p-adic Hodge Theory (Spring 2023): Week 12

Xiaorun Wu (xiaorunw@math.columbia.edu)

April 19, 2023

This week: crystalline Representations (continued), introduction to Fargues-Fontaine curve

A quick update from last time: This is the theorem of falitings:

Theorem 0.1 (Faltings, 1988). Suppose that X has good reduction, meaning that it has a proper smooth model \mathcal{X} over \mathcal{O}_K . There exists a canonical isomorphism

 $H^n_{\acute{e}t}(X_{\overline{K}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{cris} \cong H^n_{cris}(\mathcal{X}_K/W(k))[1/p] \otimes_{K_0} B_{cris}$

1 Properties of Crystalline Representations

Definition 1.1. We say that $V \in \operatorname{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ is crystalline if it is B_{cris} -admissible. We write $\operatorname{Rep}_{\mathbb{Q}_p}^{cris}(\Gamma_K) := \operatorname{Rep}_{\mathbb{Q}_p}^{B_{cris}}(\Gamma_K)$ for the category of crystalline p-adic Γ_K -representations. In addition, we write D_{cris} the functors $D_{B_{cris}}$.

Example 1.2. 1. Tate twist $\mathbb{Q}_p(n)$ of \mathbb{Q}_p , since $\dim_K D_{cris}(\mathbb{Q}_p(n)) \leq \dim_{\mathbb{Q}_p} \mathbb{Q}_p(n) = 1$ and $D_{cris}(\mathbb{Q}_p(n)) = (\mathbb{Q}_p(n) \otimes_{\mathbb{Q}_p} B_{cris})^{\Gamma_K}$ is nontrivial: contains $1 \otimes t^{-n}$.

2. For every proper smooth variety X over K with with a proper smooth integral model \mathcal{X} over \mathcal{O}_K , the étale cohomology $H^n_{\acute{e}t}(X_{\overline{K}}, \mathbb{Q}_p)$ is crystalline by the theorem 0.1 above. moreover, there exists a canonical isomorphism

 $D_{cris}(H^n_{\acute{e}t}(X_{\overline{K}}, \mathbb{Q}_p)) \cong H_{cris}(\mathcal{X}_K/K_0) = H^n_{cris}(\mathcal{X}_k/W(k))[1/p],$

where $H^n_{cris}(\mathcal{X}_K/W(k))$ denote the crystalline cohomology of \mathcal{X}_k .

3. For every p-divisible group G over \mathcal{O}_K , the rational Tate module $V_p(G)$ is crystalline as proved by Fontaine; indeed, there exists a natural identification

$$D_{cris}(V_p(G)) \cong \mathbb{D}(\overline{G})[1/p]$$

where $\mathbb{D}(\overline{G})$ denotes the Dieudonné module associated to $\overline{G} := G \times_{\mathcal{O}_K} k$.

Aim to promote D_{cris} to a functor that incorporates both the Frobenius endomorphism and the filtration on B_{cris} . Let us denote by σ the Frobenius automorphism of K_0 .

Definition 1.3. A filtered isocrystal (filtered φ -modules) over K is an isocrystal N over K_0 together with a collection of K-spaces $\{Fil^n(N_K)\}$ which yields a structure of a filtered vector space over Kon $N_K := N \otimes_{K_0} K$. We denote by MF_K^{φ} the category of filtered isocrystals over K with the natural notions of morphisms, tensor products, and duals inherited from the corresponding notions for Fil_K and the category of isocrystals over K_0 .

Example 1.4. The crystalline cohomology $H_{cris}(X_k/K_0) = H^n_{cris}(X_k/W(k))[1/p]$: a filtered isocrystal over K with the Frobenius automorphism $\varphi^*_{\overline{X}_k}$ induced by the relative Frobenius of \mathcal{X}_K and the filtration on $H^n_{cris}(\mathcal{X}_k/K_0) \otimes_{K_0} K$ given by the Hodge filtration on the de Rham cohomology $H^n_{dR}(X/K)$ via the canonical comparison isomorphism

$$H^n_{cris}(\mathcal{X}_k/K_0) \otimes_{K_0} K \cong H^n_{dR}(X/K).$$

Lemma 1.5. The automorphism σ on K_0 extends to the endomorphism φ on B_{cris} .

