p-adic Hodge Theory (Spring 2023): Week 3

Xiaorun Wu (xiaorunw@math.columbia.edu)

February 15, 2023

This week: Foundations of *p*-adic Hodge Theory

The goal of the next three weeks is to discuss:

- 1. finite flat group schemes,
- 2. *p*-divisible groups.

In particular, we will try to cover the main results of Tate's p-divisible groups [Tat67].

1 Finite flat group schemes: Basic definition and properties

The main reference for this chapter is Tate's finite flat group schemes [Tat97].

Definition 1.1. Let S be a base scheme. An S-scheme G is a group scheme if there are maps

1. $m: G \times_S G \to G$ multiplication,

2. $e: S \rightarrow G$ unit section,

3. $i: G \rightarrow G$ inverse.

satisfying the following axioms:

1. associativity:

$$\begin{array}{ccc} G \times G \times G \xrightarrow{(id,m)} G \times G \\ & & \downarrow^{(m,id)} & \downarrow^m \\ G \times G \xrightarrow{m} G \end{array}$$

2. identity axiom:

$$G \times_S S \cong G \xrightarrow{id} G$$

and similarly for $S \times_S G \cong G$,

3. inverse:

$$\begin{array}{ccc} G \xrightarrow{(id,i)} & G \times G \\ \downarrow & & \downarrow^m \\ S \xrightarrow{e} & G \end{array}$$

Lemma 1.2. Let G be an S-scheme. It is a group scheme if and only if G(T) is a group functorial in T for all T/S.

Proof: Yoneda's lemma.

Definition 1.3. Let G, H be group schemes over S. A map $f : G \to H$ of S-schemes is a homomorphism if $G(T) \to H(T)$ is a group homomorphism for all T/S.

We define $\ker(f)$ to be an S-group scheme such that

$$\ker(f)(T) = \ker(G(T) \to H(T)).$$

Equivalently, $\ker(f)$ is the fiber of the unit section.

Example 1.4. The multiplication by $n \text{ map } [n]_G : G \to G$ is defined by $g \mapsto g^n$.

Assume $S = \operatorname{Spec}(R)$.

Definition 1.5. Then G = Spec(A) is an *R*-group scheme if it has

1. $\mu: A \to A \otimes_R A$ comultiplication,

2. $\epsilon : A \rightarrow R$ counit,

3. $\iota: A \to A$ coinverse

that correspond to multiplication, unit section, and inverse.

Example 1.6. 1. The multiplicative group over R is

$$\mathbb{G}_m = \operatorname{Spec}(R[t, \frac{1}{t}])$$

Then $\mathbb{G}_m(B) = B^{\times}$ with multiplication for any R-algebra B. Then

$$\mu(t) = t \otimes t, \epsilon(t) = 1, \iota(t) = t^{-1}$$

2. The additive group over R is

$$\mathbb{G}_a = \operatorname{Spec}(R[t])$$

Then $\mathbb{G}_a(B) = B$ with addition for any R-algebra B. Then

$$\mu(t) = 1 \otimes t + t \otimes 1, \epsilon(t) = 0, \iota(t) = -t.$$

3. The nth roots of unity over R is

$$\mu(n) = \operatorname{Spec}(R[t]/(t^n - 1))$$

under multiplication. The functions μ, ϵ, ι are all as in 1.

4. If R has characteristic p, we can define

$$\alpha_p = \operatorname{Spec}(R[t]/t^p)$$

Then $\alpha_p(B) = \{b \in B | b^p = 0\}$ with addition for any *R*-algebra *B*. The functions μ, ϵ, ι are all as in (2).

5. Let \mathcal{A} be an abelian scheme over R. Then

$$\mathcal{A}[n] = \ker([n]_{\mathcal{A}})$$

is an affine group scheme over R. This is because $[n]_{\mathcal{A}}$ is a finite morphism.

