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ABSTRACT. This week, we will present a proof of Mordell-Weil Theorem for
Elliptic Curves. Following the approach as outlined in [1], we first introduce
the concepts of arithmetic heights as well as other necessary tools, then we
will briefly outline the proof for the weak Mordell-Weil theorem. Finally, we
extend the result to the strong version using Fermat’s descent argument.
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1. INTRODUCTION

The main objective of this week is to give a proof of the strong Mordell-Weil over,
namely the finite generation of the group of rational points of an abelian variety
defined over a number field.

We first present a brief historical overview of the problem. The theorem of
Mordell-Weil was first proved over a special case, namely elliptic curves. In fact,
L.J. Mordell proved the finiteness of the rank of the group of rational points on an
elliptic curve E defined over @ in his famous paper [5]. The paper focused on the
elliptic curve in the form of quartic equation y?> = agz* + - -- + a4, and the proof
used its parametrization by means of Jacobi elliptic functions and theta functions.

About twenty years later, Weil generalized the results of elliptic curves over
number fields to abelian varieties in his famous thesis [9]. A. Weil made the rather
critical observation in [10] that, for elliptic curves, a Weierstrass model rather than
the quartic equation used by Mordell would simplify the proof, since it allows the
addition and duplication formulas of elliptic functions used by Mordell to be re-
placed by rational functions on the curve. Since then, this has become the standard
elementary approach to the Mordell-Weil theorem for elliptic curves over a field.
We will follow the development sequence from Mordell to Weil: namely, we will first
give a rather simple-minded proof of the Mordell-Weil Theorem for elliptic curves.
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Then using results from Naron-Tate and Galois Cohomology, we will generalize this
results to any Abelian variety.

For the rest of the section, we will state the Mordell-Weil theorem on Elliptic
curves, outline the main stages of the proofs, and present the relevant theorems.
We will then fill in the proofs and details of those theorems over the next sections.

1.1. Mordell-Weil Theorem Over Elliptic Curves. The statement of the the-
orem (for elliptic curves) is as follows:

Theorem 1.1 (Mordell-Weil). For an elliptic curve E defined over a number field
K, the elliptic curve group E(K) is finitely generated.

The basic structure for the proof consists of two stages. In the first stage, we
prove a weak version, commonly known as the weak Mordell-Weil Theorem. The
statement of the theorem is as follows:

Theorem 1.2 (Weak Mordell-Weil). For an elliptic curve E over a number field
K, the quotient E(K)/mE(K) is finite for all integers m > 2.

In the second stage, we use a technique known as Fermat Descent Argument,
which goes as following;:

Theorem 1.3 (Fermat’s Descent Theorem, group formulation). Let A be an Abelian
group. If there exists some m > 2 and a function h : A +— R such that:

(1) For any Q € A there exists some constant Cgq such that for VP € A,
h(P + Q) <2h(P)+ Cq;
(2) There exists some finite C' such that for any P € A, h(mP) > m?*h(P)—C;
(3) For any k € R, h(P) < k only holds for finitely many P € A;
(4) The quotient A/mA is finite
then the group A is finitely generated.

Remark 1.1. The first two conditions tells us that any point P € A can be generated
by a specific set of coset representatives of A/mA and points of height less than
some constant M, with both the representatives and M independent of P; (3) and
(4) guarantees the finiteness of the set.

We would leave proves of the three theorems in section 3.

Thus if we could find an appropriate height function h : E(K) — R, which sat-
isfies the criteria (1)(2)(3) of theorem 1.3, then we would be able to prove theorem
1.1 from theorem 1.2. In the next sections, we will formally construct a height
function and show that it indeed satisfy the conditions.

2. HEIGHTS OVER PROJECTIVE SPACE AND E(K)

In this section, we will start out with the definition of absolute value, and then
we define height function over projective spaces. From that, we define height over
the group F(K).

Definition 2.1 (Absolute value). An absolute value on a field K is a real valued
function | -| on K such that:
(1) || >0 and |z| =0 iff x = 0;

(2) |zyl = |=| - |yl;
3) |z +yl < |z + |yl
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and if an absolute value satisfy a stronger condition
(1) [z +y| < max{lz], |y[},

then it is called non-archemedean. An absolute value that satisfy (3) but does not
satisfy (4) is called non-archemedean.

and we define the equivalence between absolute values as follows:

Proposition 2.1. Two absolute values |- |1 , |- |2 are equivalent if and only if there
is a positive real number s such that

|z = [af3
for x € K. When this happends, they define the same topology over K.

