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Abstract. For the next two weeks, we extend the results of [11], and will
present proof of the Mordell-Weil Theorem for general Abelian Varieties. Again

following the approach as outlined in [1], we now introduce additional tools

that allows us to complete the proof of general Mordell-Weil Theorem for
Abelian Varieties.
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1. Introduction

The main objective of these two weeks is to extend the result on strong Mordell-
Weil theorem for Elliptic Curves to Abelian Varieties, namely the finite generation
of the group of rational points of an Abelian variety defined over a number field.

We already see in week 08 for a historical overview. Now we will introduce some
additional tools that would allow us to extend this result to general Mordell-Weil
Theorem.

As in the case of Elliptic Curve, we will split into two steps: in the first step, we
will outline the proof for weak Mordell-Weil Theorem for general abelian varieties,
then we give a generalized version of Fermat’s descent theorem, which will allow us
to prove strong Mordell-Weil Theorem.

2. The Weak Mordell-Weil Theorem for Abelian Varieties

The first step of proving Mordel-Weil for Abelian Varieties is to prove the Weak
Mordel-Weil Theorem:

Theorem 2.1 (Weak Mordell-Weil). Let A be an abelian variety over a number
field K and let m be a positive integer. Then A(K)/mA(K) is finite.

To prove this, we need a few tools, among which the most important ones are
Galois cohomology and Kummer theory. But before that, let us recall the definition
of Abelian Varieties, and some of the useful lemmas we proved in [11], which will
be useful in proving the Weak Mordell-Weil.
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Definition 2.2 (Group Variety). A variety G with morphisms

m : G×G → G, (x, y) 7→ xy(multiplication),

ι : G → G, x 7→ x−1(inverse),

and with an element ϵ ∈ G(K) is called a group variety (over K) if G(K) is a group
with multiplication, inverse, identity induced by m, ι, ε.

An abelian variety is a group variety that is either irreducible or reducible but
geometrically complete.

The first step is to prove Mordell-Weil Theorem for Abelian Varieties. Recall
that in the proof of weak Mordell-Weil Theorem for elliptic curves, we presented
the following lemma:

Lemma 2.3. Let A be an abelian variety defined over a field K and let L be a finite
separable extension of K. Let m be a positive integer and suppose that A(L)/mA(L)
is a finite group. Then A(K)/mA(K) is a finite group.

We also state the following powerful result, which guarantees the existence of a
number field upon unramified finite morphism. First we define local discriminant
as:

Definition 2.4 (local discriminant). Let φ : Y → X be a morphism of K-varieties
and let P ∈ Y (K) with image Q ∈ X(K). Since φ is defined over K, we have
K(Q) ⊂ K(P ) and RQ = K(Q) ∩RP . We then define the local discriminant as

d̂P/Q := {det(Tr
K̂(P )/K̂(Q)

(aibj))|a1, · · · , ad̂, b1, · · · , bd̂ ∈ R̂P },

where d̂ is short for the local degree d̂P := [K̂(P )/K̂(Q)].

With this, the global Chevalley–Weil theorem has the following form:

Theorem 2.5. Assume that φ : Y → X is a finite unramified morphism of K-
varieties and that (Eu)u∈M is an M -bounded family in X. Then for any v ∈ MK

, there is a non-zero αv ∈ Rv such that αv ∈ d̂uP/Q whenever u ∈ M with u|v and

P ∈ Y (K) with Q := φ(P ) ∈ Eu . Moreover, we can choose αv = 1 for all but
finitely many v ∈ MK .

Specifically to number fields, we have:

Theorem 2.6 (Chevalley–Weil, number fields). Let K be a number field and let
φ : Y 7→ X be an unramified finite morphism of K-varieties. If X is complete,
then there is a non-zero α ∈ OK such that for any P ∈ Y (K) and Q := φ(P ) the
discriminant dP/Q of OK(P ) over OK(Q) contains α.

With this, we now switch gear and get a closer look to Galois Cohomology.

3. Galois Cohomology & Kummer Theorem: a brief taste

We denote Gal(L/K) the Galois group of an intermediate field extension K ⊂
L ⊂ K. Let g ∈ Gal(L/K) and let X be a variety over K. Embed points x ∈ X(L)
into some affine chart, with affine coordinates in L. Applying g−1 to the coordinates,
we get a well-defined point xg ∈ X(L). Clearly, xgh = (xg)h and hence we have
an action of the Galois group on X(L). If φ : X → Y is a morphism over K,
then φ(xg) = φ(x)g. If F denotes the fixed field of Gal(L/K), then x ∈ X(F ) is
equivalent to xg = x for every g ∈ Gal(L/K).
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In particular, if X is an abelian variety A, we have (ma)g = mag and (a+ b)g =
ag + bg for a, b ∈ A(L) and m ∈ Z. Also recall that A[m] denotes the group of
m-torsion points of A.