6. Let M be a finite abstract group. We can associate to it the constant group scheme M defined by

$$\underline{M} = \coprod_{m \in M} \operatorname{Spec}(R) \cong \operatorname{Spec}\left(\prod_{m \in M} R\right).$$

Writing $A = \prod_{m \in M} R$, note that

 $A \cong \{R - valued functions on M\}.$

For any R-algebra B, we have that

 $\underline{M}(B) = \{ locally \ constant \ function \ \operatorname{Spec}(B) \to M \}.$

with the group structure induced by M. To describe μ , note that

 $A \otimes_R A = \{R - valued functions on M \times M\}.$

We have that

$$\mu(f)(m,m') = f(mm')$$

$$\epsilon(f) = f(1_M)$$

$$\iota(f)(m) = f(m^{-1}).$$

Assumption. From now on, R is a Noetherian local ring, \mathfrak{m} is the maximal ideal of R, k is the residue field. The assumption R local is just for simplicity.

Definition 1.7. Let G = Spec(A) be an R-group scheme. It is a (commutative) finite flat group scheme of order n if

- 1. A is a locally free R-module of rank n, A is a locally free R-module of rank n,
- 2. G is commutative, in the sense that:

Remark 1.8. (1) implies that $G \to \operatorname{Spec}(R)$ is finite and flat. (2) implies that G(T) is commutative for all T over $S = \operatorname{Spec}(R)$. Note that G(T) may not be of order n; for example, if $T = \operatorname{Spec}(B)$ if B is highly disconnected.

Example 1.9. 1. The group scheme μ_n is finite flat of order n.

- 2. If R has characteristic p, α_p is a finite flat R-group scheme of order p.
- 3. Let \mathcal{A} be an abelian scheme of dimension g over R. Then $\mathcal{A}[n]$ is a finite flat group scheme of order n^{2g} .

We will assume two theorems in this section without proof.

Theorem 1.10 (Grothendieck). Suppose G is a finite flat R-group scheme of order m and $H \subseteq G$ is a closed finite flat R-subgroup scheme of order n. Then the quotient G/H exists as a finite flat R-group scheme of order m/n.

As a result, we have a short exact sequence

$$0 \to H \to G \to G/H \to 0$$

of R-group schemes.

Theorem 1.11 (Serre). Let G be a finite flat R-group scheme of order n. Then $[n]_G$ kills G, i.e. $[n]_G$ factors through the unit section of G.

Remark 1.12. This is unknown for noncommutative finite flat group schemes.

Theorem 1.13. Suppose G is as above. Then $G_B = G \times_R B$ for any R-algebra B is a finite-flat B-group scheme.

Proof. If G = Spec(A) with μ, ϵ, ι , then $G_B = \text{Spec}(A_B)$ with $\mu \otimes 1, \epsilon \otimes 1, \iota \otimes 1$.

2 Cartier duality

Definition 2.1. Let G be as above. The Cartier dual G^{\vee} of G is

$$G^{\vee}(B) = \operatorname{Hom}_{B-group}(G_B, (\mathbb{G}_m)_B)$$

with group structure induced by $(\mathbb{G}_m)_B$.

Using this definition, it is hard to see that G^{\vee} is a finite flat group scheme. We will describe it differently soon which will make this apparent.

Remark 2.2. We could have defined $G^{\vee} = \text{Hom}(G, \mathbb{G}_m)$, where the sheaf Hom is on the big fppf site.

Lemma 2.3. If $[n]_G$ kills G, then

$$G^{\vee}(B) = \operatorname{Hom}_{B-group}(G_B, (\mu_n)_B).$$

Proof. Recall that $\mu_n = \ker([n]_{\mathbb{G}_m})$.

Theorem 2.4 (Cartier duality). Let G = Spec(A) be an *R*-group scheme of order *n* with μ, ϵ, ι as comultiplication, counit, coinverse. Define

$$\begin{split} m_A: A\otimes_R A &\to A \quad right \ multiplication, \\ p: R &\to A \quad structure \ morphism, \\ A^{\vee} &= \operatorname{Hom}_{R-mod}(A,R). \end{split}$$

Then:

- 1. the maps μ^{\vee} and ϵ^{\vee} given an R-algebra structure on A^{\vee} ,
- 2. $G^{\vee} \cong \operatorname{Spec}(A^{\vee})$ with $m_A^{\vee}, p^{\vee}, \iota^{\vee}$ as comultiplication, count, coinverse,
- 3. G^{\vee} is a finite flat R-group scheme of order n,
- 4. $(G^{\vee})^{\vee} \cong G$ canonically.

