p-adic Hodge Theory (Spring 2023): Week 1

Xiaorun Wu (xiaorunw@math.columbia.edu)

January 25, 2023

Introduction: A first glimpse of p-adic Hodge Theory

1 The arithmetic perspective

We start with an arithmetic perspective. The goal is to study p-adic representations, i.e. continuous representations

$$
\Gamma_{K}=\operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{n}\left(\mathbb{Q}_{p}\right),
$$

where K is a p-adic field. This is quite different from studying ℓ-adic representations, i.e. continuous representations

$$
\Gamma_{K}=\operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{n}\left(\mathbb{Q}_{\ell}\right), \quad \text { para } \ell \neq p .
$$

Indeed, the topologies in this case are not quite compatible, so there are not as many representations as in the $\ell=p$ case.
To get started, let us consider a motivating example: Let E be an elliptic curve over \mathbb{Q}_{p} with good reduction. There is an elliptic scheme \mathcal{E} over \mathbb{Z}_{p} such that $\mathcal{E}_{\mathbb{Q}_{p}}=E$. For a prime ℓ (which may or may not be equal to p), we define the Tate module

$$
T_{\ell}(E)=\lim _{\rightleftarrows} E\left[\ell^{n}\right]\left(\overline{\mathbb{Q}_{p}}\right) \cong \mathbb{Z}_{\ell}^{2},
$$

which has a continuous $\Gamma_{\mathbb{Q}_{p}}$-action. Tensoring with \mathbb{Q}_{ℓ}, we get a continuous $\Gamma_{\mathbb{Q}_{p}}$-representation

$$
V_{\ell}(E)=T_{\ell}(E) \otimes \mathbb{Q}_{\ell} \cong \mathbb{Q}_{\ell}^{2} .
$$

These representations see a lot of information about the elliptic curves. For example, we have the following fact.

Fact 1.1. Given two elliptic curves E_{1}, E_{2} over \mathbb{Q}_{p}, the natural maps

$$
\begin{aligned}
& \operatorname{Hom}\left(E_{1}, E_{2}\right) \otimes \mathbb{Z}_{\ell} \hookrightarrow \operatorname{Hom}_{\Gamma_{\mathbb{Q}_{p}}}\left(T_{\ell}\left(E_{1}\right), T_{\ell}\left(E_{2}\right)\right) \\
& \operatorname{Hom}\left(E_{1}, E_{2}\right) \otimes \mathbb{Q}_{\ell} \hookrightarrow \operatorname{Hom}_{\Gamma_{\mathbb{Q}_{p}}}\left(V_{\ell}\left(E_{1}\right), V_{\ell}\left(E_{2}\right)\right)
\end{aligned}
$$

are injective.
How to study $T_{\ell}(E)$? For $\ell \neq p$, we can consider the special fiber $\mathcal{E}_{\mathbb{F}_{p}}$, en elliptic curve over \mathbb{F}_{p}. The Tate module $T_{\ell}\left(\mathcal{E}_{\mathbb{F}_{p}}\right)$ is a continuous $\Gamma_{\mathbb{F}_{p}}$-representation. To describe the action, it is enough to describe the action of Frobenius (a topological generator for $\Gamma_{\mathbb{F}_{p}}$): it acts on $T_{\ell}\left(\mathcal{E}_{\mathbb{F}_{p}}\right)$ with characteristic polynomial $x^{2}-a x+p$ where $a=p+1-\#\left(\mathcal{E}_{\mathbb{F}_{p}}\left(\mathbb{F}_{p}\right)\right)$.

The punchline is that the reduction map

$$
\begin{equation*}
T_{\ell}(E) \rightarrow T_{\ell}\left(\mathcal{E}_{\mathbb{F}_{p}}\right) \tag{1}
\end{equation*}
$$

is an isomorphism of $\Gamma_{\mathbb{Q}_{p}}$-representations, where the right hand side is a $\Gamma_{\mathbb{Q}_{p}}$ representation via the surjection $\Gamma_{\mathbb{Q}_{p}} \rightarrow \Gamma_{\mathbb{F}_{p}} \cong \operatorname{Gal}\left(\mathbb{Q}_{p}^{u n} / \mathbb{Q}_{p}\right)$. Therefore:

1. The action of $\Gamma_{Q_{p}}$ factors throught the map $\Gamma_{\mathbb{Q}_{p}} \rightarrow \Gamma_{\mathbb{F}_{p}}$.
2. Frobenius of $\Gamma_{\mathbb{F}_{p}}$ acts with acharacteristic polynomial $x^{2}-a x+p$.

