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This week: de Rham Representations

1 Filtered Vector Spaces

In this subsection we set up a categorical framework for our discussion of BdR-admissible representa-
tions in the next subsection.

Definition 1.1. Let L be an arbitrary field.

1. A filtered vector space over L is a vector space V over L along with a collection of subspaces
{Filn(V )}n∈Z that satisfies the following properties:

(a) Filn(V ) ⊃ Filn+1(V ) for every n ∈ Z.
(b)

⋂
n∈Z Filn(V ) = 0 and

⋃
n∈Z Filn(V ) = V .

2. A graded vector space over L is a vector space V over L along with a direct sum decomposition
V =

⊕
n∈Z Vn.

3. A L-linear map between two filtered vector spaces V and W over L is called a morphism of filtered
vector spaces if it maps each Filn(V ) into Filn(W ).

4. A L-linear map between two graded vector spaces V =
⊕

n∈Z Vn and W =
⊕

n∈Z Wn over L is
called a morphism of graded vector spaces if it maps each Vn into Wn.

5. For a filtered vector space V over L, we define its associated graded vector space by

gr(V ) :=
⊕
n∈Z

Filn(V )/F iln+1(V )

and write grn(V ) := Filn(V )/F iln+1(V ) for every n ∈ Z.

6. We denote by FilL the category of finite dimensional filtered vector spaces over L.

Example 1.2. We present some motivating examples for our discussion

1. The ring BdR is a filtered K-algebra with Filn(BdR) := tnB+
dR and gr(BdR) ∼= BHT

2. For a proper smooth variety X over K, the de Rham cohomology Hn
dR(X/K) with the Hodge

filtration is a filtered vector space over K whose associated graded vector space recovers the Hodge
cohomology.

3. For every V ∈ RepQp
(ΓK), we may regard DBdR

(V ) = (V ⊗Qp BdR)
ΓK as a filtered vector space

over K with
Filn(DBdR

(V )) := (V ⊗Qp
tnB+

dR)
ΓK .

For an arbitrary proper smooth variety X over K, we have a canonical ΓK equivariant isomorphism
of filtered vector spaces

DBdR
(Hn

ét(XK ,Qp)) ∼= Hn
dR(X/K)

Lemma 1.3. Let V be a finite dimensional filtered vector space over a field L. There exists a basis
(vi,j) for V such that for every n ∈ Z the vectors vi,j with i ≥ n form a basis for Filn(V ).

Definition 1.4. Let L be an arbitrary field.
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1. Given two filtered vector spaces V and W over L, we define the convolution filtration on V ⊗LW
by

Filn(V ⊗L W ) :=
∑

i+j=n

Fili(V )⊗L Filj(W ).

2. For every filtered vector space V over L, we define the dual filtration on the dual space V ∨ =
HomL(V,L) by

Filn(V ∨) := {f ∈ V ∨ : Fil1−n(V ) ⊆ ker(f)}

3. We define the unit object L[0] in FilL to be the vector space L with the filtration

Filn(L[0])

{
L if n ≤ 0,

0 if n > 0.

Remark. The use of Fil1−n(V ) rather than Fil−n(V ) in the (2) above is to ensure that L[0] is
self-dual.

Proposition 1.5. Let V be a filtered vector space over a field L. Then we have canonical isomorphisms
of filtered vector spaces

V ⊗L L[0] ∼= L[0]⊗L V ∼= V and (V ∨)∨ ∼= V

Proof. For every n ∈ Z we find

Filn(V ⊗L L[0]) =
∑

i+j=n

Fili(V )⊗L Filj(L[0]) ∼=
∑
i≥n

Fili(V ) = Filn(V ),

and consequently obtain an identification of filtered vector spaces

V ⊗L L[0] ∼= L[0]⊗L V ∼= V.

Moreover, the natural evaluation isomorphism ϵ : V ∼= (V ∨)∨ yields an isomorphism of filtered vector
spaces since for every n ∈ Z we have

Therefore we complete the proof.

Proposition 1.6. Let V and W be finite dimensional filtered vector spaces over a field L. Then we
have a natural identification of filtered vector space

(V ⊗L W )∨ ∼= V ∨ ⊗L W∨.