Proof. Part (1) is straightforward. Parts (3) and (4) are consequences of (2). It suffices to prove (2) but we will do this next time. \Box

Example 2.5. *1.* We have that $\mu_n^{\vee} \cong \mathbb{Z}/n\mathbb{Z}$.

2. We have that $\alpha_p^{\vee} \cong \alpha_p$.

As a consequence, we have the following result.

Proposition 2.6. Suppose R = k is a field. Let $f : A \to B$ be an isogeny between abelian varieties over k. Then

$$\ker(f)^{\vee} \cong \ker(f^{\vee}).$$

We shall omit the proof here (but for reference see Serin Hong's notes).

Corollary 2.7. Let R = k be a field. Then $A[n]^{\vee} \cong A6 \vee [n]$. This gives

$$A[n] \times A^{\vee}[n] \mapsto \mu_N$$

called the Weil pairing.

Later, we will use a pairing

$$T_p(A) \times T_p(A^{\vee}) \to \mu_{p^{\infty}} \cong \mathbb{Z}_p(1)$$

obtained from the above corollary.

Proof of Cartier duality theorem 2.4. Let G = Spec(A) and μ, ϵ, ι be the comultiplication, counit, and coinverse.

Let $p: R \to A$ be the structure morphism, $m_A: A \otimes_R A \to A$ be the right multiplication. Consider

$$A^{\vee} = \operatorname{Hom}_R(A, R)$$

with R-algebra structure given by μ^{\vee} and ϵ^{\vee} . Consider

$$G^{\nabla} = \operatorname{Spec}(A^{\vee})$$

with $m_A^{\vee}, p^{\vee}, \iota^{\vee}$ as comultiplication, counit, and coninverse. We want to show that

$$G^{\vee}(B) \cong G^{\nabla}(B)$$

for all R-algebra B. We have that:

$$\begin{aligned} G^{\vee}(B) &\cong \operatorname{Hom}_{\operatorname{grp}}(G_B, (\mathbb{G}_m)_B) \\ &= \left\{ f \in \operatorname{Hom}_{B\operatorname{-alg}}(B[t, t^{-1}], A_B) \middle| \begin{array}{c} {}^{\mu_B(f(t)) = f(t) \otimes f(t),} \\ {}^{\epsilon_B(f(t)) = 1,} \\ {}^{\iota_B(f(t)) = f(t)^{-1}} \end{array} \right\} \\ &= \left\{ u \in A_B^{\times} \middle| \begin{array}{c} {}^{\mu(u) = u \otimes u,} \\ {}^{\epsilon(u) = 1,} \\ {}^{\iota(u) = u^{-1}} \end{array} \right\} \\ &= \left\{ u \in A_B^{\times} \middle| \begin{array}{c} \mu(u) = u \otimes u \right\}, \end{aligned}$$
 via $f \mapsto f(t)$

where the last equality follows from

$$(id_B \otimes \epsilon_B) \circ \mu_B = id_B,$$

 $(id_B \otimes \iota) \circ \mu_B = p_B \circ \epsilon_B.$

Now, the right hand side of equation 2 is

$$\begin{aligned} G^{\nabla}(B) &= \operatorname{Hom}_{R\operatorname{-alg}}(A^{\vee}, B) \\ &= \operatorname{Hom}_{B\operatorname{-alg}}(A^{\vee} \otimes B, B) \\ &= \{f \in \operatorname{Hom}_{B\operatorname{-mod}}(B, A_B) \mid \text{compatible with } m_B^{\vee}, p_B^{\vee}, \mu_B, \epsilon_B\} \\ &= \{u \in A_B^{\times} \mid \mu_B(u) = u \otimes u, \ \epsilon_B(u) = 1\} \\ &= \{u \in A_B^{\times} \mid \mu(u) = u \otimes u\}. \end{aligned}$$

This completes the proof if we check that the isomorphism respects the group structure. **Lemma 2.8.** Suppose $f : H \hookrightarrow G$ is a closed embedding of finite flat R-groups. Then

$$\ker(f)^{\vee} \cong (G/H)^{\vee}.$$

Proof. We have that

$$\ker(f)^{\vee}(B) = \ker(\operatorname{Hom}(G_B, \mathbb{G}_{m,B}) \xrightarrow{f} \operatorname{Hom}(H_B, \mathbb{G}_{m,B}))$$
$$= \operatorname{Hom}((G/H)_B, \mathbb{G}_{m,B})$$
$$= (G/H)^{\vee}(B),$$

as required.

