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This week: crystalline Representations
The goal is to study the period ring Bcris and crystalline representations. So far, the only result we
assumed was the Tate–Sen Theorem (and one smaller result about the new topology on B+

dR). In this
section, we will starting assumingmore results without proof.

1 The crystalline period ring Bcris

Throughout this section, we write W (k) for the ring of Witt vectors over k, and K0 for its fraction
field. Recall that we have fixed an element p♭ ∈ OF with (p♭)♯ = p and set ξ = [p♭]− p ∈ Ainf .

Definition 1.1. We define the integral crystalline period ring by

Acris : {
∞∑

n=0

an
ξn

n!
∈ B+

dR : an ∈ Ainf with lim
n→∞

an = 0},

and write B+
cris := Acris[1/p].

Remark. In the definition of Acris above, it is vital to consider the refinement of the discrete valua-
tion topology on B+dR. While the convergence of the infinite sum

∑
n≥0 an

ξn
n! relies on the discrete

valuation topology on B+
dR, the limit of the coefficients an should be taken with respect to the p-adic

topology on Ainf .

We warn the readers that the terminology given in Definition 1.1 is not standard at all. In fact, most
authors do not give a separate name for the ring Acris. Our choice of the terminology comes from the
fact that Acris plays the role of the crystalline period ring in the integral p-adic Hodge theory.

Proposition 1.2. We have t ∈ Acris and tp−1 ∈ pAcris.

Proof. By previous lemma we write [ε]− 1 = ξc for some c ∈ Ainf . Then we obtain

t =

∞∑
n=1

(−1)n+1 ([ε]− 1)n

n
=

∞∑
n=1

(−1)n+1(n− 1)!cn · ξ
n

n!
. (1)

We thus find t ∈ Acris as we have limn→∞(n− 1)!cn = 0 in Ainf relative to the p-adic topology.

It remains to show tp−1 ∈ pAcris. Let us set

t̆ :=

p∑
n=1

(−1)n+1 ([ε]− 1)n

n
. (2)

Since (n − 1)! is divisible by p for all n > p, we find t − t̆ ∈ pAcris by (1). Hence it suffices to prove
t̆p−1 ∈ pAcris.

The terms for n < p in (2) are all divisible by [ε] − 1 in Acris, whereas the term for n = p in (2) can
be written as

(−1)p+1 ([ε]− 1)p−1

p
· ([ε]− 1).

In other words, we may write

t̆ = ([ε]− 1)

(
a+ (−1)p+1 ([ε]− 1)p−1

p

)
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for some a ∈ Acris. It is therefore enough to show ([ε]− 1)p−1 ∈ pAcris. In addition, by we have

ν♭((ε− 1)p−1) = p = ν♭((p♭)p).

and consequently find that [(ε − 1)p−1] is divisible by [p♭]p = (ξ + p)p. We thus deduce the desired
assertion by observing that ξp = p · (p− 1)! · (ξp/p!) is divisible by p in Acris.

Remark. As a consequence, we find that

tp

p!
=

tp−1

p
· t

(p− 1)!
∈ Acris.

In fact, it is not hard to prove that for every a ∈ Acris with θ+dR(a) = 0 we have a n/n! ∈ Acris for all
n ≥ 1.

Corollary 1.3. We have an identification B+
cris[1/t] = Acris[1/t].

Proof. Proposition 1.2 implies that p is a unit inAcris[1/t], thereby yieldingB
+
cris[1/t] = Acris[1/p, 1/t] =

Acris[1/t], as desired.

Definition 1.4. We define the crystalline period ring by

Bcris := B+
cris[1/t] = Acris[1/t]

Remark. Let us briefly explain Fontaine’s insight behind the construction of Bcris. The main mo-
tivation for constructing the crystalline period ring Bcris is to obtain the Grothendieck mysterious
functor as described in Chapter I, Conjecture 1.2.3. Recall that, for a proper smooth variety X over
K with a proper smooth integral model X over OK , the crystalline cohomology Hn

cris(Xk,W (k)) ad-
mits a natural Frobenius action and refines the de Rham cohomology Hn

dR(X/K) via a canonical
isomorphism

Hn
cris(Xk,W (k))[1/p]⊗K0 K

∼= Hn
dR(X/K).

