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Introduction: A first glimpse of p-adic Hodge Theory

1 The arithmetic perspective

We start with an arithmetic perspective. The goal is to study p-adic representations, i.e. continuous
representations

ΓK = Gal(K/K)→ GLn(Qp),

where K is a p-adic field. This is quite different from studying ℓ-adic representations, i.e. continuous
representations

ΓK = Gal(K/K)→ GLn(Qℓ), para ℓ ̸= p.

Indeed, the topologies in this case are not quite compatible, so there are not as many representations
as in the ℓ = p case.
To get started, let us consider a motivating example: Let E be an elliptic curve over Qp with good
reduction. There is an elliptic scheme E over Zp such that EQp

= E. For a prime ℓ (which may or may
not be equal to p), we define the Tate module

Tℓ(E) = lim←−E[ℓn](Qp) ∼= Z2
ℓ ,

which has a continuous ΓQp
-action. Tensoring with Qℓ , we get a continuous ΓQp

-representation

Vℓ(E) = Tℓ(E)⊗Qℓ
∼= Q2

ℓ .

These representations see a lot of information about the elliptic curves. For example, we have the
following fact.

Fact 1.1. Given two elliptic curves E1, E2 over Qp, the natural maps

Hom(E1, E2)⊗ Zℓ ↪→ HomΓQp
(Tℓ(E1), Tℓ(E2))

Hom(E1, E2)⊗Qℓ ↪→ HomΓQp
(Vℓ(E1), Vℓ(E2))

are injective.

How to study Tℓ(E)? For ℓ ̸= p, we can consider the special fiber EFp , en elliptic curve over Fp. The
Tate module Tℓ(EFp) is a continuous ΓFp -representation. To describe the action, it is enough to de-
scribe the action of Frobenius (a topological generator for ΓFp

): it acts on Tℓ(EFp
) with characteristic

polynomial x2 − ax+ p where a = p+ 1−#(EFp
(Fp)).

The punchline is that the reduction map

Tℓ(E)→ Tℓ(EFp) (1)

is an isomorphism of ΓQp -representations, where the right hand side is a ΓQp representation via the
surjection ΓQp

↠ ΓFp
∼= Gal(Qun

p /Qp). Therefore:

1. The action of ΓQp factors throught the map ΓQp ↠ ΓFp .

2. Frobenius of ΓFp
acts with acharacteristic polynomial x2 − ax+ p.

The condition (1) is equivalent to the representation of ΓQp being unramified.

Theorem 1.2 (Néron-Ogg-Shafarevich). An elliptic curve E/Qp has good reduction if and only if
Tℓ(E) is unramified for all ℓ ̸= p.

1



So what about ℓ = p? Now we see that the key isomorphism (1) never holds. In fact,

Tp(EFp)
∼= 0 or Zp,

so it has the wrong rank. Let
IQp

= ker(ΓQp
↠ ΓFp

),

to be the inertia group. Then there is a non-trivial constribution from IQp . So how?
The solution to this problem was found by Grothendieck and Tate. We define

E[p∞] = lim−→E[pn],

the p-divisible group of E. Note here it is a limit of schemes, not of the point of the schemes.

Fact 1.3. We can recover the action of ΓQp
on Tp(E) from E[p∞].

The schemes E [p∞] and EFp
[p∞] are also defined. In fact, we have the maps:

E [p∞]

E [p∞] EFp [p
∞]

⊗Qp

⊗Fp

Theorem 1.4 (Tate). The functor

{p-divisible groups over Zp}
⊗Qp−−−→ {p-divisible groups over Qp}

is fully faithful.

Understanding the proof of the theorem and related results will be the goal of Week 3-6.

Theorem 1.5 (Dieudonné, Fontaine). There are equivalences of categories

{p-divisible groups over Fp} ←→ {Dieudonné modules over Fp} ,

{p-divisible groups over Zp} ←→ {p-divisible groups over Fp with an ”admissible filtration”} ,

Definition 1.6. A Dieudonné module over Fp means a finite free Zp-module M equipped with a
(Frobeniussemilinear) endomorphism φ such that pM ⊂ φ(M).

One should think of Zp here are the ring of Witt vectors of Fp, Zp = W (Fp).
The following summarizes the situation:

Tp(E)→ E[p∞] p-divisible groups → {Dieudonné modules over Fp + extra data} .