Proposition 2.9. Taking the Cartier dual is an exact functor.

Proof. We want to show that if

$$0 \to G' \xrightarrow{f} G \xrightarrow{g} G'' \to 0,$$

then

$$0 \to (G'')^{\vee} \xrightarrow{g^{\vee}} G^{\vee} \xrightarrow{f^{\vee}} (G')^{\vee} \to 0$$

is exact. Injectivity of g^\vee is easy to check, since $\ker(f^\vee)\cong (G'')^\vee.$

To check that f^{\vee} is surjective, note that $f^{\vee}: G^{\vee} \to (G')^{\vee}$ induces

$$G^{\vee}/(G'')^{\vee} \to (G')^{\vee}.$$

Its dual is

$$(G')^{\vee\vee} \to (G^\vee/(G'')^\vee)^\vee \cong \ker(g^{\vee\vee}) = \ker(g) = G'$$

which is an isomorphism.

3 Finite étale group schemes

Proposition 3.1. For R is Henselian, we have that:

 $\{finite \ ext{ finite abelian groups with a continuous } \Gamma_K ext{-action}\}$

$$G \mapsto G(\overline{k}).$$

Proof. Consider \overline{m} : Spec $(\overline{k}) \to R$, a geometric point. Then

$$\pi_1(\operatorname{Spec}(R), \overline{m}) \cong \Gamma_k.$$

Hence

{finite étale group over R} \leftrightarrow {finite sets with a continuous Γ_K -action}

Passing to group objects gives the result.

Remark 3.2. 1. This bijection is compatible with the order on each side.

2. If $k = \overline{k}$, we have that $\Gamma_k = 1$.

Definition 3.3. Let G = Spec(A). Then augmentation ideal is $I = \text{ker}(\epsilon)$.

Lemma 3.4. As *R*-modules, $A \cong R \oplus I$.

Proof. The structure morphism $R \to A$ splits the short exact sequence:

$$0 \to I \to A \xrightarrow{\epsilon} R \to 0,$$

giving the desired isomorphism.

Proposition 3.5. Let G = Spec(A) and I be the augmentation ideal. Then

$$\Omega_{A/R} \cong I/I^2 \otimes_R A,$$
$$I/I^2 \cong \Omega_{A/R} \otimes_A A/I.$$

Remark 3.6. The multiplication on G defines an action on $\Omega_{A/R}$. The invariant forms under the G-action are determined by the values along the unit section. Any other form is an invariant form times a form on A.

Proof. We have the commutative diagram:

which corresponds to the commutative diagram

$$A \otimes_R A \xleftarrow{\cong} A \otimes_R A$$

$$x \otimes y \mapsto xy$$

$$A \xrightarrow{\times} x \otimes y \mapsto x \epsilon(y)$$

Let J be the kernel of the left map. Then $\Omega_{A/R} = J/J^2$ by definition. The kernel of the right hand side map is $J = A \otimes_R I$ since

$$A \otimes_R A \cong (A \otimes_R R) \oplus (A \otimes_R I)$$

and $I = \ker(\epsilon)$. Hence

$$J^2 = (A \otimes_R I)^2 = A \otimes_R I^2,$$

and so

$$J/J^2 = (A \otimes I)/(A \otimes I^2) \cong A \otimes_R I/I^2$$

showing that

$$\Omega_{A/R} \otimes_A A/I = (I/I^2 \otimes_R A) \otimes A/I = (I/I^2) \otimes_R A/I \cong I/I^2$$

This gives the result.

Corollary 3.7. Let G = Spec(A) be a finite flat R-group scheme. Then G is étale if and only if $I = I^2$.

Proposition 3.8. Every constant group scheme is étale

Proof. If
$$A = \prod_{m \in M} R$$
, then $I = \prod_{m \in id_M} R$, so that $I = I^2$.

