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1 Finite Flat Group Schemes

1.1 Group Scheme
Definition 1. Let S be a Scheme. A group scheme G/S is a contravariant func-
tor G : (Sch /S) → (Groups) such that (Sch /S)

G−→ (Groups) → (Sets) is a rep-
resentable functor. A group scheme is commutative if it takes value in the full
subcategory of abelian groups.

Equivalently, G is a scheme over S along with morphisms m : G ×S G → G,
ϵ : S → G, ι : G → G in the categories corresponding to multiplication, identity,
inverse maps of groups. To be explicit, these morphisms should satisfies the following
relations:

1. Assosiciativity:

m ◦ (idG ×m) = m ◦ (m× idG) : G×S G×S G→ G.

2. Identity:
G = S ×S G

ϵ×idG−−−→ G×S G
m−→ G

and
G = G×S S

idG ×ϵ−−−→ G×S G
m−→ G

are both idG.

3. Inverse:
G

∆−→ G×S G
ι×idG−−−→ G×S G

m−→ G

and
G

∆−→ G×S G
idG ×ι−−−→ G×S G

m−→ G

are both the map G→ S
ϵ−→ G.

Once we have maps satisfying these relations, we can show that the representable
functor hG naturally lifts to a group functor.

Here are some examples of group schemes.

1. Ga : T 7→ Γ(T,OT ) is a group scheme, represented by A1
S.
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2. Gm : T 7→ Γ(T,O∗
T ) is a group scheme, represented by S × Spec(Z[t, t−1]).

More generally, we have GLn and many other subgroup schemes.

3. Let G be a group. The constant sheaf G defines a group scheme. It sends T
to the group of locally constant functions from T to G. This is represented by
the disjoint union of pieces of S indexed by elements of G. In particular, S it
self represents the functor of trivial group.

4. Fiber products of group schemes over a group scheme is a group scheme. In
particular, the kernel of a morphism of group schemes is a group scheme,
represented by the fiber product

ker(φ) S

G H

ϵH

φ

.

However, in general, the cokernel of a morphism fails to be a group scheme.

5. Let S ′ → S be a S-scheme and G be a group scheme over S. Then G ×S S
′

is a group scheme over S ′. The corresponding group functor is T 7→ G(T ),
where on RHS T is regarded as a S-scheme via T → S ′ → S.

Let G/S be a group scheme. G/S is separated iff ϵ : S → G is a closed immersion.

1.2 Affine Group Schemes
Let S = Spec(R). We consider group schemes represented by affine schemes over
S. That is, G = Spec(A) for some A ∈ (AlgR). A should define a group functor
on the category of (AlgR), which is equivalent to that A is given a Hopf algebra
structure, and once this is satisfied, Spec(A) actually becomes a group functor on
Sch / Spec(R). We denote by ∆ the comultiplication, ϵ the counit, and S the an-
tiinvolution. The counit is an surjective ring homomorphism R → A, the kernel I
called the argumentation ideal of G/R.
Proposition 1. G = Spec(A) is abelian group iff A is cocommutative.

Proof. G is abelian iff the diagram is commutative

G×R G G×R G

G

Φ

m m

where Φ interchange these two pieces of G. In terms of algebras, this diagram is

A A⊗R A

A⊗R A

∆

∆
Φ

where Φ interchange these two pieces of A. This is exactly the cocommutativity.
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1.3 Finite Flat Group Schemes
A finite flat groups scheme over S is a group scheme G/S of which the structure
morphism is finite and flat. If the base is locally Noetherian, this is equivalent to
that G/S is finite locally free. We always assume we are in this case. We can define
the local rank, which is a locally constant function on the base, called the order of
G, denoted by |G|.

If S = Spec(R), a group scheme G over S is finite flat iff G = Spec(A) where
A is a finite flat R-Hopf algebra.
Example 1.

1. µn/S := S × Spec(Z[X]/(Xn − 1)) is finite free of order n.