Lemma 1.6. Let N be a finite dimensional vector space over K_0 . Every injective σ -semilinear additive map $f: N \to N$ is bijective.

Proposition 1.7. Let V be a p-adic representation of Γ_K . Then $D_{cris}(V) = (V \otimes_{\mathbb{Q}_p} B_{cris})^{\Gamma_K}$ is naturally a filtered isocrystal over K with the Frobenius automorphism $1 \otimes \varphi$ and the filtration on $D_{cris}(V)_K = D_{cris}(V) \otimes_{K_0} K$ given by

$$Fil^n(D_{cris}(V)_K) := (V \otimes_{\mathbb{Q}_p} Fil^n(B_{cris} \otimes_{K_0} K))^{\Gamma_K}.$$

Proof. Since Γ_K acts trivially on K, we have a natural identification

$$D_{cris}(V)_K = (V \otimes_{\mathbb{Q}_p} B_{cris})^{\Gamma_K} \otimes_{K_0} K = (V \otimes_{\mathbb{Q}_p} (B_{cris} \otimes_{K_0} K))^{\Gamma_K}$$

 $D_{cris}(V)_K$ is a filtered vector space over K with the filtration $Fil^n(D_{cris}(V)_K)$ as defined above. Therefore it remains to verify that the map $1 \otimes \varphi$ is σ -semilinear and bijective on $D_{cris}(V)$. For arbitrary $v \in V$, $b \in B_{cris}$, and $c \in K_0$ we have

$$(1 \otimes \varphi)(c(v \otimes b)) = (1 \otimes \varphi)(v \otimes bc) = v \otimes \varphi(b)\varphi(c) = \varphi(c) \cdot (1 \otimes \varphi)(v \otimes b)$$

Hence by Lemma 1.5 we find that the additive map $1 \otimes \varphi$ is σ -semilinear. Moreover, the map $1 \otimes \varphi$ is injective on $D_{cris}(K)$ and the left exactness of the functor D_{cris} . Thus we deduce the desired assertion by Lemma 1.6.

Proposition 1.8. Let V be a crystalline representation of Γ_K . Then V is de Rham with a natural isomorphism of filtered vector spaces

$$D_{cris}(V)_K = D_{cris}(V) \otimes_{K_0} K \cong D_{dR}(V).$$

Proof. Proposition 1.5 and Proposition 1.6 from last week together imply that the natural map $B_{cris} \otimes_{K_0} K \to B_{dR}$ identifies $B_{cris} \otimes_{K_0} K$ as a filtered subspace of B_{dR} over K; in other words, we have an identification

$$Fil^n(B_{cris} \otimes_{K_0} K) = (B_{cris} \otimes_{K_0} K) \cap Fil^n(B_{dR})$$
 for every $n \in \mathbb{Z}$

Therefore Proposition 1.7 yields a natural injective morphism of filtered vector spaces

$$D_{cris}(V)_K = (V \otimes_{\mathbb{Q}_p} (B_{cris} \otimes_{K_0} K))^{\Gamma_K} \hookrightarrow (V \otimes_{\mathbb{Q}_p} B_{dR})^{\Gamma_K} = D_{dR}(V)$$

with an identification

$$Fil^n(D_{cris}(V) \otimes_{K_0} K) = (D_{cris}(V) \otimes_{K_0} K) \cap Fil^n(D_{dR}(V))$$
 for every $n \in \mathbb{Z}$

We then find

$$\dim_{K_0} D_{cris}(V) = \dim_K D_{cris}(V)_K \le \dim_K D_{dR}(V) \le \dim_{\mathbb{Q}_n} V$$

where the last inequality follows from Theorem 1.2.1. Since V is crystalline, both inequalities should be in fact equalities, thereby yielding the desired assertion. \Box

