p-adic Hodge Theory (Spring 2023): Week 11

Xiaorun Wu (xiaorunw@math.columbia.edu)

April 11, 2023

This week: crystalline Representations

The goal is to study the period ring $B_{\text {cris }}$ and crystalline representations. So far, the only result we assumed was the Tate-Sen Theorem (and one smaller result about the new topology on $B_{d R}^{+}$). In this section, we will starting assumingmore results without proof.

1 The crystalline period ring $B_{\text {cris }}$

Throughout this section, we write $W(k)$ for the ring of Witt vectors over k, and K_{0} for its fraction field. Recall that we have fixed an element $p^{b} \in \mathcal{O}_{F}$ with $\left(p^{b}\right)^{\sharp}=p$ and set $\xi=\left[p^{b}\right]-p \in A_{\text {inf }}$.

Definition 1.1. We define the integral crystalline period ring by

$$
A_{\text {cris }}:\left\{\sum_{n=0}^{\infty} a_{n} \frac{\xi^{n}}{n!} \in B_{d R}^{+}: a_{n} \in A_{\text {inf }} \text { with } \lim _{n \rightarrow \infty} a_{n}=0\right\},
$$

and write $B_{\text {cris }}^{+}:=A_{\text {cris }}[1 / p]$.
Remark. In the definition of $A_{\text {cris }}$ above, it is vital to consider the refinement of the discrete valuation topology on $B+_{d R}$. While the convergence of the infinite sum $\sum_{n \geq 0} a_{n} \frac{\xi_{n}}{n!}$ relies on the discrete valuation topology on $B_{d R}^{+}$, the limit of the coefficients an should be taken with respect to the p-adic topology on $A_{\text {inf }}$.

We warn the readers that the terminology given in Definition 1.1 is not standard at all. In fact, most authors do not give a separate name for the ring $A_{\text {cris }}$. Our choice of the terminology comes from the fact that $A_{\text {cris }}$ plays the role of the crystalline period ring in the integral p-adic Hodge theory

Proposition 1.2. We have $t \in A_{\text {cris }}$ and $t^{p-1} \in p A_{\text {cris }}$.
Proof. By previous lemma we write $[\varepsilon]-1=\xi c$ for some $c \in A_{\text {inf }}$. Then we obtain

$$
\begin{equation*}
t=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{([\varepsilon]-1)^{n}}{n}=\sum_{n=1}^{\infty}(-1)^{n+1}(n-1)!c^{n} \cdot \frac{\xi^{n}}{n!} \tag{1}
\end{equation*}
$$

We thus find $t \in A_{\text {cris }}$ as we have $\lim _{n \rightarrow \infty}(n-1)!c^{n}=0$ in $A_{\text {inf }}$ relative to the p-adic topology.
It remains to show $t^{p-1} \in p A_{\text {cris }}$. Let us set

$$
\begin{equation*}
\breve{t}:=\sum_{n=1}^{p}(-1)^{n+1} \frac{([\varepsilon]-1)^{n}}{n} . \tag{2}
\end{equation*}
$$

Since $(n-1)$! is divisible by p for all $n>p$, we find $t-\breve{t} \in p A_{\text {cris }}$ by 11. Hence it suffices to prove $\breve{t}^{p-1} \in p A_{\text {cris }}$.

The terms for $n<p$ in 2 are all divisible by $[\varepsilon]-1$ in $A_{\text {cris }}$, whereas the term for $n=p$ in (22) can be written as

$$
(-1)^{p+1} \frac{([\varepsilon]-1)^{p-1}}{p} \cdot([\varepsilon]-1) .
$$

In other words, we may write

$$
\breve{t}=([\varepsilon]-1)\left(a+(-1)^{p+1} \frac{([\varepsilon]-1)^{p-1}}{p}\right)
$$

for some $a \in A_{\text {cris }}$. It is therefore enough to show $([\varepsilon]-1)^{p-1} \in p A_{\text {cris }}$. In addition, by we have

$$
\nu^{b}\left((\varepsilon-1)^{p-1}\right)=p=\nu^{b}\left(\left(p^{b}\right)^{p}\right)
$$

and consequently find that $\left[(\varepsilon-1)^{p-1}\right]$ is divisible by $\left[p^{b}\right]^{p}=(\xi+p)^{p}$. We thus deduce the desired assertion by observing that $\xi^{p}=p \cdot(p-1)!\cdot\left(\xi^{p} / p!\right)$ is divisible by p in $A_{\text {cris }}$.

