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This week: crystalline Representations (continued), introduction to Fargues-Fontaine
curve
A quick update from last time: This is the theorem of falitings:

Theorem 0.1 (Faltings, 1988). Suppose that X has good reduction, meaning that it has a proper
smooth model X over OK . There exists a canonical isomorphism

Hn
ét(XK ,Qp)⊗Qp

Bcris
∼= Hn

cris(XK/W (k))[1/p]⊗K0
Bcris

1 Properties of Crystalline Representations

Definition 1.1. We say that V ∈ RepQp
(ΓK) is crystalline if it is Bcris-admissible. We write

RepcrisQp
(ΓK) := RepBcris

Qp
(ΓK) for the category of crystalline p-adic ΓK-representations. In addition,

we write Dcris the functors DBcris
.

Example 1.2. 1. Tate twist Qp(n) of Qp, since dimK Dcris(Qp(n)) ≤ dimQp
Qp(n) = 1 and

Dcris(Qp(n)) = (Qp(n)⊗Qp
Bcris)

ΓK is nontrivial: contains 1⊗ t−n.

2. For every proper smooth variety X over K with with a proper smooth integral model X over OK ,
the étale cohomology Hn

ét(XK ,Qp) is crystalline by the theorem 0.1 above. moreover, there exists
a canonical isomorphism

Dcris(H
n
ét(XK ,Qp)) ∼= Hcris(XK/K0) = Hn

cris(Xk/W (k))[1/p],

where Hn
cris(XK/W (k)) denote the crystalline cohomology of Xk.

3. For every p-divisible group G over OK , the rational Tate module Vp(G) is crystalline as proved
by Fontaine; indeed, there exists a natural identification

Dcris(Vp(G)) ∼= D(G)[1/p]

where D(G) denotes the Dieudonné module associated to G := G×OK
k.

Aim to promote Dcris to a functor that incorporates both the Frobenius endomorphism and the
filtration on Bcris. Let us denote by σ the Frobenius automorphism of K0.

Definition 1.3. A filtered isocrystal (filtered φ-modules) over K is an isocrystal N over K0 together
with a collection of K-spaces {Filn(NK)} which yields a structure of a filtered vector space over K
on NK := N ⊗K0

K. We denote by MFφ
K the category of filtered isocrystals over K with the natural

notions of morphisms, tensor products, and duals inherited from the corresponding notions for FilK
and the category of isocrystals over K0.

Example 1.4. The crystalline cohomology Hcris(Xk/K0) = Hn
cris(Xk/W (k))[1/p]: a filtered isocrystal

over K with the Frobenius automorphism φ∗
Xk

induced by the relative Frobenius of XK and the filtration

on Hn
cris(Xk/K0)⊗K0 K given by the Hodge filtration on the de Rham cohomology Hn

dR(X/K) via the
canonical comparison isomorphism

Hn
cris(Xk/K0)⊗K0

K ∼= Hn
dR(X/K).

Lemma 1.5. The automorphism σ on K0 extends to the endomorphism φ on Bcris.

Lemma 1.6. Let N be a finite dimensional vector space over K0. Every injective σ-semilinear additive
map f : N → N is bijective.
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Proposition 1.7. Let V be a p-adic representation of ΓK . Then Dcris(V ) = (V ⊗Qp Bcris)
ΓK is

naturally a filtered isocrystal over K with the Frobenius automorphism 1 ⊗ φ and the filtration on
Dcris(V )K = Dcris(V )⊗K0

K given by

Filn(Dcris(V )K) := (V ⊗Qp Filn(Bcris ⊗K0 K))ΓK .

Proof. Since ΓK acts trivially on K, we have a natural identification

Dcris(V )K = (V ⊗Qp
Bcris)

ΓK ⊗K0
K = (V ⊗Qp

(Bcris ⊗K0
K))ΓK .