Example 1.9. $\eta: \Gamma_K \to \mathbb{Q}_p^{\times}$ be a nontrivial continuous character which factors through Gal(L/K) for some totally ramified finite extension L of K. Then $\mathbb{Q}_p(\eta)$ is de Rham. We assert that $\mathbb{Q}_p(\eta)$ is not crystalline. Let us write Γ_L for the absolute Galois group of L. Since L is totally ramified over K, we have $B_{cris}^{\Gamma_L} \cong K_0$ by Theorem 1.8 from last week and the fact that the construction of B_{cris} depends only on \mathbb{C}_K . Moreover, we have $\mathbb{Q}_p(\eta)^{\Gamma_L} = \mathbb{Q}_p(\eta)$ and $\mathbb{Q}_p(\eta)^{Gal(L/K)} = 0$ by construction. Hence we find an identification

$$D_{\mathrm{cris}}(\mathbb{Q}_p(\eta)) = (\mathbb{Q}_p(\eta) \otimes_{\mathbb{Q}_p} B_{\mathrm{cris}})^{\Gamma_K} = ((\mathbb{Q}_p(\eta) \otimes_{\mathbb{Q}_p} B_{\mathrm{cris}})^{\Gamma_L})^{\mathrm{Gal}(L/K)}$$
$$= (\mathbb{Q}_p(\eta) \otimes_{\mathbb{Q}_p} B_{\mathrm{cris}}^{\Gamma_L})^{\mathrm{Gal}(L/K)} \cong (\mathbb{Q}_p(\eta) \otimes_{\mathbb{Q}_p} K_0)^{\mathrm{Gal}(L/K)}$$
$$= \mathbb{Q}_p(\eta)^{\mathrm{Gal}(L/K)} \otimes_{\mathbb{Q}_p} K_0 = 0,$$

thereby deducing the desired assertion.

Below prop: shows general formalism extends to the category of crystalline representations with enhanced functor D_{cris} that takes values in MF_K^{φ} .

Proposition 1.10. Every $V \in \operatorname{Rep}_{\mathbb{Q}_p}^{cris}(\Gamma_K)$ induces a natural Γ_K -equivariant isomorphism

$$D_{cris}(V) \otimes_{K_0} B_{cris} \cong V \otimes_{\mathbb{Q}_p} B_{cris}$$

which is compatible with the natural Frobenius endomorphisms on both sides and induces a K-linear isomorphism of filtered vector spaces

$$D_{cris}(V)_K \otimes_K (B_{cris} \otimes_{K_0} K) \cong V \otimes_{\mathbb{Q}_p} (B_{cris} \otimes_{K_0} K)$$

Proof. Since V is crystalline, the natural map

$$D_{cris} \otimes_{K_0} B_{cris} \to (V \otimes_{\mathbb{Q}_p} B_{cris}) \otimes_{K_0} B_{cris} \cong V \otimes_{\mathbb{Q}_p} (B_{cris} \otimes_{K_0} K) \to V \otimes_{\mathbb{Q}_p} B_{cris}$$

is a Γ_K -equivariant B_{cris} -linear isomorphism. Moreover, this map is visibly compatible with the natural Frobenius endomorphisms on $D_{cris}(V) \otimes_{K_0} B_{cris} = (V \otimes_{\mathbb{Q}_p} B_{cris})^{\Gamma_K} \otimes_{K_0} B_{cris}$ and $V \otimes_{\mathbb{Q}_p} B_{cris}$ respectively given by $1 \otimes \varphi \otimes \varphi$ and $1 \otimes \varphi$. Let us now consider the induced K-linear bijective map

$$(D_{cris}(V))_K \otimes_K (B_{cris} \otimes_{K_0} K) \to V \otimes_{\mathbb{Q}_p} (B_{cris} \otimes_{K_0} K).$$

It is straightforward to check that this map is a morphism of filtered vector spaces. Therefore by Proposition 1.8 from last week it suffices to show that the induced map

$$gr(D_{cris}(V)_K \otimes_K (B_{cris} \otimes_{K_0} K)) \to gr(V \otimes_{\mathbb{Q}_p} (B_{cris} \otimes_{K_0} K)) \tag{1}$$

is an isomorphism. As V is crystalline, it is also Hodge-Tate with the natural isomorphism of graded vector space

$$gr(D_{cris}(V)_K) \cong gr(D_{dr}(V)) \cong D_{HT}(V)$$

by Proposition 1.8 last week and Proposition 2.4.4 from weeks ago. Hence Proposition 2.3.10 and Proposition 1.7 from two weeks ago together yield identification

$$\operatorname{gr}(D_{\operatorname{cris}}(V)_K \otimes_K (B_{\operatorname{cris}} \otimes_{K_0} K)) \cong \operatorname{gr}(D_{\operatorname{cris}}(V)_K) \otimes_K \operatorname{gr}(B_{\operatorname{cris}} \otimes_{K_0} K) \cong D_{\operatorname{HT}}(V) \otimes_K B_{\operatorname{HT}},$$
$$\operatorname{gr}(V \otimes_{\mathbb{Q}_p} (B_{\operatorname{cris}} \otimes_{K_0} K)) \cong V \otimes_{\mathbb{Q}_p} \operatorname{gr}(B_{\operatorname{cris}} \otimes_{K_0} K) \cong V \otimes_{\mathbb{Q}_p} B_{\operatorname{HT}}.$$

