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This week: crystalline Representations

The goal is to study the period ring B,,;s and crystalline representations. So far, the only result we
assumed was the Tate—Sen Theorem (and one smaller result about the new topology on B;R). In this
section, we will starting assumingmore results without proof.

1 The crystalline period ring B, ;s

Throughout this section, we write W (k) for the ring of Witt vectors over k, and K, for its fraction
field. Recall that we have fixed an element p” € Or with (p°)* = p and set & = [p’] — p € Ay

Definition 1.1. We define the integral crystalline period ring by
cms : Z an R Lap € Aznf with hm Ay = 0}

and write BT . = Acris[1/p].
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Remark. In the definition of A.,;s above, it is vital to consider the refinement of the discrete valua-
tion topology on B+4r. While the convergence of the infinite sum »_ -, an% relies on the discrete
valuation topology on BjR, the limit of the coefficients an should be taken with respect to the p-adic

topology on A;p .

We warn the readers that the terminology given in Definition 1.1 is not standard at all. In fact, most
authors do not give a separate name for the ring A..;s. Our choice of the terminology comes from the
fact that A..;s plays the role of the crystalline period ring in the integral p-adic Hodge theory.

Proposition 1.2. We have t € Agris and P71 € pAgris.

Proof. By previous lemma we write [e] — 1 = &c for some ¢ € A;,r. Then we obtain

t = nz::l( 1)n+1 nz::l n+1 1)'0” . % (1)

We thus find ¢t € A.ris as we have lim, o (n — 1)!¢” = 0 in A,y 5 relative to the p-adic topology.

It remains to show t?~1 € pA..is. Let us set
p
-1
1 (
Z i 7- (2)

Since (n — 1)! is divisible by p for all n > p, we find ¢t — t € pAcris by . Hence it suffices to prove
tp ! E pA(/T'Lé

The terms for n < p in are all divisible by [¢] — 1 in A.;s, whereas the term for n = p in can
be written as
(_1)p+1 ([5} — 1);0—1
p

(el =1).

In other words, we may write

t=(e -1 (a + (1)p+1([€]1)p>

p



for some a € Agpis. It is therefore enough to show ([¢] — 1)P~1 € pA,.is. In addition, by we have
V(e - 1P =p=2"((p")").

and consequently find that [(¢ — 1)P~!] is divisible by [p’]? = (£ 4+ p)P. We thus deduce the desired
assertion by observing that & =p- (p — 1)!- (£P/p!) is divisible by p in Agps. O

Remark. As a consequence, we find that
ol t

ﬁ - P : (p_ 1)‘ S Acris-

In fact, it is not hard to prove that for every a € A..;s with GjR(a) =0 we have a n/n! € A..;s for all
n>1.
Corollary 1.3. We have an identification B}, [1/t] = Aupis[1/t].
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Proof. Proposition 1.2 implies that p is a unit in A..;s[1/], thereby yielding B, [1/t] = Acnis[1/p, 1/t] =
Acris[1/t], as desired. O

Definition 1.4. We define the crystalline period ring by

Beris 7= Bl [1/t] = Acris[1/1]
Remark. Let us briefly explain Fontaine’s insight behind the construction of B..;s. The main mo-
tivation for constructing the crystalline period ring Bg,;s is to obtain the Grothendieck mysterious
functor as described in Chapter I, Conjecture 1.2.3. Recall that, for a proper smooth variety X over
K with a proper smooth integral model X over O, the crystalline cohomology H.. (X, W(k)) ad-
mits a natural Frobenius action and refines the de Rham cohomology H} R(X/K) via a canonical
isomorphism
Hn
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(X, W(k))[1/p] @k, K = Hip(X/K).

In addition, since A;,s is by construction the ring of Witt vectors over a perfect Fy-algebra Op, it
admits the Frobenius automorphism ¢;,s as noted in Chapter II, Example 2.3.2. Fontaine sought to
construct Be,;s as a sufficiently large subring of Byr on which ¢;,; naturally extends. For Bygr there
is no natural extension of ¢;, ¢ since ker(#[1/p]) is not stable under ¢;,r. Fontaine’s key observation
is that by adjoining to A;,; the elements of the form £™/n! for n > 1 we obtain a subring of A;,, r[1/p]
such that the image of ker(#[1/p]) is stable under ¢;, . This observation led Fontaine to consider the
ring Agpis defined in Definition 1.1. The only issue with A.,;s is that it is not (Qy, I )-regular, which
turns out to be resolved by considering the ring Beyis = Acris[1/t].

Proposition 1.5. The ring Beris is naturally a filtered subalgebra of Bar over Ko which is stable
under the action of T'k .

Proof. By construction we have
Aznf[l/p} g Ar‘ms[l/p] = B;w g Bcris g BdR~

In addition, the proof of Proposition 2.2.15 yields a unique homomorphism K — Byr which extends
a natural homomorphism Ky — A;,s[1/p]. Hence by Example 2.3.2 we naturally identify Beris as a
filtered subalgebra of Byr over Ky with Fil™(Beris) := Bepis N t”BJR.

