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1 Finite Flat Group Schemes

1.1 Group Scheme

Definition 1. Let S be a Scheme. A group scheme G/S is a contravariant func-
tor G : (Sch/S) — (Groups) such that (Sch /S) <, (Groups) — (Sets) is a rep-
resentable functor. A group scheme is commutative if it takes value in the full
subcategory of abelian groups.

Equivalently, GG is a scheme over S along with morphisms m : G xg G — G,
€: 89 — G, 1: G — G in the categories corresponding to multiplication, identity,
inverse maps of groups. To be explicit, these morphisms should satisfies the following
relations:

1. Assosiciativity:

mo(idgxm):mo(mxidg):GXSGXSG—>G.

2. Identity:
G=SxsG 2% gxsG ™ G

and
idg Xe€

G=Gx5S8 5 GxsG5 G
are both idg.

3. Inverse: "
G5 GxsG % Gxs G G

and _
G GxsGH axea ™ G

are both the map G — S = G.

Once we have maps satisfying these relations, we can show that the representable
functor hg naturally lifts to a group functor.
Here are some examples of group schemes.

1. G, : T + I'(T,Or) is a group scheme, represented by Ag.



2. G, : T — T(T,0%) is a group scheme, represented by S x Spec(Z[t,t7]).
More generally, we have GL,, and many other subgroup schemes.

3. Let G be a group. The constant sheaf G defines a group scheme. It sends T
to the group of locally constant functions from 7" to G. This is represented by
the disjoint union of pieces of S indexed by elements of G. In particular, S' it
self represents the functor of trivial group.

4. Fiber products of group schemes over a group scheme is a group scheme. In
particular, the kernel of a morphism of group schemes is a group scheme,
represented by the fiber product

ker(p) ——

S
R
G— > H

However, in general, the cokernel of a morphism fails to be a group scheme.

5. Let 8" — S be a S-scheme and G be a group scheme over S. Then G xg S’
is a group scheme over S’. The corresponding group functor is 7' +— G(T),
where on RHS T is regarded as a S-scheme via T — S’ — S.

Let G/S be a group scheme. G/S is separated iff € : S — G is a closed immersion.

1.2 Affine Group Schemes

Let S = Spec(R). We consider group schemes represented by affine schemes over
S. That is, G = Spec(A) for some A € (Algg). A should define a group functor
on the category of (Algg), which is equivalent to that A is given a Hopf algebra
structure, and once this is satisfied, Spec(A) actually becomes a group functor on
Sch / Spec(R). We denote by A the comultiplication, € the counit, and S the an-
tiinvolution. The counit is an surjective ring homomorphism R — A, the kernel
called the argumentation ideal of G/R.

Proposition 1. G = Spec(A) is abelian group iff A is cocommutative.

Proof. G is abelian iff the diagram is commutative

GxpG —2= GxpG
\ Cl;
where ® interchange these two pieces of GG. In terms of algebras, this diagram is
A—25 Ao A
\ l‘l’
A®gA

where ® interchange these two pieces of A. This is exactly the cocommutativity. [
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1.3 Finite Flat Group Schemes

A finite flat groups scheme over S is a group scheme G/S of which the structure
morphism is finite and flat. If the base is locally Noetherian, this is equivalent to
that G/S is finite locally free. We always assume we are in this case. We can define
the local rank, which is a locally constant function on the base, called the order of
G, denoted by |G].

If S = Spec(R), a group scheme G over S is finite flat iff G = Spec(A) where
A is a finite flat R-Hopf algebra.

Example 1.
1. p,/S =8 x Spec(Z[X]/(X™ — 1)) is finite free of order n.
2. Let G be a finite group. G is finite free.

3. If S'is over [, oy, := ker(Fg,/s) is finite free of order p. It is represented by
S xg, FplX]/(XP).

If G is also smooth, G is a finite étale group scheme. Let S be a connected
scheme and s be a geometric point. The fiber at 5 gives an equivalence of categories
between the category of finite étale group schemes over S and the category of finite
continuous (S, S)-sets.

1.4 Cartier Duality

Let S = Spec(R) and G be a finite locally free group scheme over R. Then G =
Spec(A) where A is a Hopf algebra over R, and is finite projective. It is possible
to define AY := Hompg(A, R) as a Hopf algebra as (A ®p A)Y = AY @p AY. Tt is
cocommutative and is commutative iff A is cocommutative, namely, G is abelian.
In this case, The corresponding group scheme is denoted by G, the Cartier dual of
G. By construction, there is a natural isomorphism (GP)? = D.