In addition, since Ainf is by construction the ring of Witt vectors over a perfect Fp-algebra OF , it
admits the Frobenius automorphism φinf as noted in Chapter II, Example 2.3.2. Fontaine sought to
construct Bcris as a sufficiently large subring of BdR on which φinf naturally extends. For BdR there
is no natural extension of φinf since ker(θ[1/p]) is not stable under φinf . Fontaine’s key observation
is that by adjoining to Ainf the elements of the form ξn/n! for n ≥ 1 we obtain a subring of Ainf [1/p]
such that the image of ker(θ[1/p]) is stable under φinf . This observation led Fontaine to consider the
ring Acris defined in Definition 1.1. The only issue with Acris is that it is not (Qp,ΓK)-regular, which
turns out to be resolved by considering the ring Bcris = Acris[1/t].

Proposition 1.5. The ring Bcris is naturally a filtered subalgebra of BdR over K0 which is stable
under the action of ΓK .

Proof. By construction we have

Ainf [1/p] ⊆ Acris[1/p] = B+
cris ⊆ Bcris ⊆ BdR.

In addition, the proof of Proposition 2.2.15 yields a unique homomorphism K → BdR which extends
a natural homomorphism K0 → Ainf [1/p]. Hence by Example 2.3.2 we naturally identify Bcris as a
filtered subalgebra of BdR over K0 with Filn(Bcris) := Bcris ∩ tnB+

dR.

It remains to show that Bcris = Acris[1/t] is stable under the action of ΓK . Since ΓK acts on t by
the cyclotomic character as noted in Theorem 2.2.21, we only need to show that Acris is stable under
the action of ΓK . Consider an arbitrary element γ ∈ ΓK and an arbitrary sequence (an) in Ainf

with limn→∞ an = 0. Since ker(θ) is stable under the ΓK-action as noted in Theorem 2.2.21, we may
write γ(ξ) = cγξ for some cγ ∈ Ainf by Proposition 2.2.6. We then have limn→∞ γ(an)c

n
γ = 0 as the

ΓK-action on Ainf is evidently continuous with respect to the p-adic topology. Hence we find

γ

( ∞∑
n=0

an
ξn

n!

)
=

∞∑
n=0

γ(an)c
n
γ

ξn

n!
∈ Acris

as desired.

2



Remark. We provide a functorial perspective for the ΓK-actions on Bcris and BdR which can be useful
in many occasions. Since the definitions of Bcris and BdR only depend on the valued field CK , we may
regard Bcris and BdR as functors which associate topological rings to each complete and algebraically
closed valued field. Then by functoriality the action of ΓK on CK induces the actions of ΓK on Bcris

and BdR. In particular, since Bcris is a subfunctor of BdR we deduce that the ΓK-action on Bcris is
given by the restriction of the ΓK-action on BdR as asserted in Proposition 1.5.

We also warn that Fil◦(Bcris) = Bcris ∩B+
dR is not equal to B+

cris. For example, the element

α+
[ε1/p

2

]− 1

[ε1/p]− 1

lies in Bcris ∩B+
dR but not in B+

cris.

In order to study the ΓK-action on Bcris we invoke the following crucial (and surprisingly technical)
result without proof.

Proposition 1.6. The natural ΓK-equivariant map Bcris ⊗K0
K → BdR is injective.

Remark. The original proof by Fontaine in [Fon94] is incorrect. A complete proof involving the
semistable period ring can be found in Fontaine and Ouyang’s notes [FO, Theorem 6.14]. Note however
that the assertion is obvious if we have K = K0, which amounts to the condition that K is unramified
over Qp.

Proposition 1.7. There exists a natural isomorphism of graded K-algebras

gr(Bcris ⊗K0
K) ∼= gr(BdR) ∼= BHT .