It remains to show that Beris = Aeris[1/t] is stable under the action of I'. Since I'k acts on t by
the cyclotomic character as noted in Theorem 2.2.21, we only need to show that A..;s is stable under
the action of I'. Consider an arbitrary element v € I'x and an arbitrary sequence (ay) in Ajns
with lim, . an, = 0. Since ker(#) is stable under the I'k-action as noted in Theorem 2.2.21, we may
write y(§) = ¢4 & for some ¢, € A;ns by Proposition 2.2.6. We then have lim,,_, 'y(an)cf; =0 as the
I'k-action on A;y, s is evidently continuous with respect to the p-adic topology. Hence we find

Y (ZO anﬂ,) = Z:O’y(an)cfya € Acris

as desired.



Remark. We provide a functorial perspective for the I' x-actions on B;s and By which can be useful
in many occasions. Since the definitions of B.,.;s and Bggr only depend on the valued field Cg, we may
regard B.,;s and Bgg as functors which associate topological rings to each complete and algebraically
closed valued field. Then by functoriality the action of ' on Cg induces the actions of ' on Bepis
and Bggr. In particular, since B..;s is a subfunctor of Bjr we deduce that the I'kx-action on B, is
given by the restriction of the I'kx-action on Byg as asserted in Proposition 1.5.

We also warn that Fil°(Beris) = Beris N B;R is not equal to BT. . For example, the element
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[£/P] —1

RV T

lies in Bepis N B, but not in BY .
In order to study the I'x-action on B.;s we invoke the following crucial (and surprisingly technical)
result without proof.

Proposition 1.6. The natural I'k -equivariant map Beris Ok, K — Bqr 1s injective.

Remark. The original proof by Fontaine in [Fon94] is incorrect. A complete proof involving the
semistable period ring can be found in Fontaine and Ouyang’s notes [FO, Theorem 6.14]. Note however
that the assertion is obvious if we have K = K{, which amounts to the condition that K is unramified

over Q.

Proposition 1.7. There exists a natural isomorphism of graded K -algebras
gr(Bcris ®Ko K) = gr(BdR) = BHT~

Proof. We only need to establish the first identification as the second identification immediately follows
from Theorem 2.2.21 as noted in Example 2.3.2. By Proposition 1.6 the natural map Beris ®x, K —
Bggr induces an injective morphism of graded K-algebras

gr(Beris @Ky K) < gr(Bag). (3)
In particular, we have an injective map
gr°(Beris @1, K) = gr°(Bar) = Cg

where the isomorphism is induced by GIR. Moreover, this map is surjective since the image of
Beris @k, K in Bqr contains A;, ¢[1/p] and consequently maps onto Cx by GZ{R. Therefore we obtain
an isomorphism

gro (Bcris ®Ko K) = gro (BdR) = CK

This implies that each gr’(Beris ®k, K) is a vector space over Cx. Moreover, each gr"(Beris ®k, K)
contains a nonzero element given by t" ® 1. Hence the injective map must be an isomorphism since
each gr’(Bgygr) has dimension 1 over Cg. O

Theorem 1.8 (Fontaine (Fon94)). The ring Beris is (Qp, Ik )-reqular with BYx o~ [,.
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Proof. Let C.;s denote the fraction field of B.,;s. Proposition 1.5 implies that C,,;s is a subfield of
Bgar which is stable under the action of I'x. Hence we have Ko C BLX C CLx .

Then Proposition 3.1.6 and Theorem 2.2.21 together yield injective maps

and
Clx @i, K — BYE 2 K

cris

thereby implying Ky = BLX = L«
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It remains to check the condition (ii) in Definition 1.1.1. Consider an arbitrary nonzero element
b € Beris on which 'k acts via a character n: T'x — Q). We wish to show that b is a unit in Beps.

By Proposition 2.2.19 we may write b = t*b’ for some b’ € (B(;"R)X and ¢ € Z. Since t is a unit in B,
by construction, the element b is a unit in B,,;, if and only if &’ is a unit in B.,;;. Moreover, Theorem



2.2.21 implies that I'x acts on ' = b-t~? via the character nx~*. Hence we may replace b by b to

assume that b is a unit in B;R.

Since 0, is T'-equivariant as noted in Theorem 2.2.21, the action of I'sc on 61,(b) € Ck is given
by the character n. Then by the continuity of the I'x-action on Cx we find that n is continuous.
Therefore we may consider 7 as a character with values in Z;. Moreover, we have QiR(b) #0asbis

assumed to be a unit in BIR. Hence Theorem 1.1.8 implies that =1 (I) is finite.

Let us denote by K*" the maximal unramified extension of K in K, and by K the p-adic completion
of K. By definition K“" is a p-adic field with Ik as the absolute Galois group.

Therefore by our discussion in the preceding paragraph there exists a finite extension L of K with
the absolute Galois group I'y, such that n~! becomes trivial on I';, C Ix. Since I'x acts on OZ{R(b) via
n, we find 07,(b) € O3t = CL* = L.