Remark. As a consequence, we find that

$$
\frac{t^{p}}{p!}=\frac{t^{p-1}}{p} \cdot \frac{t}{(p-1)!} \in A_{c r i s}
$$

In fact, it is not hard to prove that for every $a \in A_{\text {cris }}$ with $\theta_{d R}^{+}(a)=0$ we have a $n / n!\in A_{\text {cris }}$ for all $n \geq 1$.

Corollary 1.3. We have an identification $B_{\text {cris }}^{+}[1 / t]=A_{\text {cris }}[1 / t]$.
Proof. Proposition 1.2 implies that p is a unit in $A_{\text {cris }}[1 / t]$, thereby yielding $B_{\text {cris }}^{+}[1 / t]=A_{\text {cris }}[1 / p, 1 / t]=$ $A_{\text {cris }}[1 / t]$, as desired.

Definition 1.4. We define the crystalline period ring by

$$
B_{c r i s}:=B_{c r i s}^{+}[1 / t]=A_{\text {cris }}[1 / t]
$$

Remark. Let us briefly explain Fontaine's insight behind the construction of $B_{\text {cris }}$. The main motivation for constructing the crystalline period ring $B_{\text {cris }}$ is to obtain the Grothendieck mysterious functor as described in Chapter I, Conjecture 1.2.3. Recall that, for a proper smooth variety \mathcal{X} over K with a proper smooth integral model X over \mathcal{O}_{K}, the crystalline cohomology $H_{c r i s}^{n}\left(\mathcal{X}_{k}, W(k)\right)$ admits a natural Frobenius action and refines the de Rham cohomology $H_{d}^{n} R(X / K)$ via a canonical isomorphism

$$
H_{c r i s}^{n}\left(\mathcal{X}_{k}, W(k)\right)[1 / p] \otimes_{K_{0}} K \cong H_{d R}^{n}(X / K)
$$

In addition, since $A_{\text {inf }}$ is by construction the ring of Witt vectors over a perfect \mathbb{F}_{p}-algebra \mathcal{O}_{F}, it admits the Frobenius automorphism $\varphi_{\text {inf }}$ as noted in Chapter II, Example 2.3.2. Fontaine sought to construct $B_{\text {cris }}$ as a sufficiently large subring of $B_{d R}$ on which $\varphi_{\text {inf }}$ naturally extends. For $B_{d R}$ there is no natural extension of $\varphi_{\text {inf }}$ since $\operatorname{ker}(\theta[1 / p])$ is not stable under $\varphi_{\text {inf }}$. Fontaine's key observation is that by adjoining to $A_{\text {inf }}$ the elements of the form ξ^{n} / n ! for $n \geq 1$ we obtain a subring of $A_{\text {inf }}[1 / p]$ such that the image of $\operatorname{ker}(\theta[1 / p])$ is stable under $\varphi_{i n f}$. This observation led Fontaine to consider the ring $A_{\text {cris }}$ defined in Definition 1.1. The only issue with $A_{\text {cris }}$ is that it is not $\left(\mathbb{Q}_{p}, \Gamma_{K}\right)$-regular, which turns out to be resolved by considering the ring $B_{\text {cris }}=A_{\text {cris }}[1 / t]$.

Proposition 1.5. The ring $B_{\text {cris }}$ is naturally a filtered subalgebra of $B_{d R}$ over K_{0} which is stable under the action of Γ_{K}.

Proof. By construction we have

$$
A_{\text {inf }}[1 / p] \subseteq A_{\text {cris }}[1 / p]=B_{c r i s}^{+} \subseteq B_{c r i s} \subseteq B_{d R}
$$

In addition, the proof of Proposition 2.2.15 yields a unique homomorphism $K \rightarrow B_{d R}$ which extends a natural homomorphism $K_{0} \rightarrow A_{\text {inf }}[1 / p]$. Hence by Example 2.3 .2 we naturally identify Bcris as a filtered subalgebra of $B_{d R}$ over K_{0} with Fil $^{n}\left(B_{\text {cris }}\right):=B_{\text {cris }} \cap t^{n} B_{d R}^{+}$.