Proof. By Lemma 1.3 we can choose bases (vi,k) and (wj,l) for V and W such that for every n ∈ Z
the vectors (vi,k)i≥n and (wj,l)j≥n respectively form bases for Filn(V ) and Filn(W ). Let (fi,k) and
(gj,l) be the dual bases for V

∨ and W∨. Then the vectors (fi,k ⊗ gj,l) form a basis for the vector space
(V ⊗LW )∨ ∼= V ∨⊗LW∨. Moreover, for every n ∈ Z the vectors (fi,k)i≤−n and (gj,l)j≤−n respectively
form bases for Filn(V ∨) and Filn(W∨). Hence we find that for every n ∈ Z both Filn((V ⊗L W )∨)
and Filn(V ∨ ⊗L W∨) are spanned by the vectors (fi,k ⊗ gj,l)i+j≤−n, thereby deducing the desired
assertion.

Lemma 1.7. Let V =
⊕

n∈Z Vn and W =
⊕

n∈Z Wn be graded vector spaces over a field L. A
morphism f : V → W of graded vector spaces is an isomorphism if and only if it is bijective.

Proof. The assertion immediately follows by observing that f is the direct sum of the induced mor-
phisms fn : Vn → Wn.

Proposition 1.8. Let L be an arbitrary field. A bijective morphism f : V → W in FilL is an
isomorphism in FilL if and only if the induced map gr(f) : gr(V ) → gr(W ) is bijective.
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Proof. If f is an isomorphism of filtered vector spaces, then gr(f) is clearly an isomorphism. Let us
now assume that gr(f) is an isomorphism. We wish to show that for every n ∈ Z the induced map
Filn(f) : Filn(V ) → Filn(W ) is an isomorphism. Since each Filn(f) is injective by the bijectivity of
f , it suffices to show

dimL Filn(V ) = dimL Filn(W ) for every n ∈ Z.

The map gr(f) is an isomorphism of graded vector spaces by Lemma 1.7, and consequently induces
an isomorphism

grn(V ) ∼= grn(W ) for every n ∈ Z.

for every n ∈ Z we find

dimL Filn(V ) =
∑
i≥n

dimL gri(V ) =
∑
i≥n

dimL gri(W ) = dimL Filn(W )

as desired.

Example 1.9. Let us define L[1] to be the vector space L with the filtration

Filn(L[1]) :=

{
L if n ≤ 1,

0 if n > 1.

The bijective morphism L[0] → L[1] given by the identity map on L is not an isomorphism in FilL since
Fil1(L[0]) = 0 and Fil1(L[1]) = L are not isomorphic. Moreover, the induced map gr(L[0]) → gr(L[1])
is a zero map.

Proposition 1.10. Let L be an arbitrary field. For any V,W ∈ FilL there exists a natural isomorphism
of graded vector spaces

gr(V ⊗L W ) ∼= gr(V )⊗L gr(W ).

Proof. Since we have a direct sum decomposition

gr(V )⊗L gr(W ) =
⊕ ⊕

i+j=n

gri(V )⊗L grj(W )

 ,

it suffices to find a natural isomorphism

grn(V ⊗L W ) ∼=
⊕

i+j=n

gri(V )⊗L grj(W ) for every n ∈ Z.

By Lemma 1.3 we can choose bases (vi,k) and (wj,l) for V and W such that for every n ∈ Z the vectors
(vi,k)i≥n and (wj,l)j≥n respectively span Filn(V ) and Filn(W ). Let vi,k denote the image of vi,k under
the map Fili(V ) ↠ gri(V ), and let wj,l denote the image of wj,l under the map Filj(W ) ↠ grj(W ).
Since each Filn(V ⊗L W ) is spanned by the vectors (vi,k ⊗ wj,l)i+j≥n, we obtain the identification
(2.7) by observing that both sides are spanned by the vectors (vi,k ⊗ wj,l)i+j=n.

2 Properties of de Rham representations

Definition 2.1. We say that V ∈ RepQp
(ΓK) is de Rham if it is BdR-admissible. We write RepdRQp

(ΓK) :=

RepBdR

Qp
(ΓK) for the category of de Rham p-adic ΓK-representations. In addition, we write DHT and

DdR respectively for the functors DBHT
and DBdR

.

Example 2.2. Below are some important examples of de Rham representations.

1. For every n ∈ Z the Tate twist Qp(n) of Qp is de Rham; indeed, the inequality

dimK DdR(Qp(n)) ≤ dimQp Qp(n) = 1

is an equality, as DdR(Qp(n)) = (Qp(n)⊗Qp BdR)
ΓK contains a nonzero element 1⊗ t−n.

2. Every CK-admissible representation is de Rham by a result of Sen.

3. For every proper smooth variety X over K, the étale cohomology Hn
et(XK,Qp) is de Rham by a

theorem of Faltings as briefly discussed in Chapter I, Theorem 1.2.2.
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The general formalism discussed in §1 readily yields a number of nice properties for de Rham repre-
sentations and the functor DdR. Our main goal in this subsection is to extend these properties in order
to incorporate the additional structures induced by the filtration {tnB+

dR}n∈Z on BdR.