Dcris(V )K is a filtered vector space over K with the filtration Filn(Dcris(V )K) as defined above.
Therefore it remains to verify that the map 1 ⊗ φ is σ-semilinear and bijective on Dcris(V ). For
arbitrary v ∈ V , b ∈ Bcris, and c ∈ K0 we have

(1⊗ φ)(c(v ⊗ b)) = (1⊗ φ)(v ⊗ bc) = v ⊗ φ(b)φ(c) = φ(c) · (1⊗ φ)(v ⊗ b).

Hence by Lemma 1.5 we find that the additive map 1⊗φ is σ-semilinear. Moreover, the map 1⊗φ is
injective on Dcris(K) and the left exactness of the functor Dcris. Thus we deduce the desired assertion
by Lemma 1.6.

Proposition 1.8. Let V be a crystalline representation of ΓK . Then V is de Rham with a natural
isomorphism of filtered vector spaces

Dcris(V )K = Dcris(V )⊗K0
K ∼= DdR(V ).

Proof. Proposition 1.5 and Proposition 1.6 from last week together imply that the natural map
Bcris ⊗K0 K → BdR identifies Bcris ⊗K0 K as a filtered subspace of BdR over K; in other words,
we have an identification

Filn(Bcris ⊗K0 K) = (Bcris ⊗K0 K) ∩ Filn(BdR) for every n ∈ Z.

Therefore Proposition 1.7 yields a natural injective morphism of filtered vector spaces

Dcris(V )K = (V ⊗Qp (Bcris ⊗K0 K))ΓK ↪→ (V ⊗Qp BdR)
ΓK = DdR(V )

with an identification

Filn(Dcris(V )⊗K0
K) = (Dcris(V )⊗K0

K) ∩ Filn(DdR(V )) for every n ∈ Z

We then find
dimK0 Dcris(V ) = dimK Dcris(V )K ≤ dimK DdR(V ) ≤ dimQp V

where the last inequality follows from Theorem 1.2.1. Since V is crystalline, both inequalities should
be in fact equalities, thereby yielding the desired assertion.

Example 1.9. η : ΓK → Q×
p be a nontrivial continuous character which factors through Gal(L/K)

for some totally ramified finite extension L of K. Then Qp(η) is de Rham. We assert that Qp(η) is
not crystalline. Let us write ΓL for the absolute Galois group of L. Since L is totally ramified over K,
we have BΓL

cris
∼= K0 by Theorem 1.8 from last week and the fact that the construction of Bcris depends

only on CK . Moreover, we have Qp(η)
ΓL = Qp(η) and Qp(η)

Gal(L/K) = 0 by construction. Hence we
find an identification

thereby deducing the desired assertion.

Below prop: shows general formalism extends to the category of crystalline representations with en-
hanced functor Dcris that takes values in MFφ

K .

Proposition 1.10. Every V ∈ RepcrisQp
(ΓK) induces a natural ΓK-equivariant isomorphism

Dcris(V )⊗K0 Bcris
∼= V ⊗Qp Bcris

which is compatible with the natural Frobenius endomorphisms on both sides and induces a K-linear
isomorphism of filtered vector spaces

Dcris(V )K ⊗K (Bcris ⊗K0
K) ∼= V ⊗Qp

(Bcris ⊗K0
K)
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Proof. Since V is crystalline, the natural map

Dcris ⊗K0 Bcris → (V ⊗Qp Bcris)⊗K0 Bcris
∼= V ⊗Qp (Bcris ⊗K0 K) → V ⊗Qp Bcris

is a ΓK-equivariant Bcris-linear isomorphism. Moreover, this map is visibly compatible with the
natural Frobenius endomorphisms on Dcris(V )⊗K0 Bcris = (V ⊗Qp Bcris)

ΓK ⊗K0 Bcris and V ⊗Qp Bcris

respectively given by 1⊗ φ⊗ φ and 1⊗ φ. Let us now consider the induced K-linear bijective map

(Dcris(V ))K ⊗K (Bcris ⊗K0 K) → V ⊗Qp (Bcris ⊗K0 K).