The condition (1) is equivalent to the representation of $\Gamma_{\mathbb{Q}_{p}}$ being unramified.
Theorem 1.2 (Néron-Ogg-Shafarevich). An elliptic curve E / \mathbb{Q}_{p} has good reduction if and only if $T_{\ell}(E)$ is unramified for all $\ell \neq p$.

So what about $\ell=p$? Now we see that the key isomorphism (1) never holds. In fact,

$$
T_{p}\left(\mathcal{E}_{\mathbb{F}_{p}}\right) \cong 0 \text { or } \mathbb{Z}_{p},
$$

so it has the wrong rank. Let

$$
I_{\mathbb{Q}_{p}}=\operatorname{ker}\left(\Gamma_{\mathbb{Q}_{p}} \rightarrow \Gamma_{\mathbb{F}_{p}}\right)
$$

to be the inertia group. Then there is a non-trivial constribution from $I_{\mathbb{Q}_{p}}$. So how? The solution to this problem was found by Grothendieck and Tate. We define

$$
E\left[p^{\infty}\right]=\underset{\longrightarrow}{\lim } E\left[p^{n}\right],
$$

the p-divisible group of E. Note here it is a limit of schemes, not of the point of the schemes.
Fact 1.3. We can recover the action of $\Gamma_{\mathbb{Q}_{p}}$ on $T_{p}(E)$ from $E\left[p^{\infty}\right]$.
The schemes $\mathcal{E}\left[p^{\infty}\right]$ and $\mathcal{E}_{\mathbb{F}_{p}}\left[p^{\infty}\right]$ are also defined. In fact, we have the maps:

Theorem 1.4 (Tate). The functor

$$
\left\{p \text {-divisible groups over } \mathbb{Z}_{p}\right\} \xrightarrow{\otimes \mathbb{Q}_{p}}\left\{p \text {-divisible groups over } \mathbb{Q}_{p}\right\}
$$

is fully faithful.
Understanding the proof of the theorem and related results will be the goal of Week 3-6.
Theorem 1.5 (Dieudonné, Fontaine). There are equivalences of categories

$$
\left\{p \text {-divisible groups over } \mathbb{F}_{p}\right\} \longleftrightarrow\left\{\text { Dieudonné modules over } \mathbb{F}_{p}\right\}
$$

$\left\{p\right.$-divisible groups over $\left.\mathbb{Z}_{p}\right\} \longleftrightarrow\left\{p\right.$-divisible groups over \mathbb{F}_{p} with an "admissible filtration" $\}$,
Definition 1.6. A Dieudonné module over \mathbb{F}_{p} means a finite free \mathbb{Z}_{p}-module M equipped with a (Frobeniussemilinear) endomorphism φ such that $p M \subset \varphi(M)$.

One should think of \mathbb{Z}_{p} here are the ring of Witt vectors of $\mathbb{F}_{p}, \mathbb{Z}_{p}=W\left(\mathbb{F}_{p}\right)$.
The following summarizes the situation:

$$
T_{p}(E) \rightarrow E\left[p^{\infty}\right] p \text {-divisible groups } \rightarrow\left\{\text { Dieudonné modules over } \mathbb{F}_{p}+\text { extra data }\right\}
$$

After inverting p, we also get

$$
V_{p}(E) \rightarrow\left\{" \text { isocrystals" over } \mathbb{F}_{p}+\text { extra data }\right\}
$$

The general themes of p-adic Hodge theory are:

1. To construct a dictionary between certain p-adic representations and certain semilinear algebraic objects.
2. Change base field to $\widehat{\mathbb{Q}_{p}^{u n}}$.