We thus identify the map (1) with the natural map

$$D_{HT}(V) \otimes_K B_{HT} \to V \otimes_{\mathbb{Q}_p} B_{HT}$$

given by Theorem 1.2.1, thereby deducing the desired assertion by the fact that V is Hodge-Tate. \Box

Similar to the proof last time, we have the following proposition:

Proposition 1.11. The functor D_{cris} with values in MF_K^{φ} is faithful and exact on $\operatorname{Rep}_{\mathbb{Q}_n}^{cris}(\Gamma_K)$.

And an immediate cosequence of the above proposition, as well as the fact that $\operatorname{Rep}_{\mathbb{Q}_p}^B(\Gamma_K)$ is closed under taking subquotients, we have that

Corollary 1.12. Let V be a crystalline representation. Every subquotient W of V is a crystalline representation with $D_{cris}(W)$ naturally identified as a subquotient of $D_{dR}(V)$.

Proposition 1.13. Given any $V, W \in \operatorname{Rep}_{\mathbb{Q}_p}^{cris}(\Gamma_K)$, we have $V \otimes_{\mathbb{Q}_p} W \in \operatorname{Rep}_{\mathbb{Q}_p}^{cris}(\Gamma_K)$ with a natural isomorphism of filtered isocrystals

$$D_{cris}(V) \otimes_{K_0} D_{cris}(W) \cong D_{cris}(V \otimes_{\mathbb{Q}_p} W).$$

Proof. $V \otimes_{\mathbb{Q}_p} W \in \operatorname{Rep}_{\mathbb{Q}_p}^{cris}(\Gamma_K)$ isomorphism of vector space from B-admissibility. The multiplicative structure of B_{cris} shows that the map is a morphism of isocrystals over K_0 . Now proposition 1.8 implies that we can identify the induced bijective K-linear map

$$D_{cris}(V)_K \otimes_K D_{cris}(W)_K \to D_{cris}(V \otimes_{\mathbb{Q}_p} W)_K.$$

with the natural isomorphism of filtered vector spaces

$$D_{dR}(V) \otimes_K D_{dR}(W)_K \cong D_{dR}(V \otimes_{\mathbb{Q}_p} W)$$

Therefore we deduce that the map (1) is an isomorphism in MF_K^{φ} as desired.

Proposition 1.14. For every crystalline representation V, we have $\wedge^n(V) \in \operatorname{Rep}_{\mathbb{Q}_p}^{cris}(\Gamma_K)$ and $\operatorname{Sym}^n(V) \in \operatorname{Rep}_{\mathbb{Q}_p}^{cris}(\Gamma_K)$ with natural isomorphisms of filtered isocrystals

$$\wedge^{n}(D_{cris}(V)) \cong D_{cris}(\wedge^{n}(V)) \quad and \quad \operatorname{Sym}^{n}(D_{cris}(V)) \cong D_{cris}(\operatorname{Sym}^{n}(V))$$

Proposition 1.15. For every crystalline representation V, the dual representation V^{\vee} is crystalline with a natural perfect pairing of filtered isocrystals

$$D_{cris}(V) \otimes_{K_0} D_{cris}(V^{\vee}) \cong D_{cris}(V \otimes_{\mathbb{Q}_p} V^{\vee}) \to D_{cris}(\mathbb{Q}_p).$$

Definition 1.16. Let M be a module over a ring R with an additive endomorphism f. For every $r \in R$, we refer to the subgroup

$$M^{f=r} := \{m \in M : f(m) = rm\}$$

as the eigenspace of f with eigenvalue r.