Corollary 3.9. Let $R = k = \overline{k}$ be a field of characteristic p. Then $\mathbb{Z}/p\mathbb{Z}$ is the unique finite étale k-group scheme of order p. In particular, $\mathbb{Z}/p\mathbb{Z}, \mu_p, \alpha_p$ are mutually non-isomorphic as finite flat groups of order p.

Proposition 3.10. Let G = Spec(A) be a finite flat *R*-group scheme. Then *G* is étale if and only if the image of the unit section is open. Moreover, if the order of *G* is invertible in *R*, then *G* is étale.

Proof. We have $\epsilon : \operatorname{Spec}(R) \to \operatorname{Spec}(A)$. The image of the unit section is $\operatorname{Spec}(A/I)$ which is open if and only if $I = I^2$.

Proposition 3.11. Let G = Spec(A) be a finite flat *R*-group scheme. If the order *G* is invertible in *R*, then *G* is étale.

Corollary 3.12. Every finite flat group scheme over a field of characteristic 0 is étale.

Proof of proposition 3.11. Let n be the order of G. We claim that $[n]_G$ induces multiplication by n on I/I^2 . We have the diagrams

which corresponds to

$$\operatorname{Spec}(R) \xrightarrow{e} G \xrightarrow{\operatorname{id}} G \xrightarrow{\operatorname{id}} G$$

$$\downarrow^{(e,e)} \xrightarrow{m} \xrightarrow{(\operatorname{id},e)} \downarrow \downarrow^{(e,\operatorname{id})} \xrightarrow{m} G$$

$$G \times G \xrightarrow{G} G \times G$$

For all $x \in I$, $\epsilon \otimes \epsilon(\mu(x)) = 0$.

Since $A \cong R \oplus I$, we have that

$$A \otimes A \cong R \otimes R \oplus R \otimes I \oplus I \otimes R \oplus I \otimes I,$$

 \mathbf{SO}

$$\mu(x) = a \otimes 1 + 1 \otimes b + I \otimes B$$

for $a, b \in I$. For x = a = b, we get

$$\mu(x) = 1 \otimes x + x \otimes 1 + I \otimes I$$

for all $x \in I$. Hence μ acts as $1 \otimes x + x \otimes 1$ on I/I^2 . By induction, the assertion follows (indeed, $[n] = m \circ ([n-1], id)$ and we can run a similar argument).

We know that [n] kills G by Serre's Theorem (Recall in the remark). Hence [n] factors as follows:

$$[n]: G \to R \xrightarrow{e} G.$$

This gives

$$\Omega_{A/R} \to \Omega_{R/R} = 0 \to \Omega_{A/R}$$

so the induced map on $\Omega_{A/R}$ is 0. Thus $[n]_G$ induces the zero map on

$$\Omega_{A/R} \otimes_A A/I \cong I/I^2.$$

As n is invertible, multiplication by n on I/I^2 should be an isomorphism.

Recall Serre's theorem:

Theorem 3.13 (Serre). Let G be a finite flat R-group scheme of order n. Then $[n]_G$ kills G, i.e. $[n]_G$ factors through the unit section of G.

4 The connected étale sequence

Let R be a Henselian local ring with residue field k.

Lemma 4.1. An *R*-group *G* is étale if and only if G_k is étale.

Proof. Étaleness is a fiberwise property.

Lemma 4.2. Let T = Spec(B) be a finite scheme over R. The following are equivalent

- 1. T is connected,
- 2. B is a henselian local finite R-algebra,
- 3. Γ_k acts transitively on $T(\overline{k})$.

Proof. Clearly, (2) implies (1), because local implies connected. For (1) implies (2), suppose $B = \prod B_i$ for henselian local finite *R*-algebras. Then $\text{Spec}(B_i)$ is a connected component of Spec(B). To show that (1) is equivalent to (3), let k_i be the residue field of B_i . Then

$$T(\overline{k}) = \operatorname{Hom}_{R-\operatorname{alg}}(B, \overline{k}) = \amalg \operatorname{Hom}_k(k_i, \overline{k}),$$

and $\operatorname{Hom}(k_i, \overline{k})$ is a Γ_k -orbit.

Proposition 4.3. Let G = Spec(A) and G^0 be a connected component of the unit section. Then $G^0(\overline{k}) = 0$.