Since $\mathbb{Q}_{p}^{u n}$ is not p-adically complete any more, we need to work with $\widehat{\mathbb{Q}_{p}^{u n}}$ instead.
Many interesting properties of p-adic representatios are encoded in the action of $I_{\mathbb{Q}_{p}}$. We note that:

$$
I_{\mathbb{Q}_{p}}=I_{\mathbb{Q}_{p}^{u n}}=I_{\widehat{\mathbb{Q}_{p}^{u n}}} .
$$

Usually, base changing to $\widehat{\mathbb{Q}_{p}^{u n}}$ simplifies things.
In the above correspondence, base changing to $\widehat{\mathbb{Q}_{p}^{u n}}$ roughly corresponds to replacing \mathbb{F}_{p} by $\overline{\mathbb{F}}_{p}$.
Theorem 1.7 (Manin). The category of isocrystals over $\overline{\mathbb{F}}_{p}$ are semisimple.
Now question is: Is there a general framework or formalism that provides all these general themes in more general scope?
To properly answer this question, we need to discuss the geometric side of the story.

2 The geometric perspective

The goal here is to use p-adic representations to study the geometry of algebraic varieties X over K. We look at the cohomology of X :

- $H_{\text {ét }}$: étale cohomology
- $H_{d R}$: algebraic de Rham cohomology
- $H_{\text {cris }}$: crystalline cohomology

By definition, $H_{\text {ét }}$ is a p-adic Galois representation. The main goal is to find comparison theorems between the three cohomology theories.
In classical Hodge theory, there are many comparison theorems:

- between singular cohomology ${ }^{1}$ and Hodge cohomology,
- between singular cohomology and de Rham cohomology
valid for proper smooth varieties over \mathbb{C}.
The reason for the name p-adic Hodge theory comes from the above motivation. The main issue in finding these comparison theorems is finding the correct period ring.
The obvious answer would be to work with $\widehat{\bar{K}}$, but we will soon see that this ring is not sufficient. We first recall in more detail one of the comparison theorems from Hodge theory.

Theorem 2.1 (Hodge decomposition). Let Y be a proper smooth variety over \mathbb{C}. Then

$$
H^{n}(Y(\mathbb{C}), \mathbb{C}) \cong \bigoplus_{i+j=n} H^{i}\left(Y, \Omega_{Y}^{j}\right)
$$

Corollary 2.1.1. The Hodge number of Y are topological invariants.
Let $C_{K}=\widehat{\bar{K}}$. IT has a continuous Γ_{K}-action. The p-adic cyclotomic character is

$$
\chi: \Gamma_{K} \rightarrow \mathbb{Z}_{p}^{\times}
$$

such that for any p-power root of unity ζ,

$$
\sigma(\zeta)=\zeta^{\chi(\sigma)}
$$

Definition 2.2. We define a Tate twist as a Γ_{K}-representation $\mathbb{C}_{K}(j)$ with the underlying vector space \mathbb{C}_{K} and $\sigma \in \Gamma_{K}$ acting by $\chi^{k}(\sigma) \cdot \sigma$.

Theorem 2.3 (Hodge-Tate decomposition, Faltings). Let X be a proper smooth variety over K. Then

$$
H_{e ́ t}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} \mathbb{C}_{K} \cong \bigoplus_{i+j=n} H^{i}\left(X, \Omega_{X / K}^{j}\right) \otimes_{K} \mathbb{C}_{K}(-j)
$$

compatible with Γ_{K}-action, where

- σ acts by $\sigma \otimes \sigma$ on the left hand side
- σ acts by $1 \otimes \sigma$ on the right hand side.

Tate proved when X is an abelian variety with good reduction as a by product of the generic fiber functor theorem
Define the Hodge-Tate period ring

$$
B_{H T}=\bigoplus_{j \in \mathbb{Z}} \mathbb{C}_{K}(j)
$$

Then the Hodge-Tate decomposition in theorem 2.3 could be restated as

$$
H_{\text {ét }}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} B_{H T} \cong\left(\bigoplus_{i+j=n} H^{i}\left(X, \Omega_{X / K}^{j}\right)\right) \otimes B_{H T},
$$

Theorem 2.4 (Tate-Sen). We have that $B_{H T}^{\Gamma_{K}}=K$.