It is straightforward to check that this map is a morphism of filtered vector spaces. Therefore by
Proposition 1.8 from last week it suffices to show that the induced map

gr(Dcris(V )K ⊗K (Bcris ⊗K0
K)) → gr(V ⊗Qp

(Bcris ⊗K0
K)) (1)

is an isomorphism. As V is crystalline, it is also Hodge-Tate with the natural isomorphism of graded
vector space

gr(Dcris(V )K) ∼= gr(Ddr(V )) ∼= DHT (V )

by Proposition 1.8 last week and Proposition 2.4.4 from weeks ago. Hence Proposition 2.3.10 and
Proposition 1.7 from two weeks ago together yield identification

We thus identify the map (1) with the natural map

DHT (V )⊗K BHT → V ⊗Qp BHT

given by Theorem 1.2.1, thereby deducing the desired assertion by the fact that V is Hodge-Tate.

Similar to the proof last time, we have the following proposition:

Proposition 1.11. The functor Dcris with values in MFφ
K is faithful and exact on RepcrisQp

(ΓK).

And an immediate cosequence of the above proposition, as well as the fact that RepBQp
(ΓK) is closed

under taking subquotients, we have that

Corollary 1.12. Let V be a crystalline representation. Every subquotient W of V is a crystalline
representation with Dcris(W ) naturally identified as a subquotient of DdR(V ).

Proposition 1.13. Given any V,W ∈ RepcrisQp
(ΓK), we have V ⊗Qp W ∈ RepcrisQp

(ΓK) with a natural
isomorphism of filtered isocrystals

Dcris(V )⊗K0 Dcris(W ) ∼= Dcris(V ⊗Qp W ).

Proof. V ⊗Qp
W ∈ RepcrisQp

(ΓK) isomorphism of vector space from B-admissibility. The multiplicative
structure of Bcris shows that the map is a morphism of isocrystals over K0. Now proposition 1.8
implies that we can identify the induced bijective K-linear map

Dcris(V )K ⊗K Dcris(W )K → Dcris(V ⊗Qp
W )K .

with the natural isomorphism of filtered vector spaces

DdR(V )⊗K DdR(W )K ∼= DdR(V ⊗Qp
W )

Therefore we deduce that the map (1) is an isomorphism in MFφ
K as desired.

Proposition 1.14. For every crystalline representation V , we have ∧n(V ) ∈ RepcrisQp
(ΓK) and Symn(V ) ∈

RepcrisQp
(ΓK) with natural isomorphisms of filtered isocrystals

∧n(Dcris(V )) ∼= Dcris(∧n(V )) and Symn(Dcris(V )) ∼= Dcris(Sym
n(V ))

Proposition 1.15. For every crystalline representation V , the dual representation V ∨ is crystalline
with a natural perfect pairing of filtered isocrystals

Dcris(V )⊗K0
Dcris(V

∨) ∼= Dcris(V ⊗Qp
V ∨) → Dcris(Qp).

3



Definition 1.16. Let M be a module over a ring R with an additive endomorphism f . For every
r ∈ R, we refer to the subgroup

Mf=r := {m ∈ M : f(m) = rm}

as the eigenspace of f with eigenvalue r.

Lemma 1.17. We have an identification

Bφ=1
cris ∩ Fil0(Bcris ⊗K0 K) = Bφ=1

cris ∩B+
dR = Qp.

Proof. By Proposition 1.6 and Theorem 1.14 from last week we find

Bφ=1
cris ∩ Fil0(Bcris ⊗K0

K) ⊆ Bφ=1
cris ∩ Fil0(BdR) = Bφ=1

cris ∩B+
dR = Qp,

and thus obtain the desired identification as both Bφ=1
cris and Fil0(Bcris ⊗K0

K) contain Qp.