It remains to show that $B_{\text {cris }}=A_{\text {cris }}[1 / t]$ is stable under the action of Γ_{K}. Since Γ_{K} acts on t by the cyclotomic character as noted in Theorem 2.2.21, we only need to show that $A_{\text {cris }}$ is stable under the action of Γ_{K}. Consider an arbitrary element $\gamma \in \Gamma_{K}$ and an arbitrary sequence $\left(a_{n}\right)$ in $A_{\text {inf }}$ with $\lim _{n \rightarrow \infty} a_{n}=0$. Since $\operatorname{ker}(\theta)$ is stable under the Γ_{K}-action as noted in Theorem 2.2.21, we may write $\gamma(\xi)=c_{\gamma} \xi$ for some $c_{\gamma} \in A_{\text {inf }}$ by Proposition 2.2.6. We then have $\lim _{n \rightarrow \infty} \gamma\left(a_{n}\right) c_{\gamma}^{n}=0$ as the Γ_{K}-action on $A_{\text {inf }}$ is evidently continuous with respect to the p-adic topology. Hence we find

$$
\gamma\left(\sum_{n=0}^{\infty} a_{n} \frac{\xi^{n}}{n!}\right)=\sum_{n=0}^{\infty} \gamma\left(a_{n}\right) c_{\gamma}^{n} \frac{\xi^{n}}{n!} \in A_{c r i s}
$$

as desired.

Remark. We provide a functorial perspective for the Γ_{K}-actions on $B_{c r i s}$ and $B_{d R}$ which can be useful in many occasions. Since the definitions of $B_{\text {cris }}$ and $B_{d R}$ only depend on the valued field \mathbb{C}_{K}, we may regard $B_{c r i s}$ and $B_{d R}$ as functors which associate topological rings to each complete and algebraically closed valued field. Then by functoriality the action of Γ_{K} on \mathbb{C}_{K} induces the actions of Γ_{K} on $B_{\text {cris }}$ and $B_{d R}$. In particular, since $B_{c r i s}$ is a subfunctor of $B_{d R}$ we deduce that the Γ_{K}-action on $B_{c r i s}$ is given by the restriction of the Γ_{K}-action on $B_{d R}$ as asserted in Proposition 1.5.

We also warn that $F i l^{\circ}\left(B_{c r i s}\right)=B_{c r i s} \cap B_{d R}^{+}$is not equal to $B_{c r i s}^{+}$. For example, the element

$$
\alpha+\frac{\left[\varepsilon^{1 / p^{2}}\right]-1}{\left[\varepsilon^{1 / p}\right]-1}
$$

lies in $B_{\text {cris }} \cap B_{d R}^{+}$but not in $B_{\text {cris }}^{+}$.
In order to study the Γ_{K}-action on $B_{c r i s}$ we invoke the following crucial (and surprisingly technical) result without proof.

Proposition 1.6. The natural Γ_{K}-equivariant map $B_{\text {cris }} \otimes_{K_{0}} K \rightarrow B_{d R}$ is injective.
Remark. The original proof by Fontaine in [Fon94] is incorrect. A complete proof involving the semistable period ring can be found in Fontaine and Ouyang's notes [FO, Theorem 6.14]. Note however that the assertion is obvious if we have $K=K_{0}$, which amounts to the condition that K is unramified over \mathbb{Q}_{p}.

Proposition 1.7. There exists a natural isomorphism of graded K-algebras

$$
\operatorname{gr}\left(B_{c r i s} \otimes_{K_{0}} K\right) \cong \operatorname{gr}\left(B_{d R}\right) \cong B_{H T}
$$

Proof. We only need to establish the first identification as the second identification immediately follows from Theorem 2.2.21 as noted in Example 2.3.2. By Proposition 1.6 the natural map $B_{\text {cris }} \otimes_{K_{0}} K \rightarrow$ $B_{d R}$ induces an injective morphism of graded K-algebras

$$
\begin{equation*}
\operatorname{gr}\left(B_{c r i s} \otimes_{K_{0}} K\right) \hookrightarrow \operatorname{gr}\left(B_{d R}\right) \tag{3}
\end{equation*}
$$