After inverting p, we also get

Vp(E)→ {”isocrystals” over Fp + extra data }.

The general themes of p-adic Hodge theory are:

1. To construct a dictionary between certain p-adic representations and certain semilinear algebraic
objects.

2. Change base field to Q̂un
p .

Since Qun
p is not p-adically complete any more, we need to work with Q̂un

p instead.
Many interesting properties of p-adic representatios are encoded in the action of IQp

. We note that:

IQp
= IQun

p
= IQ̂un

p
.

Usually, base changing to Q̂un
p simplifies things.

In the above correspondence, base changing to Q̂un
p roughly corresponds to replacing Fp by Fp.

Theorem 1.7 (Manin). The category of isocrystals over Fp are semisimple.

Now question is: Is there a general framework or formalism that provides all these general themes in
more general scope?
To properly answer this question, we need to discuss the geometric side of the story.
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2 The geometric perspective

The goal here is to use p-adic representations to study the geometry of algebraic varieties X over K.
We look at the cohomology of X:

• Hét: étale cohomology

• HdR: algebraic de Rham cohomology

• Hcris: crystalline cohomology

By definition, Hét is a p-adic Galois representation. The main goal is to find comparison theorems
between the three cohomology theories.
In classical Hodge theory, there are many comparison theorems:

• between singular cohomology1 and Hodge cohomology,

• between singular cohomology and de Rham cohomology

valid for proper smooth varieties over C.
The reason for the name p-adic Hodge theory comes from the above motivation. The main issue in
finding these comparison theorems is finding the correct period ring.

The obvious answer would be to work with K̂, but we will soon see that this ring is not sufficient.
We first recall in more detail one of the comparison theorems from Hodge theory.

Theorem 2.1 (Hodge decomposition). Let Y be a proper smooth variety over C. Then

Hn(Y (C),C) ∼=
⊕

i+j=n

Hi(Y,Ωj
Y ).

Corollary 2.1.1. The Hodge number of Y are topological invariants.

Let CK = K̂. IT has a continuous ΓK-action. The p-adic cyclotomic character is

χ : ΓK → Z×
p

such that for any p-power root of unity ζ,

σ(ζ) = ζχ(σ)

Definition 2.2. We define a Tate twist as a ΓK-representation CK(j) with the underlying vector space
CK and σ ∈ ΓK acting by χk(σ) · σ.

Theorem 2.3 (Hodge-Tate decomposition, Faltings). Let X be a proper smooth variety over K. Then

Hét(XK ,Qp)⊗Qp CK
∼=

⊕
i+j=n

Hi(X,Ωj
X/K)⊗K CK(−j),

compatible with ΓK-action, where

• σ acts by σ ⊗ σ on the left hand side

• σ acts by 1⊗ σ on the right hand side.

Tate proved when X is an abelian variety with good reduction as a by product of the generic fiber
functor theorem
Define the Hodge–Tate period ring

BHT =
⊕
j∈Z

CK(j).

Then the Hodge-Tate decomposition in theorem 2.3 could be restated as

Hét(XK ,Qp)⊗Qp BHT
∼=

 ⊕
i+j=n

Hi(X,Ωj
X/K)

⊗BHT ,

Theorem 2.4 (Tate-Sen). We have that BΓK

HT = K.

1One should think that singular cohomology over C corresponds to étale cohomology in the p-adic setting
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As a consequence, we see that(
Hét(XK ,Qp)⊗Qp

BHT

)ΓK
=

⊕
i+j=n

Hi(X,Ωj
X/K)

Here is another result from Hodge theory. There is an isomorphism

Hn(Y (C),C) ∼= Hn
dR(Y/C)

coming from the period pairing

Hn
dR(Y/C)×H2d−n(Y,C)→ C,

(ω,Γ) 7→
∫
Γ

ω.

Now the Goal is to construct a p-adic period ring.
Fontaine constructed a p-adic period ring BdR such that:

1. BdR carries ΓK-action with BΓK

dR = K,

2. BdR carries a filtration with the associated graded ring BHT .

Theorem 2.5 (Faltings). We have that

Hét(XK ,Qp)⊗Qp
BdR

∼= Hn
dR(X/K)⊗K BdR

compatible with ΓK actions and filtrations.