Lemma 2.3. Given any n ∈ Z, every V ∈ RepQp
(ΓK) is de Rham if and only if V (n) is de Rham.

Proof. Since we have identifications

V (n) ∼= V ⊗Qp Qp(n) and V ∼= V (n)⊗Qp Qp(−n),

the assertion follows from Proposition 1.2.4 and the fact that every Tate twist of Qp is de Rham as
noted in Example 2.4.2.

Proposition 2.4. Let V be a de Rham representation of ΓK . Then V is Hodge-Tate with a natural
K-linear isomorphism of graded vector spaces

gr(DdR(V )) ∼= DHT (V ).

Proof. For every n ∈ Z we have a short exact sequence

0 → tn+1B+
dR → tnB+

dR → tnB+
dR/t

n+1B+
dR → 0,

which induces an exact sequence

0 → (V ⊗Qp
tn+1B+

dR)
ΓK → (V ⊗Qp

tnB+
dR)

ΓK → (V ⊗Qp
(tnB+

dR/t
n+1B+

dR))
ΓK

Therefore we obtain an injective K-linear map of graded vector spaces

grn(DdR(V )) = Filn(DdR(V ))/F iln+1(DdR(V )) ↪→ (V ⊗Qp
(tnB+

dR/t
n+1B+

dR))
ΓK .

and consequently yields an injective K-linear map

gr(DdR(V )) ↪→
⊕
n∈Z

(V ⊗Qp
(tnB+

dR/t
n+1B+

dR))
ΓK ∼= (V ⊗Qp

BHT )
ΓK = DHT (V )

where the middle isomorphism follows from Theorem 2.2.21. We then find

dimK DdR(V ) = dimK gr(DdR(V )) ≤ dimK DHT (V ) ≤ dimQp
V

where the last inequality follows from Theorem 1.2.1. Since V is de Rham, both inequalities should
be in fact equalities, thereby yielding the desired assertion.

Example 2.5. Let V be an extension of Qp(m) by Qp(n) with m < n. We assert that V is de Rham.
By Lemma 2.3 we may assume m = 0. Then we have a short exact sequence

0 → Qp(n) → V → Qp → 0. (1)

Since the functor DdR is left exact by construction, we obtain a left exact sequence

0 → DdR(Qp(n)) → DdR(V ) → DdR(Qp).

We wish to show dimK DdR(V ) = dimQp
V = 2. Since we have

dimK DdR(Qp(n)) = dimK DdR(Qp) = 1

by Example 2.2, it suffices to show the surjectivity of the map DdR(V ) → DdR(Qp) ∼= K. As B+
dR is

faithfully flat over Qp, the sequence (1) yields a short exact sequence

0 → Qp(n)⊗Qp
B+

dR → V ⊗Qp
B+

dR → Qp ⊗Qp
B+

dR → 0.

In addition, we have identifications

(Qp(n)⊗Qp
B+

dR)
ΓK ∼= (tnB+

dR)
ΓK = 0,

(Qp ⊗Qp
B+

dR)
∼= (B+

dR)
ΓK ∼= K.

We thus obtain a long exact sequence

0 → 0 → (V ⊗Qp
B+

dR)
ΓK → K → H1(ΓK , tnB+

dR).
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Since we have (V ⊗Qp B+
dR)

ΓK ⊆ (V ⊗Qp BdR)
ΓK = DdR(V ), it suffice to prove

H1(ΓK , tnB+
dR) = 0. (2)

We have a short exact sequence

0 → tn+1B+
dR → tnB+

dR → CK(n) → 0,

which in turn yields a long exact sequence

CK(n)ΓK → H1(ΓK , tn+1B+
dR) → H1(ΓK , tnB+

dR) → H1(ΓK ,CK(n)).

Then by Theorem 3.1.12 in Chapter II we obtain an identification

H1(ΓK , tn+1B+
dR)

∼= H1(ΓK , tnB+
dR). (3)

Hence by induction we only need to prove (2) for n = 1.
Take an arbitrary element α1 ∈ H1(ΓK , tB+

dR). We wish to show α1 = 0. Regarding α1 as a cocycle,
we use to inductively construct sequences (αm) and (ym) with the following properties:

1. αm ∈ H1(ΓK , tmB+
dR) and ym ∈ tmB+

dR for all m ≥ 1.