2. Let G be a finite group. G is finite free.

3. If S is over Fp, αp := ker(FGa/S) is finite free of order p. It is represented by
S ×Fp Fp[X]/(Xp).

If G is also smooth, G is a finite étale group scheme. Let S be a connected
scheme and s be a geometric point. The fiber at s gives an equivalence of categories
between the category of finite étale group schemes over S and the category of finite
continuous π1(S, s)-sets.

1.4 Cartier Duality
Let S = Spec(R) and G be a finite locally free group scheme over R. Then G =
Spec(A) where A is a Hopf algebra over R, and is finite projective. It is possible
to define A∨ := HomR(A,R) as a Hopf algebra as (A ⊗R A)

∨ = A∨ ⊗R A
∨. It is

cocommutative and is commutative iff A is cocommutative, namely, G is abelian.
In this case, The corresponding group scheme is denoted by GD, the Cartier dual of
G. By construction, there is a natural isomorphism (GD)D ∼= D.
Example 2. Let G be a finite group. G/R is represented by the Hopf algebra∏

g∈GReg, where each eg is the function taking 1 on the gth piece of Spec(R) and
0 on other pieces. The comultiplication is ∆(eg) =

∑
h∈G egh−1 ⊗ eh, the counit is

eg 7→ δ(g), and the coinverse is S : eg 7→ eg−1 . The algebra sturcture of A∨ is R[G],
where {g} is the dual basis of {eg}. In other words, g means taking value on the
gth piece. Therefore, ∆(g) = g ⊗ g, ϵ(g) = 1 for all g, and S(g) = g−1.

Theorem 1. For every commutative R-algebra T ,

HomAlg /R(A
∨, T ) = HomT (GT ,Gm /T ).

In particular, whenG is abelian, GD represents the abelian group functor H om(G,Gm),
and we in turn use this as the definition of GD.

Proof. HomR(A
∨, T ) = A⊗RT . Let g ∈ A⊗RT . g is an R-algebra homomorphism
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iff g(1A∨) = 1T and the diagram

A∨ ⊗R A
∨ A∨

T ⊗R T T

m∨

g⊗g g

mT

is commutative. RHS is identified as the group of units in u ∈ (A⊗R T )
× satisfying

that ∆T (u) = u⊗ u ∈ A⊗R T ⊗T A⊗R T = A⊗R A⊗R T . We should equate these
two groups. By replacing A with AT and R-alg with T -alg we may assume that
R = T .

Suppose g is in LHS. The identity in A∨ is the map ϵ : A → R. Therefore,
g(1A∨) = ϵ(g) = 1. The commutative diagram

A∨ ⊗R A
∨ A∨

R⊗R R R

m∨

g⊗g g

mR

is equivalent to that for every ϕ, ψ ∈ A∨, ϕ(g)ψ(g) = (ϕ ⊗ ψ)(∆(g)). This is
equivalent to that ∆(g) = g ⊗ g. Now We prove that g is a unit by showing that
S(g)g = 1. Since S corresponds to the inverse, we have that

m ◦ (S ⊗ idA) ◦∆ = ϵ : A→ R → A.

Putting g and we have
S(g)g = 1.

Suppose u ∈ A× satisfying that ∆(u) = u ⊗ u. This u makes the diagram above
commutative. Moreover, the counit gives that equation

idA = (ϵ⊗ idA) ◦∆ : A→ A.

Putting u and we have ϵ(u) = 1.
We look at group structures of both sides. RHS is exactly the multiplication in

A×. Therefore, we should show that if g1, g2 are in LHS, the map

A∨ ∆∨
−−→ A∨ ⊗R A

∨ g1⊗g2−−−→ R

is g1g2. This is true as the map sends a to (g1 ⊗ g2)(∆(a)) = m(g1, g2)(a) =
(g1g2)(a).

The universal family is 1A∨ ∈ A∨ ⊗R A. The morphism GD ×G→ Gm is given
by the R-algebra homomorphism determined by t 7→ 1A∨ .