Lemma 1.17. We have an identification

$$B_{cris}^{\varphi=1} \cap Fil^0(B_{cris} \otimes_{K_0} K) = B_{cris}^{\varphi=1} \cap B_{dR}^+ = \mathbb{Q}_p.$$

Proof. By Proposition 1.6 and Theorem 1.14 from last week we find

$$B_{cris}^{\varphi=1} \cap Fil^0(B_{cris} \otimes_{K_0} K) \subseteq B_{cris}^{\varphi=1} \cap Fil^0(B_{dR}) = B_{cris}^{\varphi=1} \cap B_{dR}^+ = \mathbb{Q}_p,$$

and thus obtain the desired identification as both $B_{cris}^{\varphi=1}$ and $Fil^0(B_{cris} \otimes_{K_0} K)$ contain \mathbb{Q}_p .

Proposition 1.18. Every $V \in \operatorname{Rep}_{\mathbb{Q}_p}^{cris}(\Gamma_K)$ admits canonical isomorphisms

$$V \cong (D_{\operatorname{cris}}(V) \otimes_{K_0} B_{\operatorname{cris}})^{\varphi=1} \cap \operatorname{Fil}^0 (D_{\operatorname{cris}}(V)_K \otimes_K (B_{\operatorname{cris}} \otimes_{K_0} K))$$
$$\cong (D_{\operatorname{cris}}(V) \otimes_{K_0} B_{\operatorname{cris}})^{\varphi=1} \cap \operatorname{Fil}^0 (D_{\operatorname{cris}}(V)_K \otimes_K B_{\operatorname{dR}}).$$

Proof. Proposition 1.10 yields a natural Γ_K -equivariant isomorphism

$$D_{cris}(V) \otimes_{K_0} B_{cris} \cong V \otimes_{\mathbb{Q}_p} B_{cris}$$

which is compatible with the natural Frobenius endomorphisms on both sides and induces an isomorphism of filtered vector spaces

$$D_{cris}(V)_K \otimes_K (B_{cris} \otimes_{K_0} K) \cong V \otimes_{\mathbb{Q}_n} (B_{cris} \otimes_{K_0} K).$$

In addition, there exists a canonical isomorphism of filtered vector spaces

$$D_{cris}(V)_K \otimes_K B_{dR} \cong D_{dR}(V) \otimes_K B_{dR} \cong V \otimes_{\mathbb{Q}_p} B_{dR}$$

given by Proposition 1.8 and Proposition 2.4.8. Therefore we have identifications

$$(D_{\operatorname{cris}}(V) \otimes_{K_0} B_{\operatorname{cris}})^{\varphi=1} \cong V \otimes_{\mathbb{Q}_p} B_{\operatorname{cris}}^{\varphi=1},$$

Fil⁰ $(D_{\operatorname{cris}}(V)_K \otimes_K (B_{\operatorname{cris}} \otimes_{K_0} K)) \cong V \otimes_{\mathbb{Q}_p} \operatorname{Fil}^0(B_{\operatorname{cris}} \otimes_{K_0} K),$
Fil⁰ $(D_{\operatorname{cris}}(V)_K \otimes_K B_{\operatorname{dR}}) \cong V \otimes_{\mathbb{Q}_n} B_{\operatorname{dP}}^+.$

The desired assertion now follows by Lemma 1.17.

Theorem 1.19 (Fontaine). The functor D_{cris} with values in MF_K^{φ} is exact and fully faithful on $\operatorname{Rep}_{\mathbb{Q}_p}^{cris}(\Gamma_K)$.

Proof. By Proposition 1.11 we only need to establish the fullness of D_{cris} on $\operatorname{Rep}_{\mathbb{Q}_p}^{cris}(\Gamma_K)$. Let V and W be arbitrary crystalline representations. Consider an arbitrary morphism $f: D_{cris}(V) \to D_{cris}(W)$ in MF_{φ}^{K} . Then f gives rise to a Γ_{K} -equivariant map

$$V \otimes_{\mathbb{Q}_p} B_{cris} \cong D_{cris}(V) \otimes_{K_0} B_{cris} \xrightarrow{f \otimes 1} D_{cris}(W) \otimes_{K_0} B_{cris} \cong W \otimes_{\mathbb{Q}_p} B_{cris}$$
(2)

where the isomorphisms are given by Proposition 1.10. Moreover, Proposition 1.18 implies that this map restricts to a linear map $\phi: V \to W$. In other words, we may identify the map (2) as $\phi \otimes 1$. In particular, since the isomorphisms in (2) are Γ_K -equivariant, we recover f as the restriction of $\phi \otimes 1$ on $(V \otimes_{\mathbb{Q}_p} B_{cris})^{\Gamma_K} \cong (D_{cris}(V) \otimes_{K_0} B_{cris})^{\Gamma_K} \cong D_{cris}(V)$. This precisely means that f is induced by ϕ via the functor D_{cris} .