Example 2. Let G be a finite group. G/R is represented by the Hopf algebra
I gec Beg, where each e, is the function taking 1 on the gth piece of Spec(R) and
0 on other pieces. The comultiplication is A(ey) = >, . €gn-1 ® €, the counit is
eq — 0(g), and the coinverse is S : e, — e,-1. The algebra sturcture of A" is R[G],
where {g} is the dual basis of {e;}. In other words, g means taking value on the

gth piece. Therefore, A(g) = g® g, e(g) =1 for all g, and S(g) = g~ '.

Theorem 1. For every commutative R-algebra T,
HomAlg /R(Av, T) = HOIDT(GT, Gm /T)

In particular, when G is abelian, GP represents the abelian group functor ##om(G, G,,),
and we in turn use this as the definition of GP.

Proof. Homy(AY,T) = AQrT. Let g € AQRT. gis an R-algebra homomorphism



iff g(14v) = 17 and the diagram

AV @p AY 1 AV

[

TorT —L 5 T

is commutative. RHS is identified as the group of units in u € (A®g T)* satisfying
that Ar(u) =u®@u € AQrT @7 AQrT = A®r A®r T. We should equate these
two groups. By replacing A with A7 and R-alg with T-alg we may assume that
R=T.

Suppose ¢ is in LHS. The identity in A" is the map ¢ : A — R. Therefore,
g(1av) = €(g) = 1. The commutative diagram

AV @p AY s AV

[

RorR —E 4 R

is equivalent to that for every ¢,¢ € AY, ¢(g9)v(9) = (¢ @ ¥)(A(g)). This is
equivalent to that A(g) = g ® g. Now We prove that ¢ is a unit by showing that
S(g)g = 1. Since S corresponds to the inverse, we have that

mo(S®idg)oA=¢: A— R— A.

Putting g and we have
S(g)g = 1.

Suppose u € A* satisfying that A(u) = v ® u. This u makes the diagram above
commutative. Moreover, the counit gives that equation

idg =(e®idg) o A: A— A.

Putting v and we have e(u) = 1.
We look at group structures of both sides. RHS is exactly the multiplication in
A*. Therefore, we should show that if ¢;, g are in LHS, the map

AV AL AV gp AY 222

is g19o. This is true as the map sends a to (g1 ® ¢2)(A(a)) = m(g,92)(a) =
(gng)(a). L]

The universal family is 14v € AY ®z A. The morphism G” x G — G,, is given
by the R-algebra homomorphism determined by ¢ — 1 4v.

We see that GP commute with base extension and direct product. When the
base is not affine, G exists locally and glue into a global solution.

Example 3. Let G = Z/nZR. AV =R[Z /nZ) = R X]/(X" — 1) where X = [1].

We have A(X) = X ® X, ¢(X)=1,and S(X) = [n—1] = X"t = X~ Therefore,
GP = p,, and the pairing G(T) x GP(T) — G,.(T) is (a, f) = f.
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Example 4. Let R be a F,-algebra and G = a, = R[X]/(X?). «, is self-dual and
the pairing a,(T") x o, (T') = G,,(T) is

- a+b
(a,b) — exp(a +b) := Z

In particular, Z /p ZR, n/ R, and oy, are mutually non-isomorphic: Take a geometric

fiber and we have that Z /pZ is reduced while p, and «, are non-reduced.

Example 5. Let A, B be abelian schemes and ¢ : A — B be an isogeny. The
exact sequence
0 — ker(p) > A— B —0

induces the long exact sequence

0 — Hom(B,G,,) — Hom(A,G,,) = Homker(p),G,,) = ker(p)”
— &xt'(B,G,,) — Ext' (A, G,,).

Hom(A,G,,), #om(B,G,,) are trivial and &zt'(B,G,,) — &xt' (A, G,,) is natu-

rally identified with BY #y AY. Hence ker(p)? is naturally identified with ker(pV).
The pairing ker(y) x ker(¢¥) — G,, is the Weil pairing.

1.5 Connected-étale Sequence

We assume here that S = Spec(R) where R is a Henselian local ring.

Proposition 2. Let G be a finite flat group scheme over S and G° be the connected
component of G containing the image of the unit section. Then G° is a closed finite
flat group subgroup scheme, G/GY is étale, denoted by G*, and every morphism
from G to a finite étale group scheme factors through G¢.