Proof. We only need to establish the first identification as the second identification immediately follows
from Theorem 2.2.21 as noted in Example 2.3.2. By Proposition 1.6 the natural map Bcris ⊗K0

K →
BdR induces an injective morphism of graded K-algebras

gr(Bcris ⊗K0 K) ↪→ gr(BdR). (3)

In particular, we have an injective map

gr◦(Bcris ⊗K0
K) ↪→ gr◦(BdR) ∼= CK

where the isomorphism is induced by θ+dR. Moreover, this map is surjective since the image of
Bcris ⊗K0 K in BdR contains Ainf [1/p] and consequently maps onto CK by θ+dR. Therefore we obtain
an isomorphism

gr◦(Bcris ⊗K0
K) ∼= gr◦(BdR) ∼= CK

This implies that each grn(Bcris ⊗K0
K) is a vector space over CK . Moreover, each grn(Bcris ⊗K0

K)
contains a nonzero element given by tn⊗1. Hence the injective map (3) must be an isomorphism since
each grn(BdR) has dimension 1 over CK .

Theorem 1.8 (Fontaine (Fon94)). The ring Bcris is (Qp,ΓK)-regular with BΓK
cris

∼= K0.

Proof. Let Ccris denote the fraction field of Bcris. Proposition 1.5 implies that Ccris is a subfield of
BdR which is stable under the action of ΓK . Hence we have K0 ⊆ BΓK

cris ⊆ CΓK
cris.

Then Proposition 3.1.6 and Theorem 2.2.21 together yield injective maps

BΓK
cris ⊗K0

K ↪→ BΓK

dR
∼= K

and
CΓK

cris ⊗K0 K ↪→ BΓK

dR
∼= K

thereby implying K0 = BΓK
cris = CΓK

cris.

It remains to check the condition (ii) in Definition 1.1.1. Consider an arbitrary nonzero element
b ∈ Bcris on which ΓK acts via a character η : ΓK → Q×

p . We wish to show that b is a unit in Bcris.

By Proposition 2.2.19 we may write b = tib′ for some b′ ∈ (B+
dR)

× and i ∈ Z. Since t is a unit in Bcris

by construction, the element b is a unit in Bcris if and only if b′ is a unit in Bcris. Moreover, Theorem
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2.2.21 implies that ΓK acts on b′ = b · t−i via the character ηχ−i. Hence we may replace b by b′ to
assume that b is a unit in B+

dR.

Since θ+dR is ΓK-equivariant as noted in Theorem 2.2.21, the action of ΓK on θ+dR(b) ∈ CK is given
by the character η. Then by the continuity of the ΓK-action on CK we find that η is continuous.
Therefore we may consider η as a character with values in Z×

p . Moreover, we have θ+dR(b) ̸= 0 as b is

assumed to be a unit in B+
dR. Hence Theorem 1.1.8 implies that η−1(IK) is finite.

Let us denote by Kun the maximal unramified extension of K in K, and by K̂un the p-adic completion
of Kun. By definition K̂un is a p-adic field with IK as the absolute Galois group.

Therefore by our discussion in the preceding paragraph there exists a finite extension L of K̂un with
the absolute Galois group ΓL such that η−1 becomes trivial on ΓL ⊆ IK . Since ΓK acts on θ+dR(b) via

η, we find θ+dR(b) ∈ CΓL

K = CΓL

L = L.

Let us write W (k) for the ring of Witt vectors over k, and K̂un
0 for the fraction field of W (k). Propo-

sition 2.2.15 yields a commutative diagram

where all maps are ΓK-equivariant. Moreover, both horizontal maps are injective as K̂un
0 and L are

fields. We henceforth identify K̂un
0 and L with their images in BdR. Then we have

K̂un
0 ⊆ Ainf [1/p] ⊆ Bcris (4)

We assert that b lies in (the image of) L. Let us write b̂ := θ+dR(b). If suffices to show b = b̂. Suppose

for contradiction that b and b̂ are distinct. Since we have θ+dR(b̂) = b̂ = θ+dR(b) by the commutativity

of the diagram above, we may write b− b̂ = tju for some j > 0 and u ∈ (B+
dR)

×. Moreover, we find

γ(b− b̂) = γ(b)− γ(b̂) = η(γ)(b− b̂)

for every γ ∈ ΓK .

Then under the ΓK-equivariant isomorphism

tjB+
dR/t

j+1B+
dR

∼= CK(j)

given by Theorem 2.2.21, the element b − b̂ ∈ tjB+
dR yields a nonzero element in CK(j) on which ΓK

acts via the character η. Therefore Theorem 1.1.8 implies that (χjη−1)(IK) is finite. Since η−1(IK) is
also finite as noted above, we deduce that χj(IK) is finite as well, thereby obtaining a desired contra-
diction by Lemma 1.1.7.

