal ideal of R, k is the
residue field. The assumption R local is just for simplicity.

Definition 1.7. Let G = Spec(A) be an R-group scheme. It is a (commutative) finite flat group
scheme of order n if

1. A is a locally free R-module of rank n,A is a locally free R-module of rank n,

2. G is commutative, in the sense that:

G×G G×G

G

m

(x,y)7→(y,x)

m

Remark 1.8. (1) implies that G → Spec(R) is finite and flat. (2) implies that G(T ) is commutative
for all T over S = Spec(R). Note that G(T ) may not be of order n; for example, if T = Spec(B) if B
is highly disconnected.

Example 1.9. 1. The group scheme µn is finite flat of order n.

2. If R has characteristic p, αp is a finite flat R-group scheme of order p.

3. Let A be an abelian scheme of dimension g over R. Then A[n] is a finite flat group scheme of
order n2g.

We will assume two theorems in this section without proof.

Theorem 1.10 (Grothendieck). Suppose G is a finite flat R-group scheme of order m and H ⊆ G is a
closed finite flat R-subgroup scheme of order n. Then the quotient G/H exists as a finite flat R-group
scheme of order m/n.

As a result, we have a short exact sequence

0 → H → G → G/H → 0

of R-group schemes.

Theorem 1.11 (Serre). Let G be a finite flat R-group scheme of order n. Then [n]G kills G, i.e. [n]G
factors through the unit section of G.

Remark 1.12. This is unknown for noncommutative finite flat group schemes.

Theorem 1.13. Suppose G is as above. Then GB = G ×R B for any R-algebra B is a finite-flat
B-group scheme.

Proof. If G = Spec(A) with µ, ϵ, ι, then GB = Spec(AB) with µ⊗ 1, ϵ⊗ 1, ι⊗ 1.

2 Cartier duality

Definition 2.1. Let G be as above. The Cartier dual G∨ of G is

G∨(B) = HomB−group(GB , (Gm)B)

with group structure induced by (Gm)B.

Using this definition, it is hard to see that G∨ is a finite flat group scheme. We will describe it
differently soon which will make this apparent.

Remark 2.2. We could have defined G∨ = Hom(G,Gm), where the sheaf Hom is on the big fppf site.

Lemma 2.3. If [n]G kills G, then

G∨(B) = HomB−group(GB , (µn)B).

Proof. Recall that µn = ker([n]Gm
).
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Theorem 2.4 (Cartier duality). Let G = Spec(A) be an R-group scheme of order n with µ, ϵ, ι as
comultiplication, counit, coinverse. Define

mA : A⊗R A → A right multiplication,

p : R → A structure morphism,

A∨ = HomR−mod(A,R).

Then:

1. the maps µ∨ and ϵ∨ given an R-algebra structure on A∨,

2. G∨ ∼= Spec(A∨) with m∨
A, p

∨, ι∨ as comultiplication, count, coinverse,

3. G∨ is a finite flat R-group scheme of order n,

4. (G∨)∨ ∼= G canonically.

Proof. Part (1) is straightforward. Parts (3) and (4) are consequences of (2). It suffices to prove (2)
but we will do this next time.

Example 2.5. 1. We have that µ∨
n
∼= Z/nZ.

2. We have that α∨
p
∼= αp.

As a consequence, we have the following result.

Proposition 2.6. Suppose R = k is a field. Let f : A → B be an isogeny between abelian varieties
over k. Then

ker(f)∨ ∼= ker(f∨).

We shall omit the proof here (but for reference see Serin Hong’s notes).

Corollary 2.7. Let R = k be a field. Then A[n]∨ ∼= A6 ∨ [n]. This gives

A[n]×A∨[n] 7→ µN ,

called the Weil pairing.

Later, we will use a pairing
Tp(A)× Tp(A

∨) → µp∞ ∼= Zp(1)

obtained from the above corollary.

Proof of Cartier duality theorem 2.4. Let G = Spec(A) and µ, ϵ, ι be the comultiplication, counit, and
coinverse.

Let p : R → A be the structure morphism, mA : A⊗R A → A be the right multiplication. Consider

A∨ = HomR(A,R)

with R-algebra structure given by µ∨ and ϵ∨. Consider

G∇ = Spec(A∨)

with m∨
A, p

∨, ι∨ as comultiplication, counit, and coninverse. We want to show that

G∨(B) ∼= G∇(B)

for all R-algebra B. We have that:
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where the last equality follows from

(idB ⊗ ϵB) ◦ µB = idB ,

(idB ⊗ ι) ◦ µB = pB ◦ ϵB .

Now, the right hand side of equation 2 is

This completes the proof if we check that the isomorphism respects the group structure.