Proof. For every finite scheme over S has the form Spec(7T") where T' = T x- - -x T, a
product of Henselian local rings. Let k be the residue field of R and k; be the residue
field of T;. We have Spec(T;)(k) = Homy(k;, k), which is exact a Gj, = Aut(k/k)-
orbit in Spec(T)(Spec(k)). Therefore, T is connected if and only if Spec(T)(k) is a
transitive G-set.

Let G be a finite flat group scheme over S, say G = Spec(T), T' =Ty x --- x T,
as in the previous paragraph. Then each Tj is finite flat over T'. Say G° = Spec(T}).
Since the unit section is a closed immersion, we have a surjective map Ty — R. This
identifies k1 and k. Therefore, the product of G with any component G; of G is
again connected. In particular, G® x G is connected. This says that m(G° x G°)
has image in G°. As the inverse map on G° also has image in G°, GV is a finite flat
subgroup scheme of G. G; x G? is connected implies (g, go) > ggog ™' also has image
in G°, so G° is normal.

The quotient G** := G//G° exists as a group scheme. Since G is finite flat, G
is also finite flat |G| = |GP||G®|. Since GV is open, the unit section of G® has open
image. We conclude that G¢ is étale. [



Proposition 3. If R is a perfect field k, G — G* has a section by G™? and G is
a semi-direct product G = GY x G*.

Proof. Again we write G = Spec(T'), T'=T; x --- x T, a product of Artinian local
rings. G™¢ is the product of Spec(k;). Since k is perfect, G*? is étale and k; x k;
is a product of finite extensions of k. We have that G™¢ x G™4 is also reduced and
a similar argument shows that G™¢ is a closed subgroup of . The intersection
G° N G™4 is trivial by explicit computation. G*! — G is an isomorphism because
Grd(k) = G(k) = G(k). ]

Example 6. Since p,» (k) = 1if k is a field of characteristic p, for every Henselian
local ring R with residue field k of characteristic p, p,» is connected.

Example 7. Let k£ be an algebraically closed field of characteristic p such that
|E[p](k)| = p. Then we have

0— E[pl° = E[p] = E[p]* = 0

and both E[p]°, E[p]®* have order p, Since G}, is trivial, E[p|** = Z /pZ. Since
E[p] = E[p]?, taking dual of the exact sequence and we have

0= pp — Elp] = (E[p]°)” — 0.

Since p, is connected and of order p, we have E[p]® = pu,, hence the split exact
sequence
0— pp,— Elp) = Z/pZ — 0.

1.6 Deligne’s Theorem

Now we assume G/S is a commutative finite flat group scheme with constant rank
n.

Theorem 2. n:G — G is the trivial map.

If the base is a field, the theorem is also true: For every g € G(T), ¢" = 1.

Let C' be a finite locally free algebra over B with constant rank n > 0. Then
detp(C) := A C is an invertible module over B. For every ¢ € C, ¢- € Endg(C)
induces det(c) € Endg(detp(C)) = B is well-defined, called the norm map.

Let G be a finite locally free group scheme over Spec(R), represented by A, and
f B — C as above. We would like to define a trace map

Try: G(C) - G(B).
Lemma 1. The norm map N : AY @z C — AY ®g B restrict to a map Try :
G(C) = G(B), and if g € im(G(B) <% G(0)), Trs(g) = g

Proof. Let g € AY®@rC. g € G(C) iff €'(9) =1 € C and AY(g) = g ® g. This
gives corresponding properties for det(g) as det commutes with comultiplication and
counit.



In particular, if g € im(AY ®r B — AY ®r C), N(g9) = g" € AY @ B, which is
g" when regarded as characters of GP. O

We can now prove the theorem when S = Spec(R) and G is finite locally
free of constant rank n, represented by A. We first show that every element in
G(R) is annihilated by n. Let u € G(R), identified with its image in G(A). Let
Tr:G(A) — G(R) be induced by the structure map R — A. Consider A\, : A — A

given by A S A® rA—> 4G4, A, This is an R-automorphism, and also corresponds
to u& where £ =idy € G(A) is the universal family. Therefore, we have

W Tr(€) = Tr(u€) = Tr(A(€)) = Tr() Tr(\,).

Therefore, Tr(\,) = u™ € AV, which is a unit in R C AY. Since it is a character, it
is also an idempotent. This gives that the element is 14v, which is the unit element
in G(R).

We consider the base extension G 4 and we have that every element in G4(A) =
G 4 is annihilated by n. In particular, £ is annihilated by n, and hence nG(T) = 0
for all T' € Sch /R.