Proposition 1.20. Let V be a p-adic representation of Γ_K . Let L be a finite unramified extension of K with the residue field extension ℓ of k. Denote by Γ_L the absolute Galois group of L and by L_0 the fraction field of the ring of Witt vectors over ℓ .

1. There exists a natural isomorphism of filtered isocrystals

$$D_{cris,K}(L) \otimes_{K_0} L_0 \cong D_{cris,L}(V)$$

where we set $D_{cris,K}(V) := (V \otimes_{\mathbb{Q}_p} B_{cris})^{\Gamma_K}$ and $D_{cris,L} := (V \otimes_{\mathbb{Q}_p} B_{cris})^{\Gamma_K}$.

2. V is crystalline if and only if it is crystalline as a representation of Γ_L .

Proof. We only need to prove the first statement, as the second statement immediately follows from the first statement. By definition L and L_0 are respectively unramified extensions of K and K_0 with the residue field extension ℓ of k. Hence L and L_0 are respectively Galois over K and K_0 with $Gal(L/K) \cong Gal(L_0/K_0)$. Furthermore, since the construction of B_{cris} depends only on \mathbb{C}_K , we have an identification

$$D_{cris,K}(V) = D_{cris,L}(V)^{Gal(L/K)} = D_{cris,L}(V)^{Gal(L_0/K_0)}$$

Then by the Galois descent for vector spaces we obtain a natural bijective L_0 -linear map

$$D_{cris,K}(V) \otimes_{K_0} L_0 \to D_{cris,L}(V).$$
 (3)

This map is evidently compatible with the natural Frobenius automorphisms on both sides induced by φ as explained in Lemma 1.5 and Proposition 1.7. Moreover, Proposition 2.4.14 and Proposition 1.8 together imply that the map (3) induces a natural *L*-linear isomorphism of filtered vector spaces

$$(D_{cris,K}(V) \otimes_{K_0} K) \otimes_K L \cong D_{cris,L}(V) \otimes_{L_0} L$$

We thus deduce that the map (3) is an isomorphism of filtered isocrystals over L.

Remark. Proposition 1.20 also holds when L is the completion of the maximal unramified extension of K. As a consequence, we have the following facts:

- 1. Every unramified *p*-adic representation is crystalline.
- 2. For a continuous character $\eta : \Gamma_K \to \mathbb{Z}_p^{\times}$, we have $\mathbb{Q}_p(\eta) \in \operatorname{Rep}_{\mathbb{Q}_p}^{cris}(\Gamma_K)$ if and only if there exists some $n \in \mathbb{Z}$ such that $\eta \chi^n$ is trivial on I_K .

On the other hand, Example 1.9 shows that Proposition 1.20 fails when L is a ramified extension of K. Fontaine interpreted this "failure" as a good feature of the crystalline condition, and conjectured that the crystalline condition should provide a p-adic analogue of the Néron-Ogg-Shafarevich criterion introduced in Theorem 1.1.1 of Chapter I; more precisely, Fontaine conjectured that an abelian variety A over K has good reduction if and only if the rational Tate module $V_p(A[p^{\infty}])$ is crystalline. Fontaine's conjecture is now known to be true by the work of Coleman-Iovita and Breuil.

Proposition 1.21. The continuous map $\log : \mathbb{Z}_p(1) \to B_{dR}^+$ extends to a Γ_K -equivariant homomorphism $\log : A_{inf}[1/p]^{\times} \to B_{dR}^+$ such that $\log([p^{\flat}])$ is transcendental over the fraction field of B_{cris} .