In particular, we have an injective map

$$
\operatorname{gr}^{\circ}\left(B_{\text {cris }} \otimes_{K_{0}} K\right) \hookrightarrow \operatorname{gr}^{\circ}\left(B_{d R}\right) \cong \mathbb{C}_{K}
$$

where the isomorphism is induced by $\theta_{d R}^{+}$. Moreover, this map is surjective since the image of $B_{\text {cris }} \otimes_{K_{0}} K$ in $B_{d R}$ contains $A_{\text {inf }}[1 / p]$ and consequently maps onto \mathbb{C}_{K} by $\theta_{d R}^{+}$. Therefore we obtain an isomorphism

$$
\operatorname{gr}^{\circ}\left(B_{\text {cris }} \otimes_{K_{0}} K\right) \cong \operatorname{gr}^{\circ}\left(B_{d R}\right) \cong \mathbb{C}_{K}
$$

This implies that each gr ${ }^{n}\left(B_{\text {cris }} \otimes_{K_{0}} K\right)$ is a vector space over \mathbb{C}_{K}. Moreover, each gr ${ }^{n}\left(B_{\text {cris }} \otimes_{K_{0}} K\right)$ contains a nonzero element given by $t^{n} \otimes 1$. Hence the injective map (3) must be an isomorphism since each $\operatorname{gr}^{n}\left(B_{d R}\right)$ has dimension 1 over \mathbb{C}_{K}.
Theorem 1.8 (Fontaine (Fon94)). The ring $B_{\text {cris }}$ is $\left(\mathbb{Q}_{p}, \Gamma_{K}\right)$-regular with $B_{\text {cris }}^{\Gamma_{K}} \cong K_{0}$.
Proof. Let $C_{\text {cris }}$ denote the fraction field of $B_{\text {cris }}$. Proposition 1.5 implies that $C_{\text {cris }}$ is a subfield of $B_{d R}$ which is stable under the action of Γ_{K}. Hence we have $K_{0} \subseteq B_{c r i s}^{\Gamma_{K}} \subseteq C_{\text {cris }}^{\Gamma_{K}}$.

Then Proposition 3.1.6 and Theorem 2.2.21 together yield injective maps

$$
B_{c r i s}^{\Gamma_{K}} \otimes_{K_{0}} K \hookrightarrow B_{d R}^{\Gamma_{K}} \cong K
$$

and

$$
C_{c r i s}^{\Gamma_{K}} \otimes_{K_{0}} K \hookrightarrow B_{d R}^{\Gamma_{K}} \cong K
$$

thereby implying $K_{0}=B_{c r i s}^{\Gamma_{K}}=C_{c r i s}^{\Gamma_{K}}$.
It remains to check the condition (ii) in Definition 1.1.1. Consider an arbitrary nonzero element $b \in B_{\text {cris }}$ on which Γ_{K} acts via a character $\eta: \Gamma_{K} \rightarrow \mathbb{Q}_{p}^{\times}$. We wish to show that b is a unit in $B_{\text {cris }}$.

By Proposition 2.2.19 we may write $b=t^{i} b^{\prime}$ for some $b^{\prime} \in\left(B_{d R}^{+}\right)^{\times}$and $i \in \mathbb{Z}$. Since t is a unit in $B_{\text {cris }}$ by construction, the element b is a unit in $B_{\text {cris }}$ if and only if b^{\prime} is a unit in $B_{\text {cris }}$. Moreover, Theorem
2.2.21 implies that Γ_{K} acts on $b^{\prime}=b \cdot t^{-i}$ via the character $\eta \chi^{-i}$. Hence we may replace b by b^{\prime} to assume that b is a unit in $B_{d R}^{+}$.

Since $\theta_{d R}^{+}$is Γ_{K}-equivariant as noted in Theorem 2.2.21, the action of Γ_{K} on $\theta_{d R}^{+}(b) \in \mathbb{C}_{K}$ is given by the character η. Then by the continuity of the Γ_{K}-action on \mathbb{C}_{K} we find that η is continuous. Therefore we may consider η as a character with values in \mathbb{Z}_{p}^{\times}. Moreover, we have $\theta_{d R}^{+}(b) \neq 0$ as b is assumed to be a unit in $B_{d R}^{+}$. Hence Theorem 1.1.8 implies that $\eta^{-1}\left(I_{K}\right)$ is finite.

Let us denote by $K^{u n}$ the maximal unramified extension of K in \bar{K}, and by $\widehat{K^{u n}}$ the p-adic completion of $K^{u n}$. By definition $\widehat{K^{u n}}$ is a p-adic field with I_{K} as the absolute Galois group.