Lemma 2.8. Suppose f : H ↪→ G is a closed embedding of finite flat R-groups. Then

ker(f)∨ ∼= (G/H)∨.

Proof. We have that

ker(f)∨(B) = ker(Hom(GB ,Gm,B)
f−→ Hom(HB ,Gm,B))

= Hom((G/H)B ,Gm,B)

= (G/H)∨(B),

as required.

Proposition 2.9. Taking the Cartier dual is an exact functor.

Proof. We want to show that if

0 → G′ f−→ G
g−→ G′′ → 0,

then

0 → (G′′)∨
g∨

−−→ G∨ f∨

−−→ (G′)∨ → 0

is exact. Injectivity of g∨ is easy to check, since ker(f∨) ∼= (G′′)∨.

To check that f∨ is surjective, note that f∨ : G∨ → (G′)∨ induces

G∨/(G′′)∨ → (G′)∨.

Its dual is
(G′)∨∨ → (G∨/(G′′)∨)∨ ∼= ker(g∨∨) = ker(g) = G′,

which is an isomorphism.

3 Finite étale group schemes

Proposition 3.1. For R is Henselian, we have that:

{finite étale group over R} ↔ {finite abelian groups with a continuous ΓK-action}

G 7→ G(k).

Proof. Consider m : Spec(k) → R, a geometric point. Then

π1(Spec(R),m) ∼= Γk.

Hence
{finite étale group over R} ↔ {finite sets with a continuous ΓK-action}

Passing to group objects gives the result.
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Remark 3.2. 1. This bijection is compatible with the order on each side.

2. If k = k, we have that Γk = 1.

Definition 3.3. Let G = Spec(A). Then augmentation ideal is I = ker(ϵ).

Lemma 3.4. As R-modules, A ∼= R⊕ I.

Proof. The structure morphism R → A splits the short exact sequence:

0 → I → A
ϵ−→→ R → 0,

giving the desired isomorphism.

Proposition 3.5. Let G = Spec(A) and I be the augmentation ideal. Then

ΩA/R
∼= I/I2 ⊗R A,

I/I2 ∼= ΩA/R ⊗A A/I.

Remark 3.6. The multiplication on G defines an action on ΩA/R. The invariant forms under the
G-action are determined by the values along the unit section. Any other form is an invariant form
times a form on A.

Proof. We have the commutative diagram:

G×G G×G

G

(g,h)7→(g,h−1)

∼=

(id,e)∆

which corresponds to the commutative diagram

A⊗R A A⊗R A

A
x⊗y 7→xy

∼=

x⊗y 7→xϵ(y)

Let J be the kernel of the left map. Then ΩA/R = J/J2 by definition. The kernel of the right hand
side map is J = A⊗R I since

A⊗R A ∼= (A⊗R R)⊕ (A⊗R I)

and I = ker(ϵ). Hence
J2 = (A⊗R I)2 = A⊗R I2,

and so
J/J2 = (A⊗ I)/(A⊗ I2) ∼= A⊗R I/I2

showing that
ΩA/R ⊗A A/I = (I/I2 ⊗R A)⊗A/I = (I/I2)⊗R A/I ∼= I/I2.

This gives the result.

Corollary 3.7. Let G = Spec(A) be a finite flat R-group scheme. Then G is étale if and only if
I = I2.

Proposition 3.8. Every constant group scheme is étale

Proof. If A =
∏

m∈M R, then I =
∏

m∈idM
R, so that I = I2.

Corollary 3.9. Let R = k = k be a field of characteristic p. Then Z/pZ is the unique finite étale k-
group scheme of order p. In particular, Z/pZ, µp, αp are mutually non-isomorphic as finite flat groups
of order p.

Proposition 3.10. Let G = Spec(A) be a finite flat R-group scheme. Then G is étale if and only if
the image of the unit section is open. Moreover, if the order of G is invertible in R, then G is étale.

Proof. We have ϵ : Spec(R) → Spec(A). The image of the unit section is Spec(A/I) which is open if
and only if I = I2.
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Proposition 3.11. Let G = Spec(A) be a finite flat R-group scheme. If the order G is invertible in
R, then G is étale.

Corollary 3.12. Every finite flat group scheme over a field of characteristic 0 is étale.

Proof of proposition 3.11. Let n be the order of G. We claim that [n]G induces multiplication by n on
I/I2. We have the diagrams

which corresponds to

For all x ∈ I, ϵ⊗ ϵ(µ(x)) = 0.

Since A ∼= R⊕ I, we have that

A⊗A ∼= R⊗R⊕R⊗ I ⊕ I ⊗R⊕ I ⊗ I,

so
µ(x) = a⊗ 1 + 1⊗ b+ I ⊗ I

for a, b ∈ I. For x = a = b, we get

µ(x) = 1⊗ x+ x⊗ 1 + I ⊗ I

for all x ∈ I. Hence µ acts as 1 ⊗ x + x ⊗ 1 on I/I2. By induction, the assertion follows (indeed,
[n] = m ◦ ([n− 1], id) and we can run a similar argument).