[^0]As a consequence, we see that

$$
\left(H_{\text {ét }}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} B_{H T}\right)^{\Gamma_{K}}=\bigoplus_{i+j=n} H^{i}\left(X, \Omega_{X / K}^{j}\right)
$$

Here is another result from Hodge theory. There is an isomorphism

$$
H^{n}(Y(\mathbb{C}), \mathbb{C}) \cong H_{d R}^{n}(Y / \mathbb{C})
$$

coming from the period pairing

$$
\begin{gathered}
H_{d R}^{n}(Y / \mathbb{C}) \times H_{2 d-n}(Y, \mathbb{C}) \rightarrow \mathbb{C} \\
(\omega, \Gamma) \mapsto \int_{\Gamma} \omega
\end{gathered}
$$

Now the Goal is to construct a p-adic period ring.
Fontaine constructed a p-adic period ring $B_{d R}$ such that:

1. $B_{d R}$ carries Γ_{K}-action with $B_{d R}^{\Gamma_{K}}=K$,
2. $B_{d R}$ carries a filtration with the associated graded ring $B_{H T}$.

Theorem 2.5 (Faltings). We have that

$$
H_{e ́ t}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} B_{d R} \cong H_{d R}^{n}(X / K) \otimes_{K} B_{d R}
$$

compatible with Γ_{K} actions and filtrations.
By construction, $H_{d R}^{n}(X / K)$ has a Hodge filtration such that the associated graded is

$$
\bigoplus_{i+j=n} H^{i}\left(X, \Omega_{X / K}^{j}\right)
$$

The filtration on the right hand side of Faltings' Theorem 2.5 is given by the convolution filtration

$$
F i l^{m}=\bigoplus_{a+b=m} F i l^{a} \otimes F i l^{b}
$$

Remark 1. We note that

- By passing to the associated graded in Faltings' Theorem 2.5, we recover the Hodge-Tate decomposition 2.3.
- We have that $\left(H_{\text {ét }}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} B_{d R}\right)^{\Gamma_{K}} \cong H_{d R}^{n}(X / K)$.
- We will not attempt to prove Faltings' Theorem 2.5, but we will use it as motivation.

Question: Is there a refinement of $H_{d R}$ which recovers $H_{\text {ét }}$ itself?
Answer: Yes, cristalline cohomology $H_{\text {cris }}$.
Conjecture 2.6 (Grothendieck). Let \mathcal{O}_{K} be the valuation ring of K and k be the residue field of \mathcal{O}_{K}. Let $W(k)$ be the ring of Witt vectors of k and $K_{0}=\operatorname{Frac}(W(k))$. (If $K=\mathbb{Q}_{p}$ then $K_{0}=\mathbb{Q}_{p}$, and if K is a finite extension of \mathbb{Q}_{p}, then K_{0} is the maximal unramified subextension.
There should be a (purely algebraic) fully faithful functor D on a certain category of representations such that

$$
D\left(H_{e ́ t}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right)\right)=H_{c r i s}^{n}\left(\mathcal{X}_{K} / W(k)\right) \otimes_{W(k)} K_{0}
$$

for any proper smooth X with integral model X over \mathcal{O}_{K}.
Recall that for any elliptic curve E over \mathbb{Q}_{p} with good reduction, we have seen that there is a fully faithful functor

$$
V_{p}(E) \rightsquigarrow\{\text { filtered isocrystal }\} .
$$

Now,

$$
V_{p}(E) \cong\left(H_{\hat{\text { êt }}}^{1}\left(E_{\overline{\mathbb{Q}_{p}}, \mathbb{Q}_{p}}\right)\right)
$$

and

$$
\{\text { filtered isocrystal }\} \cong H_{c r i s}^{1}\left(\mathcal{E}_{\mathbb{F}_{p}} / \mathbb{Z}_{p}\right) \otimes \mathbb{Z}_{p} \mathbb{Q}_{p}
$$

Grothendieck's conjecture 2.6 is a generalization of this. By purely algebraic we mean that there should be a way to avoid going through p-divisible groups (which are geometric).
Fontaine constructed another period ring, called $B_{\text {cris }}$ such that

1. $B_{\text {cris }}$ carries an action of Γ_{K} such that $B^{\Gamma_{K}}=K_{0}$,
2. $B_{\text {cris }}$ carries a semi-linear endomorphism φ called the Frobenius action,
3. there is a natural map $B_{\text {cris }} \otimes_{K_{0}} K \hookrightarrow B_{d R}$, inducing a filtration on $B_{\text {cris }}$.