We see that GD commute with base extension and direct product. When the
base is not affine, GD exists locally and glue into a global solution.
Example 3. Let G = Z /nZ

R
. A∨ = R[Z /nZ] = R[X]/(Xn − 1) where X = [1].

We have ∆(X) = X ⊗X, ϵ(X) = 1, and S(X) = [n− 1] = Xn−1 = X−1. Therefore,
GD = µn and the pairing G(T )×GD(T ) → Gm(T ) is (a, f) 7→ fa.
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Example 4. Let R be a Fp-algebra and G = αp = R[X]/(Xp). αp is self-dual and
the pairing αp(T )× αp(T ) → Gm(T ) is

(a, b) 7→ exp(a+ b) := 1 +

p−1∑
n=1

(a+ b)n

n!
.

In particular, Z /pZ
R

, µn/R, and αp are mutually non-isomorphic: Take a geometric
fiber and we have that Z /pZ is reduced while µp and αp are non-reduced.

Example 5. Let A, B be abelian schemes and φ : A → B be an isogeny. The
exact sequence

0 → ker(φ) → A→ B → 0

induces the long exact sequence

0 → H om(B,Gm) → H om(A,Gm) → H om(ker(φ),Gm) = ker(φ)D

→ E xt1(B,Gm) → E xt1(A,Gm).

H om(A,Gm), H om(B,Gm) are trivial and E xt1(B,Gm) → E xt1(A,Gm) is natu-
rally identified with B∨ φ∨

−→ A∨. Hence ker(φ)D is naturally identified with ker(φ∨).
The pairing ker(φ)× ker(φ∨) → Gm is the Weil pairing.

1.5 Connected-étale Sequence
We assume here that S = Spec(R) where R is a Henselian local ring.
Proposition 2. LetG be a finite flat group scheme over S andG0 be the connected
component of G containing the image of the unit section. Then G0 is a closed finite
flat group subgroup scheme, G/G0 is étale, denoted by Gét, and every morphism
from G to a finite étale group scheme factors through Gét.

Proof. For every finite scheme over S has the form Spec(T ) where T = T1×· · ·×Tr a
product of Henselian local rings. Let k be the residue field of R and ki be the residue
field of Ti. We have Spec(Ti)(k) = Homk(ki, k), which is exact a Gk = Aut(k/k)-
orbit in Spec(T )(Spec(k)). Therefore, T is connected if and only if Spec(T )(k) is a
transitive Gk-set.

Let G be a finite flat group scheme over S, say G = Spec(T ), T = T1 × · · · × Tr
as in the previous paragraph. Then each Ti is finite flat over T . Say G0 = Spec(T1).
Since the unit section is a closed immersion, we have a surjective map T0 → R. This
identifies k1 and k. Therefore, the product of G0 with any component Gi of G is
again connected. In particular, G0 × G0 is connected. This says that m(G0 × G0)
has image in G0. As the inverse map on G0 also has image in G0, G0 is a finite flat
subgroup scheme of G. Gi×G0 is connected implies (g, g0) 7→ gg0g

−1 also has image
in G0, so G0 is normal.

The quotient Gét := G/G0 exists as a group scheme. Since G is finite flat, Gét

is also finite flat |G| = |G0||Gét|. Since G0 is open, the unit section of Gét has open
image. We conclude that Gét is étale.
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Proposition 3. If R is a perfect field k, G → Gét has a section by Gred and G is
a semi-direct product G = G0 ⋊Gét.

Proof. Again we write G = Spec(T ), T = T1 × · · · × Tr a product of Artinian local
rings. Gred is the product of Spec(ki). Since k is perfect, Gred is étale and ki ×k kj
is a product of finite extensions of k. We have that Gred ×Gred is also reduced and
a similar argument shows that Gred is a closed subgroup of G. The intersection
G0 ∩Gred is trivial by explicit computation. Gred → Gét is an isomorphism because
Gred(k) = G(k) = Gét(k).

Example 6. Since µpn(k) = 1 if k is a field of characteristic p, for every Henselian
local ring R with residue field k of characteristic p, µpn is connected.