We know that [n] kills G by Serre’s Theorem (Recall in the remark). Hence [n] factors as follows:

[n] : G → R
e−→ G.

This gives
ΩA/R → ΩR/R = 0 → ΩA/R,

so the induced map on ΩA/R is 0. Thus [n]G induces the zero map on

ΩA/R ⊗A A/I ∼= I/I2.

As n is invertible, multiplication by n on I/I2 should be an isomorphism.

Recall Serre’s theorem:

Theorem 3.13 (Serre). Let G be a finite flat R-group scheme of order n. Then [n]G kills G, i.e. [n]G
factors through the unit section of G.

4 The connected étale sequence

Let R be a Henselian local ring with residue field k.

Lemma 4.1. An R-group G is étale if and only if Gk is étale.

Proof. Étaleness is a fiberwise property.

7



Lemma 4.2. Let T = Spec(B) be a finite scheme over R. The following are equivalent

1. T is connected,

2. B is a henselian local finite R-algebra,

3. Γk acts transitively on T (k).

Proof. Clearly, (2) implies (1), because local implies connected. For (1) implies (2), suppose B =
∏

Bi

for henselian local finite R-algebras. Then Spec(Bi) is a connected component of Spec(B). To show
that (1) is equivalent to (3), let ki be the residue field of Bi. Then

T (k) = HomR-alg(B, k) = ⨿Homk(ki, k),

and Hom(ki, k) is a Γk-orbit.

Proposition 4.3. Let G = Spec(A) and G0 be a connected component of the unit section. Then
G0(k) = 0.

Proof. Let G0 = Spec(A0). Then A0 is a henselian local finite R-algebra. We get a surjective homo-
morphism A0 → R. The residue field of A0 is k. Then G0(k) = Homk(k, k) = 0.

Theorem 4.4 (Connected–étale sequence). Let G = Spec(A) be a finite-flat R-group scheme. Then
G0 is a closed subgroup of G Gét = G/G0 is a finite étale group over R. We have a short exact sequence

0 → G0 → G → Gét → 0.

Proof. We have that G0 ×G0 is connected, since

(G0 ×G0)(k) = G0(k)×G0(k) = 0.

We hence have that m(G0 ×G0) ⊆ G0 and ι(G0) ⊆ G0, so G0 is a closed subgroup. The unit section
of Gét is G0/G0 which is open, since G0 is open in G.

Corollary 4.5. A finite flat group scheme G is connected if and only G(k) = 0.

Corollary 4.6. A finite flat group scheme G is étale if and only if G0 = 0.

Corollary 4.7. If f : G → H is a group homomorphism with H is étale, then f uniquely factors
through Gét.

Proof. We have that f(G0) ⊆ H0 = 0, so we get the result using the universal property of Gét.

Proposition 4.8. Let R = k = k be a field. Then the connected–étale sequence splits. (This is also
true if R = k is a perfect field.)

Proof. We want to show that there is a section of G ↠ Gét. Consider

Gred = Spec(A/n)

where n is the nilradical of A. We claim that Gred is a subgroup of G. Since a product of reduces
schemes is reduced, Gred ×Gred is reduced. Hence

m(Gred ×Gred) ⊆ Gred, ι(Gred) ⊆ Gred.

Moreover, Gred is étale because it is finite and reduced over k.
It suffices to show that the map G ↠ Gét induces Gred ∼= Gét. Since k is reduced, Gred(k) = G(k) and
we also know that G(k) = Gét(k).

Example 4.9. Consider an elliptic curve E over Fp. We have a connected–étale sequence for the
p-torsion:

0 → E[p]0 → E[p] → E[p]ét → 0.

We know that E[p](Fp) has order 1 or p. Hence E[p]ét(Fp) has order p if E is ordinary of 1 if E is
supersingular. Assume E is ordinary. Hence E[p] ét is étale of order p. By corollary 3.9, we have

E[p]ét ∼= Z/pZ.
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Moreover,
(E[p]ét)∨ ∼= (Z/pZ)∨ ∼= µp ↪→ E[p]∨ = E∨[p] ∼= E[p].

Since µp is connected, µp ↪→ E[p]0, so µp
∼= E[p]0. Hence the connected-étale sequence is

0 → µp → E[p] → Z/pZ → 0.

By proposition 4.8,
E[p] ∼= µp × Z/pZ.

Remark 4.10. If E is supersingular, we know that E[p]ét is trivial. Then E[p] is self-dual and we
have a short exact sequence:

0 → αp → E[p] → αp → 0.
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