2. αm+1(γ) = αm(γ) + γ(ym)ym for all γ ∈ ΓK and m ≥ 1.

Now, since t is a uniformizer in B+
dR, we may take an element y =

∑
ym ∈ B+

dR. Then we have

α1(γ) + γ(y)− y ∈ H1(ΓK , tmB+
dR) for all γ ∈ ΓK and m ≥ 0,

and consequently find α1(γ) + γ(y)− y = 0 for all γ ∈ ΓK . We thus deduce α1 = 0 as desired.

Remark. Highly nontrivial fact that every non-splitting extension of Qp(1) by Qp in RepQp
(ΓK) is

Hodge-Tate but not de Rham. The existence of such an extension follows from the identification

Ext1Qp[ΓK ](Qp(1),Qp) ∼= H1(ΓK ,Qp(−1)) ∼= K

where the second isomorphism is a consequence of the Tate local duality for p-adic representations.
The difficult part is to prove that such an extension is not de Rham. For this part we need a very deep
result that every de Rham representation is potentially semistable.

Proposition 2.6. Let V be a de Rham representation of ΓK . For every n ∈ Z we have grn(DdR(V )) ̸=
0 if and only if n is a Hodge-Tate weight of V .

Remark. Proposition 2.6 provides the main reason for Serin’s choice of the sign convention in the
definition of Hodge-Tate weights. In fact, under our convention the Hodge-Tate weights of a de Rham
representation V indicate where the filtration ofDdR(V ) has a jump. In particular, for a proper smooth
variety X over K, the Hodge-Tate weights of the étale cohomology Hn

ét(XK ,Qp) give the positions
of “jumps” for the Hodge filtration on the de Rham cohomology Hn

dR(X/K) by the isomorphism of
filtered vector spaces

DdR(H
n
ét(XK ,Qp)) ∼= Hn

dR(X/K).

Example 2.7. The Tate twist Qp(m) of Qp is a 1-dimensional de Rham representation with the
Hodge-Tate weight −m as noted in Example 2.2. Hence by Proposition 2.6 we find

Filn(DdR(Qp(m))) ∼=

{
K for n ≤ −m,

0 for n > −m.

In particular, for m = 0 we obtain an identification DdR(Qp) ∼= K[0].

Proposition 2.8. For every V ∈ RepdRQp
(ΓK), we have a natural ΓK-equivariant isomorphism of

filtered vector spaces
DdR(V )⊗K BdR

∼= V ⊗Qp BdR.

Proposition 2.9. The functor DdR with values in FilK is faithful and exact on RepdRQp
(ΓK).
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Proof. Let V ecK denote the category of finite dimensional vector spaces over K. The faithfulness
of DdR on RepdRQp

(ΓK) is an immediate consequence of Proposition 1.2.2 since the forgetful functor

FilK → V ecK is faithful. Hence it remains to verify the exactness of DdR on RepdRQp
(ΓK). Consider

an exact sequence of de Rham representations

0 → U → V → W → 0. (4)

The functor DdR with values in FilK is left exact by construction. In other words, for every n ∈ Z we
have a left exact sequence

0 → Filn(DdR(U)) → Filn(DdR(V )) → Filn(DdR(W )). (5)

We wish to show that this sequence extends to a short exact sequence. By Proposition 1.2.2 the
sequence (4) induces a short exact sequence of vector spaces

0 → DHT (U) → DHT (V ) → DHT (W ) → 0.

Moreover, by the definition of DHT we find that this sequence is indeed a short exact sequence of
graded vector spaces. Then by Proposition 2.4 we may rewrite this sequence as

0 → gr(DdR(U)) → gr(Ddr(V )) → gr(DdR(W )) → 0.

by Proposition 2.4. Hence for every n ∈ Z we have

thereby deducing that the sequence (5) extends to a short exact sequence as desired.

Corollary 2.10. Let V be a de Rham representation. Every subquotient W of V is a de Rham
representation with DdR(W ) naturally identified as a subquotient of DdR(V ) in FilK .

Proof. This is an immediate consequence of Proposition 1.2.3 and Proposition 2.9.

Proposition 2.11. Given any V,W ∈ RepdRQp
(ΓK), we have V ⊗Qp W ∈ RepdRQp

(ΓK) with a natural
isomorphism of filtered vector spaces

DdR(V )⊗K DdR(W ) ∼= DdR(V ⊗Qp W ). (6)

Proposition 2.12. For every de Rham representation V , we have ∧n(V ) ∈ RepdRQp
(ΓK) and Symn(V ) ∈

RepdRQp
(ΓK) with natural isomorphisms of filtered vector spaces

∧n(DdR(V )) ∼= DdR and Symn(DdR(V )) ∼= DdR(Sym
n(V )).