Theorem 2.7 (Faltings). Suppose X has good reduction with integral model \mathcal{X}. Then

$$
H_{\text {ét }}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} B_{\text {cris }} \cong H_{c r i s}^{n}\left(\mathcal{X}_{k} / W(k)\right) \otimes B_{\text {cris }}
$$

compatible with Γ_{K}-action, filtration, and Frobenius action.
Remark 2. By construction, $H_{e ́ t}\left(\mathcal{X}_{k} / W(k)\right)$ carries a Frobenius action. Frobenius acts only through $B_{\text {cris }}$ on the left hand side and diagonally on the right hand side.
The isomorphism

$$
H_{\text {ét }}\left(\mathcal{X}_{k} / W(k)\right) \otimes_{W(k)} K \cong H_{d R}(X / K)
$$

gives a filtration on $H_{\text {cris }}$. We use the convolution filtration on the right hand side.
Now, taking Γ_{K}-invariants of both sides gives:

$$
\left(H_{\text {ét }}\left(X_{\bar{K}}, \mathbb{Q}_{p}\right) \otimes_{\mathbb{Q}_{p}} B_{c r i s}\right)^{\Gamma_{K}} \cong H_{c r i s}^{n}\left(\mathcal{X}_{k} / W(k)\right) \otimes_{W(k)} K_{0}
$$

There is an inverse functor so we get D, Grothendieck's mysterios functor, given by

$$
D(V)=\left(V \otimes_{\mathbb{Q}_{p}} B_{c r i s}\right)^{\Gamma_{K}}
$$

This would prove Grothendieck's conjecture 2.6 if we define the domain of this functor and prove that it is fully faithful.

3 Interplay via representation theory

Fontaine built the formalism for functors that connect the geometric and arithmetic sides. This will be the focus of week 810 .
Let B be any period ring such as $B_{H T}, B_{d R}, B_{\text {cris }}$. Then define

$$
\operatorname{Rep}_{\mathbb{Q}_{p}}\left(\Gamma_{k}\right)=\text { category of } p \text {-adic representations of } \Gamma_{K}
$$

Define $D_{B}(V)=\left(V \otimes_{\mathbb{Q}_{p}} B\right)^{\Gamma_{K}}$. A representation $V \in \operatorname{Rep}_{\mathbb{Q}_{p}}\left(\Gamma_{k}\right)$ is B-admissible if the natural maps

$$
\left(V \otimes_{\mathbb{Q}_{p}} B\right)^{\Gamma_{K}} \otimes B \rightarrow V \otimes B
$$

is an isomorphism.
Now, D_{B} defines a functor on $\operatorname{Rep}_{\mathbb{Q}_{p}}\left(\Gamma_{k}\right)$, the category of B-admissible representations. The target category reflects the structure on B.

Example 3.1. 1. If $B=B_{H T}$, the target category is the category of finite-dimensional graded vector space.
2. If $B=B_{d R}$, the target category is the category of finite-dimensional filtered vector space.
3. If $B=B_{\text {cris }}$, the target category is the category of finite-dimensional filtered vector spaces with Frobenius action

Theorem 3.2 (Fontaine). The functors $D_{B_{H T}}, D_{B_{d R}}, D_{B_{c r i s}}$ are exact and faithful. Moreover, $D_{B_{\text {cris }}}$ is fully faithful.

In particular, this proves Grothendieck's conjecture 2.6.
Next week, we will provide a gentle introduction to Fargues-Fontaine curve.

[^0]: ${ }^{1}$ One should think that singular cohomology over \mathbb{C} corresponds to étale cohomology in the p-adic setting