Example 7. Let k be an algebraically closed field of characteristic p such that
|E[p](k)| = p. Then we have

0 → E[p]0 → E[p] → E[p]ét → 0

and both E[p]0, E[p]ét have order p, Since Gk is trivial, E[p]ét ∼= Z /pZ. Since
E[p] ∼= E[p]D, taking dual of the exact sequence and we have

0 → µp → E[p] → (E[p]0)D → 0.

Since µp is connected and of order p, we have E[p]0 ∼= µp, hence the split exact
sequence

0 → µp → E[p] → Z /pZ → 0.

1.6 Deligne’s Theorem
Now we assume G/S is a commutative finite flat group scheme with constant rank
n.
Theorem 2. n : G→ G is the trivial map.

If the base is a field, the theorem is also true: For every g ∈ G(T ), gn = 1.
Let C be a finite locally free algebra over B with constant rank n > 0. Then

detB(C) :=
∧n

B C is an invertible module over B. For every c ∈ C, c· ∈ EndB(C)
induces det(c) ∈ EndB(detB(C)) = B is well-defined, called the norm map.

Let G be a finite locally free group scheme over Spec(R), represented by A, and
f : B → C as above. We would like to define a trace map

Trf : G(C) → G(B).

Lemma 1. The norm map N : A∨ ⊗R C → A∨ ⊗R B restrict to a map Trf :

G(C) → G(B), and if g ∈ im(G(B)
G(f)−−→ G(C)), Trf (g) = gn.

Proof. Let g ∈ A∨ ⊗R C. g ∈ G(C) iff ϵ∨(g) = 1 ∈ C and ∆∨(g) = g ⊗ g. This
gives corresponding properties for det(g) as det commutes with comultiplication and
counit.
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In particular, if g ∈ im(A∨ ⊗R B → A∨ ⊗R C), N(g) = gn ∈ A∨ ⊗R B, which is
gn when regarded as characters of GD.

We can now prove the theorem when S = Spec(R) and G is finite locally
free of constant rank n, represented by A. We first show that every element in
G(R) is annihilated by n. Let u ∈ G(R), identified with its image in G(A). Let
Tr : G(A) → G(R) be induced by the structure map R → A. Consider λu : A → A

given by A ∆−→ A⊗R A
u⊗idA−−−→ A. This is an R-automorphism, and also corresponds

to uξ where ξ = idA ∈ G(A) is the universal family. Therefore, we have

un Tr(ξ) = Tr(uξ) = Tr(λu(ξ)) = Tr(ξ)Tr(λu).

Therefore, Tr(λu) = un ∈ A∨, which is a unit in R ⊂ A∨. Since it is a character, it
is also an idempotent. This gives that the element is 1A∨ , which is the unit element
in G(R).

We consider the base extension GA and we have that every element in GA(A) =
GA is annihilated by n. In particular, ξ is annihilated by n, and hence nG(T ) = 0
for all T ∈ Sch /R.

Now we prove the case where S is arbitrary and G/S is finite locally free of
constant rank n. Let U ⊂ S be an open subset. We have the commutative diagram

GU GU U

G G S

n·

n·

as in Sch /S, GU(T ) = G(T ) if T → S has image in U and is the empty set for
otherwise. Therefore, the restriction of n· : G → G on GU is n· : GU → GU . Note
that

U GU U

S G S

ϵGU

ϵG

is also commutative. If there is an open cover {Ui}i∈I such that n· : GUi
→ GUi

factors through ϵGUi
for all i, then n · G → G factors through ϵG, namely, G is

annihilated by n. This is verified for all U ⊂ S affine, so is true for S.
We would like to finally lift the restriction that G/S is locally free. Suppose only