Therefore by our discussion in the preceding paragraph there exists a finite extension L of $\widehat{K^{u n}}$ with the absolute Galois group Γ_{L} such that η^{-1} becomes trivial on $\Gamma_{L} \subseteq I_{K}$. Since Γ_{K} acts on $\theta_{d R}^{+}(b)$ via η, we find $\theta_{d R}^{+}(b) \in C_{K}^{\Gamma_{L}}=C_{L}^{\Gamma_{L}}=L$.

Let us write $W(k)$ for the ring of Witt vectors over k, and $\widehat{K_{0}^{u n}}$ for the fraction field of $W(k)$. Proposition 2.2.15 yields a commutative diagram

where all maps are $\Gamma_{K^{-}}$-equivariant. Moreover, both horizontal maps are injective as $\widehat{K_{0}^{u n}}$ and L are fields. We henceforth identify $\widehat{K_{0}^{u n}}$ and L with their images in $B_{d R}$. Then we have

$$
\begin{equation*}
\widehat{K_{0}^{u n}} \subseteq A_{\text {inf }}[1 / p] \subseteq B_{\text {cris }} \tag{4}
\end{equation*}
$$

We assert that b lies in (the image of) L. Let us write $\widehat{b}:=\theta_{d R}^{+}(b)$. If suffices to show $b=\hat{b}$. Suppose for contradiction that b and \hat{b} are distinct. Since we have $\theta_{d R}^{+}(\hat{b})=\hat{b}=\theta_{d R}^{+}(b)$ by the commutativity of the diagram above, we may write $b-\hat{b}=t^{j} u$ for some $j>0$ and $u \in\left(B_{d R}^{+}\right)^{\times}$. Moreover, we find

$$
\gamma(b-\hat{b})=\gamma(b)-\gamma(\hat{b})=\eta(\gamma)(b-\hat{b})
$$

for every $\gamma \in \Gamma_{K}$.
Then under the Γ_{K}-equivariant isomorphism

$$
t^{j} B_{d R}^{+} / t^{j+1} B_{d R}^{+} \cong \mathbb{C}_{K}(j)
$$

given by Theorem 2.2.21, the element $b-\hat{b} \in t^{j} B_{d R}^{+}$yields a nonzero element in $\mathbb{C}_{K}(j)$ on which Γ_{K} acts via the character η. Therefore Theorem 1.1.8 implies that $\left(\chi^{j} \eta^{-1}\right)\left(I_{K}\right)$ is finite. Since $\eta^{-1}\left(I_{K}\right)$ is also finite as noted above, we deduce that $\chi^{j}\left(I_{K}\right)$ is finite as well, thereby obtaining a desired contradiction by Lemma 1.1.7.

Let us now regard b as an element in L. Proposition 2.2.15 implies that L is a finite extension of $\widehat{K_{0}^{u n}}$. Hence we can choose a minimal polynomial equation

$$
b^{d}+a_{1} b^{d-1}+\cdots+a_{d-1} b+a_{d}=0
$$

with $a_{n} \in \widehat{K_{0}^{u n}}$.
Since the minimality of the equation implies $a_{d} \neq 0$, we obtain an expression

$$
b^{-1}=-a_{d}^{-1}\left(b^{d-1}+a_{1} b^{d-2}+\cdots+a_{d-1}\right) .
$$

We then find $b^{-1} \in B_{\text {cris }}$ by (4), thereby completing the proof.

Proposition 1.9. Let $A_{\text {cris }}^{0}$ be the $A_{\text {inf }}$-subalgebra in $A_{\text {inf }}[1 / p]$ generated by the elements of the form $\xi^{n} / n!$ with $n \geq 0$.

1. The ring $A_{\text {cris }}$ is naturally identified with the p-adic completion of $A_{\text {cris }}^{0}$.
2. The action of Γ_{K} on $A_{\text {cris }}$ is continuous.

Lemma 1.10. The Frobenius automorphism of $A_{\text {inf }}$ uniquely extends to $a \Gamma_{K}$-equivariant continuous endomorphism φ^{+}on $B_{\text {cris }}^{+}$.
Proof. The Frobenius automorphism of $A_{\text {inf }}$ uniquely extends to an automorphism on $A_{\text {inf }}[1 / p]$, which we denote by $\varphi_{\text {inf }}$. By construction we have

$$
\begin{equation*}
\varphi_{i n f}(\xi)=\left[\left(p^{b}\right)^{p}\right]-p=\left[p^{b}\right]^{p}-p=(\xi+p)^{p}-p \tag{5}
\end{equation*}
$$