Example 1.22. The Tate curve E_p is an elliptic curve over K with $E_p(K) \cong K^{\times}/p^{\mathbb{Z}}$ where we set $p^{\mathbb{Z}} := \{p^n : n \in \mathbb{Z}\}$. We assert that the rational Tate module $V_p(Ep[p^{\infty}])$ is de Rham but not crystalline. It is evident by construction that ε and p^{\flat} form a basis of $V_p(Ep[p^{\infty}])$ over \mathbb{Q}_p . Moreover, for every $\gamma \in \Gamma_K$ we have

$$\gamma(\varepsilon) = \varepsilon^{\chi(\gamma)} \quad and \quad \gamma(p^{\flat}) = p^{\flat} \varepsilon^{c(\gamma)} \tag{4}$$

for some $c(\gamma) \in \mathbb{Z}_p$. Hence $V_p(E_p[p^{\infty}])$ is an extension of \mathbb{Q}_p by $\mathbb{Q}_p(1)$ in $\operatorname{Rep}_{\mathbb{Q}_p}(\Gamma_K)$, and thus is de Rham by Example 2.4.5.

We aim to present a basis for $D_{dR}(V_p(E_p[p^{\infty}])) = (V_p(E_p[p^{\infty}]) \otimes_{\mathbb{Q}_p} B_{dR})^{\Gamma_K}$. By (4) we find $\epsilon \otimes t^{-1} \in D_{dR}(V_p(E_p[p^{\infty}]))$. Let us now consider the homomorphism $\log : A_{inf}[1/p]^{\times} \to B_{dR}^+$ as in Proposition 1.21 and set $u := \log([p^{\flat}])$. Then for $\gamma \in \Gamma_K$ we find

$$\gamma(u) = \gamma(\log[p^{\flat}]) = \log([\gamma p^{\flat}]) = \log([p^{\flat}\varepsilon^{c(\gamma)}]) = \log([p^{\flat}]) + c(\gamma)\log([\varepsilon]) = u + c(\gamma)t$$

by (4) and Lemma 2.2.20, and consequently obtain

$$\begin{split} \gamma(-\varepsilon \otimes ut^{-1} + p^{\flat} \otimes 1) &= -\varepsilon^{\chi(\gamma)} \otimes (u + c(\gamma)t)\chi(\gamma)^{-1}t^{-1} + p^{\flat}\varepsilon^{c(\gamma)} \otimes 1 \\ &= -\varepsilon \otimes (ut^{-1} + c(\gamma)) + c(\gamma) \cdot (\varepsilon \otimes 1) + p^{\flat} \otimes 1 \\ &= -\varepsilon \otimes ut^{-1} + p^{\flat} \otimes 1 \end{split}$$

by (3.13) and Theorem 2.2.21. In particular, we have $-\varepsilon \otimes ut - 1 + p^{\flat} \otimes 1 \in DdR(Vp(Ep[p^{\infty}]))$. Since the elements $\varepsilon \otimes t^{-1}$ and $-\varepsilon \otimes ut^{-1} + p^{\flat} \otimes 1$ are linearly independent over B_{dR} , they form a basis for $D_{dR}(V_p(E_p[p^{\infty}])) = (V_p(E_p[p^{\infty}]) \otimes_{\mathbb{Q}_p} B_{dR})^{\Gamma_K}$. Let us now consider an arbitrary element $x \in D_{cris}(V_p(E_p[p^{\infty}])) = (V_p(E_p[p^{\infty}]) \otimes_{\mathbb{Q}_p} B_{cris})^{\Gamma_K}$. We may uniquely write $x = \varepsilon \otimes c + p^{\flat} \otimes d$ for some $c, d \in B_{cris}$. Moreover, since we have $D_{cris}(V_p(E_p[p^{\infty}])) \subseteq D_{dR}(V_p(E_p[p^{\infty}]))$ there exist some $r, s \in K$ with

$$x = r \cdot (\varepsilon \otimes t^{-1}) + s \cdot (-\varepsilon \otimes ut^{-1} + p^{\flat} \otimes 1) = \varepsilon \otimes (r - su)t^{-1} + p^{\flat} \otimes s.$$

Then we find $c = (r - su)t^{-1}$, and consequently obtain s = 0 by Proposition 1.21. Therefore we deduce that every element in $D_{cris}(V_p(E_p[p^{\infty}])) \otimes_{K_0} K$ is a K-multiple of $\varepsilon \otimes t^{-1}$. In particular, we find $\dim_{K_0} D_{cris}(V_p(E_p[p^{\infty}])) \leq 1$, thereby concluding that $V_p(E_p[p^{\infty}])$ is not crystalline.

Remark. Fontaine constructed the semistable period ring B_{st} as the B_{cris} -subalgebra of B_{dR} generated by $\log([p^{\flat}])$.