Proof. Let $G^0 = \text{Spec}(A^0)$. Then A^0 is a henselian local finite *R*-algebra. We get a surjective homomorphism $A^0 \to R$. The residue field of A^0 is *k*. Then $G^0(\overline{k}) = \text{Hom}_k(k, \overline{k}) = 0$.

Theorem 4.4 (Connected-étale sequence). Let G = Spec(A) be a finite-flat R-group scheme. Then G^0 is a closed subgroup of $G \ G^{\acute{e}t} = G/G^0$ is a finite étale group over R. We have a short exact sequence

 $0 \to G^0 \to G \to G^{\acute{e}t} \to 0.$

Proof. We have that $G^0 \times G^0$ is connected, since

$$(G^0 \times G^0)(\overline{k}) = G^0(\overline{k}) \times G^0(\overline{k}) = 0.$$

We hence have that $m(G^0 \times G^0) \subseteq G^0$ and $\iota(G^0) \subseteq G^0$, so G^0 is a closed subgroup. The unit section of $G^{\text{ét}}$ is G^0/G^0 which is open, since G^0 is open in G.

Corollary 4.5. A finite flat group scheme G is connected if and only $G(\overline{k}) = 0$.

Corollary 4.6. A finite flat group scheme G is étale if and only if $G^0 = 0$.

Corollary 4.7. If $f: G \to H$ is a group homomorphism with H is étale, then f uniquely factors through $G^{\acute{et}}$.

Proof. We have that $f(G^0) \subseteq H^0 = 0$, so we get the result using the universal property of $G^{\text{ét}}$. \Box

Proposition 4.8. Let $R = k = \overline{k}$ be a field. Then the connected-étale sequence splits. (This is also true if R = k is a perfect field.)

Proof. We want to show that there is a section of $G \twoheadrightarrow G^{\text{\'et}}$. Consider

$$G^{\mathrm{red}} = \mathrm{Spec}(A/\mathfrak{n})$$

where n is the nilradical of A. We claim that G^{red} is a subgroup of G. Since a product of reduces schemes is reduced, $G^{red} \times G^{red}$ is reduced. Hence

$$m(G^{red} \times G^{red}) \subseteq G^{red}, \quad \iota(G^{red}) \subseteq G^{red}.$$

Moreover, G^{red} is étale because it is finite and reduced over k. It suffices to show that the map $G \to G^{\text{ét}}$ induces $G^{red} \cong G^{\text{ét}}$. Since k is reduced, $G^{red}(k) = G(k)$ and we also know that $G(k) = G^{\text{ét}}(k)$.

Example 4.9. Consider an elliptic curve E over $\overline{\mathbb{F}}_p$. We have a connected-étale sequence for the *p*-torsion:

$$0 \to E[p]^0 \to E[p] \to E[p]^{\acute{e}t} \to 0.$$

We know that $E[p](\overline{\mathbb{F}}_p)$ has order 1 or p. Hence $E[p]^{\acute{e}t}(\overline{\mathbb{F}}_p)$ has order p if E is ordinary of 1 if E is supersingular. Assume E is ordinary. Hence E[p] ét is étale of order p. By corollary 3.9, we have

$$E[p]^{\acute{e}t} \cong \mathbb{Z}/p\mathbb{Z}.$$

Moreover,

$$(E[p]^{\acute{e}t})^{\vee} \cong (\underline{\mathbb{Z}/p\mathbb{Z}})^{\vee} \cong \mu_p \hookrightarrow E[p]^{\vee} = E^{\vee}[p] \cong E[p].$$

Since μ_p is connected, $\mu_p \hookrightarrow E[p]^0$, so $\mu_p \cong E[p]^0$. Hence the connected-étale sequence is

 $0 \to \mu_p \to E[p] \to \underline{\mathbb{Z}/p\mathbb{Z}} \to 0.$

By proposition 4.8,

$$E[p] \cong \mu_p \times \underline{\mathbb{Z}/p\mathbb{Z}}.$$

Remark 4.10. If E is supersingular, we know that $E[p]^{\acute{e}t}$ is trivial. Then E[p] is self-dual and we have a short exact sequence:

$$0 \to \alpha_p \to E[p] \to \alpha_p \to 0.$$