that G/S is finite flat of constant rank n. We compare tow morphisms n· : G → G

and G → S
ϵG−→ G. For every s ∈ S, these tow maps are the same when restricted

to the fiber at s, for that Gs is locally free of rank n. This reduces to an algebraic
problem that if A is a R-algebra and R-algebra homomorphisms ϕ1, ϕ2 : A → A
induces the same map on As for all s ∈ Spec(R), then ϕ1 = ϕ2. This is true as
(ϕ1 − ϕ2)s = 0 for all s ∈ Spec(R), and hence is ϕ1 − ϕ2 = 0.
Corollary 1. Let G be a commutative finite flat group scheme over S of order n.
If n is invertible in O(S)×, G is étale. In particular, if S is over a characteristic 0
field, every commutative finite flat group scheme is étale.
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Proof. Multiplication by n has effect n· on Ω1
G/S, which is invertible. However n

kills G, so n· on Ω1
G/S is trivial. This says that Ω1

G/S = 0, namely, G is étale.

1.7 Frobenius Morphism
Let T be a scheme over Fp. We define the absolute Frobenius morphism FT : T → T
as follows: The map on the underlying space is the identity map, and for every
U ⊂ T open subset, the map on structure sheaves OT (U) → OT (U) is given by
x 7→ xp.
Example 8. Let T = Spec(R). FT is the morphism induced by the absolute
Frobenius map on R.

Let S be a scheme over Fp and T be a S-scheme. We define T (p) as the fiber
product

T (p) T

S S
FS

and define the relative Frobenius FT/S as (T → S)×FT : T → T (p). Note that both
T (p) and FT/S depends on S. We often assume that S is a field of characteristic
p. For every r ∈ N, we define inductively T (pr+1) := (T (pr))(p) and F r+1

T/S : T →
T (pr+1) := FT (pr)/S ◦ F r

T/S.
If S = Spec(R) and T = Spec(A), T (pr) = Spec(A ⊗R,F r

R
R) and the relative

Frobenius F r
T/S corresponds to the map

A⊗R,F r
R
R → A, a⊗ r 7→ rap

r

.

Since T 7→ T (p) is a base change, it defines a covarint functor, commutes with fiber
product, and we have the commutative diagram

T U

T (p) U (p)

φ

FT/S FU/S

φ(p)

.

Let G be a group scheme over S. G(p) is a group scheme over S because it is a base
change. Let F ∗

ST = T → S
FS−→ S for every S-scheme T . Then G(p)(T ) = G(F ∗

ST ).
FG/S : G → G(p) defines a morphism over S. In terms of functors, the map is
G(T ) → G(F ∗

ST ) via T → G
FG−→ G. This is a group homomorphism because

m ◦ (FG × FG) = FG ◦m.
Example 9. Let S = Spec(R) and G = Ga /R. Then G = G(p) = Ga /R while
FG/R is induced by the map X 7→ Xp. The kernel of the relative Frobenius is
Spec(R[X]/(Xp)) as the identity map on Ga is induced by R[X] → R, X 7→ 0,
which is surjective with kernel (X), and the image of (X) in R[X] via the relative
Frobenius map is (Xp). The relative Frobenius sends a function to its pth power.
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Assume that G is a finite flat group scheme over k. Then G(p) is also finite flat
group scheme.
Definition 2. The Verschiebung map VG/S is defined as the dual of FGD/S.

Since base change commutes with Cartier dual, we have the natural isomor-
phism GD,(p),D ∼= G(p),D,D ∼= G(p) and we write VG/k : G(p) → G. Verschiebung also
commutes with fiber products and gives the commutative diagram

T (p) U (p)

T U

φ(p)

VT/S VU/S

φ

.

Example 10. FG/S is trivial if G = αp or µp. FG/S is an isomorphism on Z /pZ.
Taking dual and we have the statements for VG/S.

Let k be a field of characteristic p. We have the following propositions regarding
FG/k:
Proposition 4.

1. FG/k ◦ VG/k = [p]G(p) , VG/k ◦ FG/k = [p]G.

2. G is connected iff F r
G/k is trivial for some r. G is étale iff FG/k is an isomor-

phisms.

3. The order of a connected finite flat group scheme over k has order of the
form pd. In particular, if FG/k is trivial, d = dimk(I/I

2), where I is the
augmentation ideal.
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