Proposition 1.18. Every V ∈ RepcrisQp
(ΓK) admits canonical isomorphisms

Proof. Proposition 1.10 yields a natural ΓK-equivariant isomorphism

Dcris(V )⊗K0
Bcris

∼= V ⊗Qp
Bcris

which is compatible with the natural Frobenius endomorphisms on both sides and induces an isomor-
phism of filtered vector spaces

Dcris(V )K ⊗K (Bcris ⊗K0 K) ∼= V ⊗Qp (Bcris ⊗K0 K).

In addition, there exists a canonical isomorphism of filtered vector spaces

Dcris(V )K ⊗K BdR
∼= DdR(V )⊗K BdR

∼= V ⊗Qp
BdR

given by Proposition 1.8 and Proposition 2.4.8. Therefore we have identifications

The desired assertion now follows by Lemma 1.17.

Theorem 1.19 (Fontaine). The functor Dcris with values in MFφ
K is exact and fully faithful on

RepcrisQp
(ΓK).

Proof. By Proposition 1.11 we only need to establish the fullness of Dcris on RepcrisQp
(ΓK). Let V and

W be arbitrary crystalline representations. Consider an arbitrary morphism f : Dcris(V ) → Dcris(W )
in MFK

φ . Then f gives rise to a ΓK-equivariant map

V ⊗Qp
Bcris

∼= Dcris(V )⊗K0
Bcris

f⊗1−−−→ Dcris(W )⊗K0
Bcris

∼= W ⊗Qp
Bcris (2)

where the isomorphisms are given by Proposition 1.10. Moreover, Proposition 1.18 implies that this
map restricts to a linear map ϕ : V → W . In other words, we may identify the map (2) as ϕ ⊗ 1. In
particular, since the isomorphisms in (2) are ΓK-equivariant, we recover f as the restriction of ϕ ⊗ 1
on (V ⊗Qp

Bcris)
ΓK ∼= (Dcris(V )⊗K0

Bcris)
ΓK ∼= Dcris(V ). This precisely means that f is induced by

ϕ via the functor Dcris.

Proposition 1.20. Let V be a p-adic representation of ΓK . Let L be a finite unramified extension of
K with the residue field extension ℓ of k. Denote by ΓL the absolute Galois group of L and by L0 the
fraction field of the ring of Witt vectors over ℓ.
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1. There exists a natural isomorphism of filtered isocrystals

Dcris,K(L)⊗K0
L0

∼= Dcris,L(V )

where we set Dcris,K(V ) := (V ⊗Qp
Bcris)

ΓK and Dcris,L := (V ⊗Qp
Bcris)

ΓK .

2. V is crystalline if and only if it is crystalline as a representation of ΓL.

Proof. We only need to prove the first statement, as the second statement immediately follows from
the first statement. By definition L and L0 are respectively unramified extensions of K and K0 with
the residue field extension ℓ of k. Hence L and L0 are respectively Galois over K and K0 with
Gal(L/K) ∼= Gal(L0/K0). Furthermore, since the construction of Bcris depends only on CK , we have
an identification

Dcris,K(V ) = Dcris,L(V )Gal(L/K) = Dcris,L(V )Gal(L0/K0)

Then by the Galois descent for vector spaces we obtain a natural bijective L0-linear map

Dcris,K(V )⊗K0 L0 → Dcris,L(V ). (3)

This map is evidently compatible with the natural Frobenius automorphisms on both sides induced by
φ as explained in Lemma 1.5 and Proposition 1.7. Moreover, Proposition 2.4.14 and Proposition 1.8
together imply that the map (3) induces a natural L-linear isomorphism of filtered vector spaces

(Dcris,K(V )⊗K0
K)⊗K L ∼= Dcris,L(V )⊗L0

L.

We thus deduce that the map (3) is an isomorphism of filtered isocrystals over L.

Remark. Proposition 1.20 also holds when L is the completion of the maximal unramified extension
of K. As a consequence, we have the following facts:

1. Every unramified p-adic representation is crystalline.

2. For a continuous character η : ΓK → Z×
p , we have Qp(η) ∈ RepcrisQp

(ΓK) if and only if there exists
some n ∈ Z such that ηχn is trivial on IK .