With this, we have the following lemma:

Lemma 3.1. Let L be a finite Galois extension of K and let m ∈ Z \ {0}. If
A(L)/mA(L) is finite, then A(K)/mA(K) is finite.

Proof. The inclusion A(K) ⊂ A(L) induces a homomorphism

A(K)/mA(K) → A(L)/mA(L)

of abelian groups. Let N be its kernel. It suffices to show that N is finite. Choose
a system of representatives in A(K) for N . For each representative a, choose
ba ∈ A(L) such that a = mba . Consider an element g ∈ Gal(L/K) and define

λa(g) := bga − ba.

Now by obseration above we have

mλa(g) = (mba)g −mba = ag − a.

By K-rationality of a, this is zero. Using our system of representatives, the rule
a 7→ λa defines a map from N to the set of maps

Gal(L/K) → A[m].

N will be finite if the map is injective and the range is finite. The latter statement
follows from Proposition 5.1 of [11]. In order to prove the former, let us suppose
that λa = λa′ for representatives a, a′. We have

bga′ − ba′ = bga − ba

and hence

(ba′ − ba)
g = ba′ − ba

for every g, or equivalently ba′ − ba ∈ A(K). Therefore, by applying [m] we get
a = a′. □

We next introduce Kummer theory for Abelian Varieties, which would be a very
important step in the generalization of Weak Mordell-Weil Theorem.

We first make the following observation: let m ∈ Z \ {0} be not divisible by
char(K), and assume that A[m] ⊂ A(K). We denote the separable algebraic closure
of K in K by Ks. For a ∈ A(K), there is b ∈ A(Ks) such that a = mb (using
[m] unramified from Proposition 5.1 of [11], every such b ∈ A(K) is in A(Ks)). If
g ∈ Gal(Ks/K), then we define

⟨a, g⟩ := bg − b.

and from the obvervation at the beginning of the chapter, we have ⟨a, g⟩ ∈ A[m].
Let a′ ∈ A(K) and b′ ∈ A(Ks), with a′ = mb′ , then

(b+ b′)g − (b+ b′) = (bg − b) + (b′g − b′).

This shows that ⟨a, g⟩ is independent of the choice of b (choose b′ ∈ A[m] and use
that b′ ∈ A(K) by assumption). Moreover, we see that ⟨, ⟩ is linear in the first
variable.

Owing to all those observations, we may make the following definition:
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Definition 3.2 (Kummer Pairing). Given a ∈ A(K) and g ∈ Gal(K∗/K), then
we may define Kummer Pairing as

⟨, ⟩ : A(K)×Gal(Ks/K) → A[m].

We further define the right kernel as

{g ∈ Gal(Ks/K) | ⟨a, g⟩ = 0, ∀a ∈ A(K)},
and the left kernel as

{a ∈ A(K) | ⟨a, g⟩ = 0, ∀a ∈ A(K)},
Now we define let K( 1

mA(K)) to be the smallest intermediate field K ⊂ L ⊂ K
such that any b ∈ A(K) with mb ∈ A(K) is rational over L.

Proposition 3.1. The Kummer pairing is bilinear, with left-kernel mA(K) and
right-kernel the subgroup Gal(Ks/K( 1

mA(K)) of Gal(Ks/K).

Proof. Let g, g′ ∈ Gal(Ks/K). Let a ∈ A(K). Then we have

⟨a, gg′⟩ = bgg
′
− b = (bg − b)g

′
+ bg

′
− b.

Since ⟨a, g⟩ is K-rational by assumption, we get

⟨a, gg′⟩ = ⟨a, g⟩+ ⟨a, g′⟩.
This proves linearity in the second variable and thus ⟨, ⟩ is bilinear. For a ∈

mA(K), choose b ∈ A(K) such that a = mb. By K-rationality of b, we have

⟨a, g⟩ = bg − b = 0

for every g ∈ Gal(Ks/K). Conversely, let a be in the left-kernel. For any
b ∈ A(Ks) with a = mb, we have

0 = ⟨a, g⟩ = bg − b.

Since this is true for every g ∈ Gal(Ks/K) and since K is the fixed field of the
Galois group, we conclude b ∈ A(K). So the left-kernel is equal to mA(K).

Finally, we note that Gal(Ks/K( 1
mA(K)) is contained in the right-kernel H.

On the other hand, let g be an element of the right-kernel. For b ∈ A(Ks) with
mb ∈ A(K), we have bg = b. It follows that the restriction of g to the residue
field K(b) is equal to the identity, hence the same is true for the restriction of g to
to K( 1

mA(K)). This proves H ⊂ Gal(Ks/K( 1
mA(K)). We conclude that equality

holds. □

With all these, we would be able to prove the weak Mordell-Weil Theorem for
Abelian Varieties.