Let us write W (k) for the ring of Witt vectors over k, and I?g\” for the fraction field of W (k). Propo-
sition 2.2.15 yields a commutative diagram

K™ —— Ape[1/p]

/ I

L —— Bt

dR
\ J'BIR

Ck

where all maps are I' gx-equivariant. Moreover, both horizontal maps are injective as I?g\" and L are
fields. We henceforth identify K§" and L with their images in Byr. Then we have

We assert that b lies in (the image of) L. Let us write b= 01(b). If suffices to show b = b. Suppose
for contradiction that b and b are distinct. Since we have 0j,(b) = b = 61,(b) by the commutativity
of the diagram above, we may write b — b = t/u for some j > 0 and u € (Bj,)*. Moreover, we find

Y(b—b) = 7(b) —v(b) =n(y)(b—b)

for every v € I'k.

Then under the I' x-equivariant isomorphism
t' B/t Bip = Ck(j)

given by Theorem 2.2.21, the element b — b € J B, yields a nonzero element in C (j) on which T'x
acts via the character 7. Therefore Theorem 1.1.8 implies that (x/n~1)(If) is finite. Since n~1(I) is
also finite as noted above, we deduce that x7(I) is finite as well, thereby obtaining a desired contra-
diction by Lemma 1.1.7.

Let us now regard b as an element in L. Proposition 2.2.15 implies that L is a finite extension of [?g\".
Hence we can choose a minimal polynomial equation

bd—l—albd_l +--4ag_1b+aqg=0
with a,, € @.
Since the minimality of the equation implies ag # 0, we obtain an expression
bl = —(1;1(19‘1_1 +a b2+ ag—1).

We then find b=! € B.,;s by (4), thereby completing the proof.



Proposition 1.9. Let A,  be the A p-subalgebra in A, ¢[1/p] generated by the elements of the form
& /n! with n > 0.

0
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1. The ring Acris is naturally identified with the p-adic completion of A
2. The action of Tk on Agpis is continuous.

Lemma 1.10. The Frobenius automorphism of A,y uniquely extends to a I i -equivariant continuous

endomorphism ¢+ on Bl ..

Proof. The Frobenius automorphism of A;,, ¢ uniquely extends to an automorphism on A, ¢[1/p], which
we denote by ;. By construction we have

Pint (&) =[] —p=P) —p=(E+p)P —p. (5)

0 .
CT18

Hence we may write @;n¢(§) = &P + pc for some ¢ € A;, 5. Let us define A
Then we have

as in Proposition 1.9.

pinf(§) =p- (c+(p—1!-(£"/pY),
and consequently find

Qing(£"/nl) = (p"/n)) - (c+ (p— 1) - (€7 /p!))" € AL, foralln>1

by observing that p"/n! is an element of Z,. Hence A%,  is stable under ¢;,¢. Moreover, by con-

struction ;s is I'x-equivariant and continuous on A;, r[1/p] with respect to the p-adic topology. We
thus deduce by Proposition 1.9 that the endomorphism ¢;,,5 on A? . uniquely extends to a continuous
I' g-equivariant endomorphism ¢t on B} = A...[1/p]. O
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Remark. The identity shows that ;,f(§) is not divisible by &, which implies that ker(6) is not
stable under ;. Hence the endomorphism ot on B;is (or the Frobenius endomorphism on B,
that we are about to construct) is not compatible with the filtration on Byg.

Proposition 1.11. The Frobenius automorphism of Ainy naturally extends to a Ik -equivariant en-

domorphism ¢ on Beris with ¢(t) = pt.

Proof. As noted in Lemma 1.10, the Frobenius automorphism of A;,; uniquely extends to a I'k-
equivariant continuous endomorphism ¢ on B;is. In addition, the proof of Proposition 1.2 shows
that the power series expression

t = i(_l)nﬂw

n

converges with respect to the p-adic topology in A.,;s. Hence we use the continuity of ¢ on A, to
find that

oty = 3y P syt 2T o) = pioge) = .
n=1 n=1

Since I'¢ acts on t via ¥, it follows that ¢ uniquely extends to a I'x-equivariant endomorphism ¢ on
Beris = B, [1/t]. O

cris

Remark. The endomorphism ¢ is not continuous on B,,;s, even though it is a unique extension of
the continuous endomorphism ¢+ on B . The issue is that the natural topology on B induced
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by the p-adic topology on A..;s does not agree with the subspace topology inherited from B, ;5.

Definition 1.12. We refer to the endomorphism o in Proposition 1.11 as the Frobenius endomorphism
of Beris- We also write
B, :={b € Bepis : p(b) = b}

for the ring of Frobenius-invariant elements in Beyis.
We close this subsection by stating two fundamental results about ¢ without proof.
Theorem 1.13. The Frobenius endomorphism ¢ of Beris s injective.
Theorem 1.14. The natural sequence
0— Qp = B. = Bar/Bjp — 0
s exact.

Definition 1.15. We refer to the exact sequence in Theorem 1.1} as the fundamental exact sequence
of p-adic Hodge theory.
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