On the other hand, Example 1.9 shows that Proposition 1.20 fails when L is a ramified extension of
K. Fontaine interpreted this “failure” as a good feature of the crystalline condition, and conjectured
that the crystalline condition should provide a p-adic analogue of the Néron-Ogg-Shafarevich criterion
introduced in Theorem 1.1.1 of Chapter I; more precisely, Fontaine conjectured that an abelian variety
A overK has good reduction if and only if the rational Tate module Vp(A[p∞]) is crystalline. Fontaine’s
conjecture is now known to be true by the work of Coleman-Iovita and Breuil.

Proposition 1.21. The continuous map log : Zp(1) → B+
dR extends to a ΓK-equivariant homomor-

phism log : Ainf [1/p]
× → B+

dR such that log([p♭]) is transcendental over the fraction field of Bcris.

Example 1.22. The Tate curve Ep is an elliptic curve over K with Ep(K) ∼= K×/pZ where we
set pZ := {pn : n ∈ Z}. We assert that the rational Tate module Vp(Ep[p∞]) is de Rham but not
crystalline. It is evident by construction that ε and p♭ form a basis of Vp(Ep[p∞]) over Qp. Moreover,
for every γ ∈ ΓK we have

γ(ε) = εχ(γ) and γ(p♭) = p♭εc(γ) (4)

for some c(γ) ∈ Zp. Hence Vp(Ep[p
∞]) is an extension of Qp by Qp(1) in RepQp

(ΓK), and thus is de
Rham by Example 2.4.5.

We aim to present a basis for DdR(Vp(Ep[p
∞])) = (Vp(Ep[p

∞])⊗Qp
BdR)

ΓK . By (4) we find ϵ⊗ t−1 ∈
DdR(Vp(Ep[p

∞])). Let us now consider the homomorphism log : Ainf [1/p]
× → B+

dR as in Proposition
1.21 and set u := log([p♭]). Then for γ ∈ ΓK we find

γ(u) = γ(log[p♭]) = log([γp♭]) = log([p♭εc(γ)]) = log([p♭]) + c(γ) log([ε]) = u+ c(γ)t

by (4) and Lemma 2.2.20, and consequently obtain
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by (3.13) and Theorem 2.2.21. In particular, we have −ε ⊗ ut − 1 + p♭ ⊗ 1 ∈ DdR(V p(Ep[p∞])).
Since the elements ε ⊗ t−1 and −ε ⊗ ut−1 + p♭ ⊗ 1 are linearly independent over BdR, they form a
basis for DdR(Vp(Ep[p

∞])) = (Vp(Ep[p
∞]) ⊗Qp

BdR)
ΓK . Let us now consider an arbitrary element

x ∈ Dcris(Vp(Ep[p
∞])) = (Vp(Ep[p

∞]) ⊗Qp
Bcris)

ΓK . We may uniquely write x = ε ⊗ c + p♭ ⊗ d for
some c, d ∈ Bcris. Moreover, since we have Dcris(Vp(Ep[p

∞])) ⊆ DdR(Vp(Ep[p
∞])) there exist some

r, s ∈ K with

x = r · (ε⊗ t−1) + s · (−ε⊗ ut−1 + p♭ ⊗ 1) = ε⊗ (r − su)t−1 + p♭ ⊗ s.

Then we find c = (r− su)t−1, and consequently obtain s = 0 by Proposition 1.21. Therefore we deduce
that every element in Dcris(Vp(Ep[p

∞])) ⊗K0 K is a K-multiple of ε ⊗ t−1. In particular, we find
dimK0 Dcris(Vp(Ep[p

∞])) ≤ 1, thereby concluding that Vp(Ep[p
∞]) is not crystalline.

Remark. Fontaine constructed the semistable period ring Bst as the Bcris-subalgebra of BdR gener-
ated by log([p♭]).
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