Proof. It follows from Proposition 3.1 that the right-kernel is a closed normal sub-
group of Gal(Ks/K). By Galois theory, K( 1

mA(K)) is a Galois extension of K.
By the same Proposition , we conclude that the Kummer pairing induces a non-
degenerate pairing

(A(K)/mA(K)×GalK(
1

m
A(K))/K → A[m]

(i.e. left- and right-kernel are zero). Thus in order to prove the finiteness of the
group A(K)/mA(K), it is enough to show that Gal(K( 1

mA(K))/K) is finite.
But this is obvious: By Lemma 3.1 and Proposition 5.1 of [11], we may assume

that A[m] ⊂ A(K). Since here K is a number field, we see that K( 1
mA(K)/K) is
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finite by Chevalley-Weil Theorem for number fields. This concludes the proof of
the weak Mordell–Weil theorem. □

Now we’ve completed our first steps towards the proof of Mordell-Weil Theorem.
In the following chapter, we will give a basic flavor of Néron-Tate height, which we
will be used to prove the Fermat’s Descent Theorem, the second step towards
completing the proof of Mordell-Weil Theorem for Abelian Varieties.

4. Néron Tate Height and Fermat’s Descent Theorem

See week 7’s notes. This is a repetition of materials there, included
for coherence

So ultimately, our goal is to prove the following lemma, which will be crucial in
completing the proof of Mordell-Weil Theorem:

Lemma 4.1. Let K be a number field and let c be ample and even. Then ĥc

vanishes exactly on the torsion subgroup of A(K). Moreover, there is a unique
scalar product ⟨, ⟩ on the abelian group A(K)⊗Z R such that

ĥc(x) = ⟨x⊗ 1, x⊗ 1⟩
for every x ∈ A(K),

where we will soon define ĥ, which is commonly known as Néron-Tate Height.
Over the rest of the section, we will give a survey of important results in Néron-Tate
heights.

Let K be a field and let A be an abelian variety over K. Let X be a complete
variety over K. Then we know that we have the height homomrphism

h : Pic(X) → RX(K)/O(1),

which associates c with the equivalence class of heights hc.
But the problem with Weil Heights is, there do not exist a canonical height

function associated to c ∈ Pic(X), as they are only determined up to a bounded
constant.

To solve this, we take our resolution to theorem of cube. for every c ∈ Pic(A)
we have a quadratic function

Mor(X,A) → Pic(X), φ∗ 7→ φ∗(c).

where we may decompose c into an even and odd part c = c+ + c−, and we there
fore have the associated decomposition of height homomorphism:

q : Mor(X,A) → RX(K)O(1), φ 7→ hφ∗(c).

We conclude that q = q+ + q− for the quadratic form q+(φ) := hφ∗(c+) and the
linear form q−(φ) := hφ∗(c−). The most important fact is that, this decomposition
is unique. Motivating by the observation, we have the following:

Observation 4.1. Let hc± be an arbitrary height function in the class hc± . For
any integer n, we have n2hc+ = h[n]∗(c+) and nhc− = h[n]∗(c−). By theorem of
height function, there is a constant C(n) such that for every a ∈ A

|hc+(na)− n2hc+(a)| ≤ C(n)

and
|hc−(na)− nhc−(a)| ≤ C(n).
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Definition 4.2 (Quasi-Homogeneous). Let N be a multiplicatively closed subset
of R (resp. R+) acting on a set S by means of a map such that n(mx) = (nm)x
for x ∈ S . A function h : S → R is quasi-homogeneous of degree d ∈ N (resp.
d ∈ R+) for N if for n ∈ N there is a positive constant C(n) such that

|h(nx)− ndh(x)| ≤ C(n)

for every x ∈ S, and is homogeneous of degree d for N if h(nx) = ndh(x).

We then have the following theorem:

Theorem 4.3. Let N act on the set S as before and let h : S → R be quasiho-
mogeneous of degree d > 0. If N has an element of absolute value > 1, then there

is a unique homogeneous function ĥ : S → R of degree d for N such that ĥ − h is
bounded.

The proof of this is purely algebraic, which we will omit here. The readers are
welcome to check [1], chapter 9.

We then introduce the Tate’s limit argument:

Theorem 4.4. Let c ∈ Pic(A) and let c = c+ + c− be a decomposition into an
even part c+ and an odd part c−. Then the classes hc± are independent of the

choice of the decomposition. There is a unique homogeneous height function ĥc± in
the class hc± , of degree 2 in the + case and degree 1 in the − case.