Proposition 2.13. For every de Rham representation V , the dual representation V ∨ is de Rham with
a natural perfect paring of filtered vector spaces

DdR(V )⊗K DdR(V
∨) ∼= DdR(V ⊗Qp

V ∨) → DdR(Qp) ∼= K[0].

Proof. We find V ∨ ∈ RepdRQp
(ΓK) and obtain the desired perfect pairing as a map of vector spaces.

Moreover, Proposition 2.11 implies that this pairing is a morphism in FilK . We thus obtain a bijective
morphism of filtered vector spaces DdR(V )∨ → DdR(V

∨). Therefore it suffices to show that the
induced map

gr(DdR(V )) → gr(DdR(V
∨)) (7)

is an isomorphism. Since V is Hodge-Tate by Proposition 2.4, we have a natural isomorphism

DHT (V )∨ ∼= DHT (V
∨) (8)

by Proposition 1.2.6. We thus deduce the desired assertion by identifying the maps (7) and (8) using
Proposition 2.4.

Let us now discuss some additional facts about de Rham representations and the functor DdR.
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Proposition 2.14. Let V be a p-adic representation of ΓK . Let L be a finite extension of K with
absolute Galois group ΓL.

1. There exists a natural isomorphism of filtered vector spaces

DdR,K(V )⊗K L ∼= DdR,L(V )

where we set DdR,K(V ) := (V ⊗Qp BdR)
ΓK and DdR,L(V ) := (V ⊗Qp BdR)

ΓL .

2. V is de Rham if and only if it is de Rham as a representation of ΓL.

Proof. We only need to prove the first statement, as the second statement immediately follows from
the first statement. Let L′ be the Galois closure of L over K with the absolute Galois group ΓL′ and
set DdR,L′(V ) := (V ⊗Qp BdR)

ΓL′ . Then we have identifications

DdR,K(V )⊗K L = (DdR,K(V )⊗K L′)Gal(L′/L) and DdR,L(V ) = DdR,L′(V )Gal(L′/L).

Hence we may replace L by L′ to assume that L is Galois over K. Moreover, since the construction of
BdR depends only on CK , we get a natural L-linear map

DdR,K(V )⊗K L → DdR,L(V ).

It is evident that this map induces a morphism of filtered vector spaces over L where the filtrations
on the source and the target are given as in Example 2.2. We then have

Filn(DdR,K(V )) = Filn(DdR,L(V ))Gal(L/K) for all n ∈ Z,

thereby deducing the desired assertion by the Galois descent for vector spaces.

Remark. Proposition 2.14 extends to any complete discrete-valued extension L of K inside CK ,
based on the “completed unramified descent argument” as explained in [BC, Proposition 6.3.8]. This
fact has the following immediate consequences:

1. Every potentially unramified p-adic representation is de Rham; indeed, we have already men-
tioned this in Example 2.2 since being CK-admissible is the same as being potentially unramified
as noted in Example 1.1.4.

2. For one-dimensional p-adic representations, being de Rham is the same as being Hodge-Tate.

Example 2.15. Let η : ΓK → Z×
p be a continuous character with finite image. Then there exists a

finite extension L of K with absolute Galois group ΓL such that Qp(η) is trivial as a representation of
ΓL. Hence by Example 2.7 and Proposition 2.14 we find that Qp(η) is de Rham with an isomorphism
of filtered vector spaces

DdR(Qp(η))⊗K L ∼= L[0],

and consequently obtain an identification

DdR(Qp(η)) ∼= K[0] ∼= DdR(Qp).

In particular, we deduce that the functor DdR on RepdRQp
(ΓK) with values in FilK is not full.

We close this section by introducing a very important conjecture, known as the FontaineMazur con-
jecture, which predicts a criterion for the “geometricity” of global p-adic representations.

Conjecture 2.16 (Fontaine-Mazur (FM95)). . Fix a number field E, and denote by OE the ring of
integers in E. Let V be a finite dimensional representation of Gal(Q/E) over Qp with the following
properties:

1. For all but finitely many prime ideals p of OE, the representation V is unramified at p in the
sense that the action of the inertia group at p is trivial.

2. For all prime ideals of OE lying over p, the restriction of V to Gal(Qp/Ep) is de Rham.

Then there exist a proper smooth variety X over E such that V appears as a subquotient of the étale
cohomology Hn

ét(XQ,Qp(m)) for some m,n ∈ Z.
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