By construction, Hn
dR(X/K) has a Hodge filtration such that the associated graded is⊕

i+j=n

Hi(X,Ωj
X/K)

The filtration on the right hand side of Faltings’ Theorem 2.5 is given by the convolution filtration

Film =
⊕

a+b=m

Fila ⊗ Filb

Remark 1. We note that

• By passing to the associated graded in Faltings’ Theorem 2.5, we recover the Hodge–Tate decom-
position 2.3.

• We have that (Hét(XK ,Qp)⊗Qp
BdR)

ΓK ∼= Hn
dR(X/K).

• We will not attempt to prove Faltings’ Theorem 2.5, but we will use it as motivation.

Question: Is there a refinement of HdR which recovers Hét itself?
Answer: Yes, cristalline cohomology Hcris.

Conjecture 2.6 (Grothendieck). Let OK be the valuation ring of K and k be the residue field of OK .
Let W (k) be the ring of Witt vectors of k and K0 = Frac(W (k)). (If K = Qp then K0 = Qp, and if
K is a finite extension of Qp, then K0 is the maximal unramified subextension.
There should be a (purely algebraic) fully faithful functor D on a certain category of representations
such that

D(Hét(XK ,Qp)) = Hn
cris(XK/W (k))⊗W (k) K0

for any proper smooth X with integral model X over OK .

Recall that for any elliptic curve E over Qp with good reduction, we have seen that there is a fully
faithful functor

Vp(E)⇝ {filtered isocrystal}.
Now,

Vp(E) ∼=
(
H1

ét(EQp,Qp
)
)

and
{filtered isocrystal} ∼= H1

cris(EFp
/Zp)⊗ ZpQp.

Grothendieck’s conjecture 2.6 is a generalization of this. By purely algebraic we mean that there should
be a way to avoid going through p-divisible groups (which are geometric).
Fontaine constructed another period ring, called Bcris such that

4



1. Bcris carries an action of ΓK such that BΓK = K0,

2. Bcris carries a semi-linear endomorphism φ called the Frobenius action,

3. there is a natural map Bcris ⊗K0
K ↪→ BdR, inducing a filtration on Bcris.

Theorem 2.7 (Faltings). Suppose X has good reduction with integral model X . Then

Hét(XK ,Qp)⊗Qp
Bcris

∼= Hn
cris(Xk/W (k))⊗Bcris

compatible with ΓK-action, filtration, and Frobenius action.

Remark 2. By construction, Hét(Xk/W (k)) carries a Frobenius action. Frobenius acts only through
Bcris on the left hand side and diagonally on the right hand side.
The isomorphism

Hét(Xk/W (k))⊗W (k) K ∼= HdR(X/K)

gives a filtration on Hcris. We use the convolution filtration on the right hand side.

Now, taking ΓK-invariants of both sides gives:(
Hét(XK ,Qp)⊗Qp

Bcris

)ΓK ∼= Hn
cris(Xk/W (k))⊗W (k) K0

There is an inverse functor so we get D, Grothendieck’s mysterios functor, given by

D(V ) = (V ⊗Qp Bcris)
ΓK .

This would prove Grothendieck’s conjecture 2.6 if we define the domain of this functor and prove that
it is fully faithful.

3 Interplay via representation theory

Fontaine built the formalism for functors that connect the geometric and arithmetic sides. This will
be the focus of week 8 10.
Let B be any period ring such as BHT , BdR, Bcris. Then define

RepQp
(Γk) = category of p-adic representations of ΓK .

Define DB(V ) = (V ⊗Qp
B)ΓK . A representation V ∈ RepQp

(Γk) is B-admissible if the natural maps

(V ⊗Qp
B)ΓK ⊗B → V ⊗B

is an isomorphism.
Now, DB defines a functor on RepQp

(Γk), the category of B-admissible representations. The target
category reflects the structure on B.

Example 3.1. 1. If B = BHT , the target category is the category of finite-dimensional graded
vector space.

2. If B = BdR, the target category is the category of finite-dimensional filtered vector space.

3. If B = Bcris, the target category is the category of finite-dimensional filtered vector spaces with
Frobenius action

Theorem 3.2 (Fontaine). The functors DBHT
, DBdR

, DBcris
are exact and faithful. Moreover,

DBcris
is fully faithful.

In particular, this proves Grothendieck’s conjecture 2.6.

Next week, we will provide a gentle introduction to Fargues-Fontaine curve.
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