Hence we may write $\varphi_{\text {inf }}(\xi)=\xi^{p}+p c$ for some $c \in A_{\text {inf }}$. Let us define $A_{c r i s}^{0}$ as in Proposition 1.9. Then we have

$$
\varphi_{i n f}(\xi)=p \cdot\left(c+(p-1)!\cdot\left(\xi^{p} / p!\right)\right)
$$

and consequently find

$$
\varphi_{\text {inf }}\left(\xi^{n} / n!\right)=\left(p^{n} / n!\right) \cdot\left(c+(p-1)!\cdot\left(\xi^{p} / p!\right)\right)^{n} \in A_{\text {cris }}^{0} \quad \text { for all } n \geq 1
$$

by observing that p^{n} / n ! is an element of \mathbb{Z}_{p}. Hence $A_{c r i s}^{0}$ is stable under $\varphi_{\text {inf }}$. Moreover, by construction $\varphi_{\text {inf }}$ is Γ_{K}-equivariant and continuous on $A_{\text {inf }}[1 / p]$ with respect to the p-adic topology. We thus deduce by Proposition 1.9 that the endomorphism $\varphi_{\text {inf }}$ on $A_{c r i s}^{0}$ uniquely extends to a continuous $\Gamma_{K^{-}}$-equivariant endomorphism φ^{+}on $B_{c r i s}^{+}=A_{c r i s}[1 / p]$.

Remark. The identity (5) shows that $\varphi_{\text {inf }}(\xi)$ is not divisible by ξ, which implies that $\operatorname{ker}(\theta)$ is not stable under $\varphi_{\text {inf }}$. Hence the endomorphism φ^{+}on $B_{\text {cris }}^{+}$(or the Frobenius endomorphism on $B_{\text {cris }}$ that we are about to construct) is not compatible with the filtration on $B_{d R}$.
Proposition 1.11. The Frobenius automorphism of $A_{\text {inf }}$ naturally extends to a Γ_{K}-equivariant endomorphism φ on $B_{\text {cris }}$ with $\varphi(t)=p t$.
Proof. As noted in Lemma 1.10, the Frobenius automorphism of $A_{i n f}$ uniquely extends to a $\Gamma_{K^{-}}$ equivariant continuous endomorphism φ^{+}on $B_{c r i s}^{+}$. In addition, the proof of Proposition 1.2 shows that the power series expression

$$
t=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{([\varepsilon]-1)^{n}}{n}
$$

converges with respect to the p-adic topology in $A_{\text {cris }}$. Hence we use the continuity of φ^{+}on $A_{\text {cris }}$ to find that

$$
\varphi^{+}(t)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(\varphi([\varepsilon])-1)^{n}}{n}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\left(\left[\varepsilon^{p}\right]-1\right)^{n}}{n}=\log \left(\varepsilon^{p}\right)=p \log (\varepsilon)=p t
$$

Since Γ_{K} acts on t via χ, it follows that φ^{+}uniquely extends to a Γ_{K}-equivariant endomorphism φ on $B_{\text {cris }}=B_{\text {cris }}^{+}[1 / t]$.

Remark. The endomorphism φ is not continuous on $B_{\text {cris }}$, even though it is a unique extension of the continuous endomorphism φ^{+}on $B_{\text {cris }}^{+}$. The issue is that the natural topology on $B_{c r i s}^{+}$induced by the p-adic topology on $A_{\text {cris }}$ does not agree with the subspace topology inherited from $B_{\text {cris }}$.
Definition 1.12. We refer to the endomorphism φ in Proposition 1.11 as the Frobenius endomorphism of $B_{\text {cris }}$. We also write

$$
B_{e}:=\left\{b \in B_{\text {cris }}: \varphi(b)=b\right\}
$$

for the ring of Frobenius-invariant elements in $B_{\text {cris }}$.
We close this subsection by stating two fundamental results about φ without proof.
Theorem 1.13. The Frobenius endomorphism φ of $B_{\text {cris }}$ is injective.
Theorem 1.14. The natural sequence

$$
0 \rightarrow \mathbb{Q}_{p} \rightarrow B_{e} \rightarrow B_{d R} / B_{d R}^{+} \rightarrow 0
$$

is exact.
Definition 1.15. We refer to the exact sequence in Theorem 1.14 as the fundamental exact sequence of p-adic Hodge theory.