Now we prove the case where S is arbitrary and G/S is finite locally free of
constant rank n. Let U C S be an open subset. We have the commutative diagram

GULGU—>U

I

G —— G y S

as in Sch /S, Gy(T) = G(T) if T — S has image in U and is the empty set for
otherwise. Therefore, the restriction of n- : G — G on Gy is n- : Gy — Gy. Note
that

U Gy s U

LoD

S —< 5 G s S

is also commutative. If there is an open cover {U;}ies such that n- : Gy, — Gy,
factors through eg, for all ¢, then n- G — G factors through eg, namely, G is
annihilated by n. This is Verlﬁed for all U C S affine, so is true for S.

We would like to finally lift the restriction that G / S is locally free. Suppose only
that G/S is finite flat of constant rank n. We compare tow morphisms n- : G — G
and G — S <% G. For every s € S, these tow maps are the same when restricted
to the fiber at s, for that G, is locally free of rank n. This reduces to an algebraic
problem that if A is a R-algebra and R-algebra homomorphisms ¢1,¢, : A — A
induces the same map on Ay for all s € Spec(R), then ¢; = ¢5. This is true as
(p1 — ¢2)s = 0 for all s € Spec(R), and hence is ¢ — ¢o = 0.

Corollary 1. Let GG be a commutative finite flat group scheme over S of order n.
If n is invertible in O(S)*, G is étale. In particular, if S is over a characteristic 0
field, every commutative finite flat group scheme is étale.



Proof. Multiplication by n has effect n- on Q, /5 which is invertible. However n
kills G, so n- on Q, /g Is trivial. This says that Qg /s = 0, namely, G is étale. ]

1.7 Frobenius Morphism

Let T be a scheme over F,,. We define the absolute Frobenius morphism Fp : 7" — T
as follows: The map on the underlying space is the identity map, and for every
U C T open subset, the map on structure sheaves Or(U) — Or(U) is given by
T — 2P

Example 8. Let 7" = Spec(R). Fr is the morphism induced by the absolute
Frobenius map on R.

Let S be a scheme over I, and T" be a S-scheme. We define T (P) as the fiber
product

T®W — T
|
SIS

and define the relative Frobenius Fr/g as (T — S) x Fr : T — T®. Note that both
T® and Fr;s depends on S. We often assume that S is a field of characteristic

p. For every r € N, we define inductively T®™) := (T®"))®) and Fr};“; T —
T(pT+ ) = FT(pr)/S @] FT/S
If S = Spec(R) and T = Spec(A), T®") = Spec(A ®p py, R) and the relative

Frobenius £7. /s corresponds to the map
A@pry R— A, a®r— ra? .

Since T +— T® is a base change, it defines a covarint functor, commutes with fiber
product, and we have the commutative diagram

T—% U
lFT/S lFU/S .

e 27 W)

Let G be a group scheme over S. G is a group scheme over S because it is a base
change. Let F§T =T — S 15, S for every S-scheme T. Then GP)(T) = G(FiT).
Fgis + G — G®) defines a morphism over S. In terms of functors, the map is

G(T) - G(FT) vin T — G — G. This is a group homomorphism because
mo (Fg X Fg) = Fgom.

Example 9. Let S = Spec(R) and G = G, /R. Then G = G® = G, /R while
Fg/r is induced by the map X +— XP. The kernel of the relative Frobenius is
Spec(R[X]/(X?)) as the identity map on G, is induced by R[X] — R, X — 0,
which is surjective with kernel (X), and the image of (X) in R[X] via the relative
Frobenius map is (X?). The relative Frobenius sends a function to its pth power.
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Assume that G is a finite flat group scheme over k. Then G is also finite flat
group scheme.

Definition 2. The Verschiebung map Vg/s is defined as the dual of Fi;p/g.

Since base change commutes with Cartier dual, we have the natural isomor-
phism GP@WP =~ GPLDD =~ GP) and we write Vg, : G® — G. Verschiebung also
commutes with fiber products and gives the commutative diagram

T®) ﬂ) /(P

lVT/S lVU/S :

T ——U

Example 10. Fg/g is trivial if G = o, or p,. Fg/s is an isomorphism on Z /p Z.
Taking dual and we have the statements for Vg/s.

Let k be a field of characteristic p. We have the following propositions regarding
Fg/k:

Proposition 4.

L. Fomo Ven = [plaw, Vasr o Four = [pla.

2. G is connected iff F/, n is trivial for some r. G is étale iff F/), is an isomor-
phisms.

3. The order of a connected finite flat group scheme over k£ has order of the
form p?. In particular, if Fg is trivial, d = dimg(I/I?), where I is the
augmentation ideal.
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