This theorem allows the definition of Néron-Tate height:

Definition 4.5 (Néron-Tate height). The height function ĥc := ĥc++ ĥc− is called
the Néron–Tate height associated to c.

To complete this section, we associate our bilinear form with Néron Tate Height,
which would allow us to prove the Fermat Descent Theorem.

Let M be an abelian group and let b be a real-valued symmetric bilinear form on
M . We have in mind the example M = A(K) and a certain bilinear form associated
to a Néron–Tate height. The kernel of b is the abelian group

N := {x ∈ M |b(x, y) = 0 for every y ∈ M}.
Then b induces a symmetric bilinear form b on M := M/N and the kernel of b is
zero. Since b is real valued, M is torsion free and all torsion elements of M are
contained in N . We conclude that

M → MR := M ⊗Z R,mm⊗ 1

is injective. Let M
′
be a finitely generated subgroup of M . The restriction of b

to the free abelian group M
′
extends uniquely to a bilinear form b

′
on M

′
R . Let

M
′
Q = M

′ ⊗Z Q. An easy argument shows that

M
′
Q ⊂ MQ

and soM
′
R ⊂ MR. SinceMR is the union of allM

′
and the bilinear forms b

′
coincide

on overlappings by uniqueness, we have a unique extension of b to a bilinear form
bR on MR.

Thus we would like that bilinear form on bR(x, y) determines a scalar product
and an associated norm ∥x∥2 = bR(x, x) on MR. In fact, we have the following
lemma:
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Lemma 4.6. With the notation and assumptions above, the bilinear form bR is

positive definite if and only if for every finitely generated subgroup M
′
of M and

for every C > 0 the set

{x ≤ M | bR(x, x) ≤ C}
is finite.

Finally, our goal is to offer a explicit formula that would allow us to calculate
Néron-Tate heights.

Theorem 4.7. Let K be a number field and let c be ample and even. Then ĥc

vanishes exactly on the torsion subgroup of A(K). Moreover, there is a unique
scalar product ⟨, ⟩ on the abelian group A(K)⊗Z R such that

ĥc(x) = ⟨x⊗ 1, x⊗ 1⟩

for every x ∈ A(K).

For a complete proof of this would require more algebraic geometry input, which
we shall omit here.

With this, we are now ready to prove the second part-Fermat Descent Theorem.

5. Putting it altogether

Recall that Mordell-Weil Theorem states the following:

Theorem 5.1 (Mordell-weil). If A is an abelian variety over a number field K,
then A(K) is a finitely generated abelian group.

And the final missing piece is the following:

Theorem 5.2 (Fermat’s Descent). Let G be an abelian group and let m ≥ 2 be a
positive integer. Let also ∥ ∥ be a real function on G satisfying

∥x− y∥ ≤ ∥x∥+ ∥y∥, ∥mx∥ = m∥x∥

for any x, y ∈ G. Assume that S is a set of representatives for G/mG, bounded
relative to ∥ ∥ by a constant C. Then for any x ∈ G, there is a decomposition

x =

l∑
i=0

miyi +ml+1z,

where yi ∈ S and where z ∈ G satisfies ∥z∥ ≤ C + 1. In particular, G is generated
by elements in the ball

{x ∈ G | ∥x∥ ≤ C + 1}.

Proof. There are y0 ∈ S , x0 ∈ G such that x = y0 +mx0. We have

∥x0∥ ≤ 1

m
(C + ∥x∥).

Proceeding by induction, there are yl ∈ S , xl ∈ G such that xl−1 = yl +mxl

and

∥xl∥ ≤

(
l+1∑
i=1

1

mi

)
· C +

1

ml+1
∥x∥.
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We choose l so large that ∥x∥ ≤ ml+1 and set z := xl , getting

∥z∥ ≤ 1

m− 1
· C + 1 ≤ C + 1.

Moreover, we have
x = y0 +my1 + · · ·+mlyl +ml+1z,

which proves the first claim. The second claim is a trivial consequence of the
first. □

Now theorem 5.1 is just a direct consquence of 5.2 and 4.7.

Proof. Choose an integer m ≥ 2. The weak Mordell–Weil theorem gives the finite-
ness of A(K)/mA(K). By results about abelian variety (e.g. see 8.6.4 of [1]), there
is an even ample c ∈ Pic(A). By Theorem 4.7, the assumptions of Theorem 5.2

for ∥ · ∥ := ĥ
1/2
c on G := A(K) are satisfied. Therefore 5.2 shows that the group

A(K) is generated by a bounded set. Finally, Northcott’s theorem in [11] shows
that A(K) is finitely generated. □

With this we completed the proof of strong Mordell-Weil Theorem.
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