Let us now regard b as an element in L. Proposition 2.2.15 implies that L is a finite extension of K̂un
0 .

Hence we can choose a minimal polynomial equation

bd + a1b
d−1 + · · ·+ ad−1b+ ad = 0

with an ∈ K̂un
0 .

Since the minimality of the equation implies ad ̸= 0, we obtain an expression

b−1 = −a−1
d (bd−1 + a1b

d−2 + · · ·+ ad−1).

We then find b−1 ∈ Bcris by (4), thereby completing the proof.
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Proposition 1.9. Let A0
cris be the Ainf -subalgebra in Ainf [1/p] generated by the elements of the form

ξn/n! with n ≥ 0.

1. The ring Acris is naturally identified with the p-adic completion of A0
cris.

2. The action of ΓK on Acris is continuous.

Lemma 1.10. The Frobenius automorphism of Ainf uniquely extends to a ΓK-equivariant continuous
endomorphism φ+ on B+

cris.

Proof. The Frobenius automorphism of Ainf uniquely extends to an automorphism on Ainf [1/p], which
we denote by φinf . By construction we have

φinf (ξ) = [(p♭)p]− p = [p♭]p − p = (ξ + p)p − p. (5)

Hence we may write φinf (ξ) = ξp + pc for some c ∈ Ainf . Let us define A0
cris as in Proposition 1.9.

Then we have
φinf (ξ) = p · (c+ (p− 1)! · (ξp/p!)),

and consequently find

φinf (ξ
n/n!) = (pn/n!) · (c+ (p− 1)! · (ξp/p!))n ∈ A0

cris for all n ≥ 1

by observing that pn/n! is an element of Zp. Hence A0
cris is stable under φinf . Moreover, by con-

struction φinf is ΓK-equivariant and continuous on Ainf [1/p] with respect to the p-adic topology. We
thus deduce by Proposition 1.9 that the endomorphism φinf on A0

cris uniquely extends to a continuous
ΓK-equivariant endomorphism φ+ on B+

cris = Acris[1/p].

Remark. The identity (5) shows that φinf (ξ) is not divisible by ξ, which implies that ker(θ) is not
stable under φinf . Hence the endomorphism φ+ on B+

cris (or the Frobenius endomorphism on Bcris

that we are about to construct) is not compatible with the filtration on BdR.

Proposition 1.11. The Frobenius automorphism of Ainf naturally extends to a ΓK-equivariant en-
domorphism φ on Bcris with φ(t) = pt.

Proof. As noted in Lemma 1.10, the Frobenius automorphism of Ainf uniquely extends to a ΓK-
equivariant continuous endomorphism φ+ on B+

cris. In addition, the proof of Proposition 1.2 shows
that the power series expression

t =

∞∑
n=1

(−1)n+1 ([ε]− 1)n

n

converges with respect to the p-adic topology in Acris. Hence we use the continuity of φ+ on Acris to
find that

φ+(t) =

∞∑
n=1

(−1)n+1 (φ([ε])− 1)n

n
=

∞∑
n=1

(−1)n+1 ([ε
p]− 1)n

n
= log(εp) = p log(ε) = pt.

Since ΓK acts on t via χ, it follows that φ+ uniquely extends to a ΓK-equivariant endomorphism φ on
Bcris = B+

cris[1/t].

Remark. The endomorphism φ is not continuous on Bcris, even though it is a unique extension of
the continuous endomorphism φ+ on B+

cris. The issue is that the natural topology on B+
cris induced

by the p-adic topology on Acris does not agree with the subspace topology inherited from Bcris.

Definition 1.12. We refer to the endomorphism φ in Proposition 1.11 as the Frobenius endomorphism
of Bcris. We also write

Be := {b ∈ Bcris : φ(b) = b}
for the ring of Frobenius-invariant elements in Bcris.

We close this subsection by stating two fundamental results about φ without proof.

Theorem 1.13. The Frobenius endomorphism φ of Bcris is injective.

Theorem 1.14. The natural sequence

0 → Qp → Be → BdR/B
+
dR → 0

is exact.

Definition 1.15. We refer to the exact sequence in Theorem 1.14 as the fundamental exact sequence
of p-adic Hodge theory.
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