For proof, see for example [3]. We define place v to be an equivalence class of
non-trivial absolute values. By |- |, we denote an absolute value in the equivalence
class determined by the place v. If the field L is an extension of K and v is a
place of K, we write w|v for a place w of L if and only if the restriction to K of
any representative of w is a representative of v, and say that w extends v and,
equivalently, that w lies over v . In this case we denote this by w|v.

We also note the following useful lemma:

Lemma 2.2. Let x € K\ {0} and y € L\ {0}. Then:

> log |z]., = log |z,

wlv

The proof of this uses Hensel’s lemma, for a complete proof see [1].
With this, we now introduce the product formula.

Definition 2.3 (Product Formula). Let K be a field and My be a set of non-trivial
inequivalent absolute values on K such that the set

{I | € Mkl [z], # 1},

is finite for any x € K\{0}. We identify the elements of M with the corresponding
places and say that My satisfies the product formula if

H |z, =1

vEMEK

for any x € K\ {0}, or equivalently for x # 0, 3, 1, log|z|, = 0.

With this property, now we may formally define height on the projective space.
We denote by Q a choice of an algebraic closure of Q. Let us consider the projective
space PZ with standard global homogeneous coordinates = (xg : 1 : -+ : x,).
Let P € ]P% . We now define a function, called height, on algebraic points of IP’%,
which may be considered as a measure of the “algebraic complication” needed to
describe P. This is a fundamental notion at the basis of diophantine geometry.

In particular, we note the following proposition (again check [1] for a complete
proof):

Proposition 2.2. If K is a number field, and let Mk be the associated set of places
and normalized absolute values, obtained from the above construction applied to the
extension K/Q. Then My satisfies product formula.
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Definition 2.4. Height Let P be a point of ]P% represented by a homogeneous non-

zero vector x with coordinates in a number field K. Then h : IP’% — R is defined
as

h(x) = Y maxlog|z;|,
vEMK J
As a convention, we also denote H(x) = e In particular, this choice is
extremely powerful, in that we can show the following two lemmas:

Lemma 2.5. h(x) is independent of the choice of coordinates.

Proof. Let L be another number field containing the coordinates xg,--- ,x, of x.
We can assume that K C L. Then

Z maxlog |z, = Z Zmaxlog|xj|w,
weEMpg / vEMK wlv !

then the claim follows directly from lemma 2.2. |

Lemma 2.6. h(x) is independent of the choice of coordinates.

Proof. Let y be another coordinate vector. By the preceding lemma, we may
assume that xg, -+, Tn, Yo, ,Yn € K. Thereis A € K, X\ # 0, with y = Ax, hence

h(y) = Z mjaxlog|yj|v: Z log |A|» + Z mjaxlog|xj|v.

vEME vEMEK vEMK

Thus by proposition 2.2, we have h(y) = h(x). O

Since the definition of the height above, we can define the absolute height, or
more commonly known, Weil Height, as follows:

Definition 2.7. Weil Height Let P € Kx be a point, then
H(P) = Hy(P)

Again, the above result shows that the definition of the height is independent of
choice of K.
Finally, to define height over an elliptic curve (and more generally, for a projective

variety over Q), we have the following:

Definition 2.8. Weil Height Let X be a projective variety over Q. Let ¢ : X — ]P%
be a morphism over Q. The Weil height of P € X(Q) relative to ¢ is defined by
hy(P) := ho@(P), with h the usual height on IP%. In particular, the height of a
point over an elliptic curve E(K) with regards to a nonconstant function f € K(FE)
is defined as hy(P) =log H(f(P)).

For the last thing of this chapter, let us extend the definition height function for
polynomials.

Deﬁnitjon 2.9. The height of a polynomial f(t1, -~ ,tn) =3, . ;. Qjyooj -t =
> ja;t with coefficients in a number field K is the quantity h(f) = >, s, 108 | flos
where

|f|v = mjaX ‘aj‘zw
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is the Gauss Norm. Now let F = [f1, fa, -+, fn]. If we label the coefficents of each
fi as a;; then define
[Flo = max(|aijl,)-

And similarly Hg (F) is
Hix(F)= ] IFl..

vEMK

With this we’ve completed our definition of the height function. We now need
to show that indeed, this height function would satisfy the conditions of theorem
1.3. The next section would introduce some famous lemmas which we would use to
verify those conditions.

3. MAHLER MEASURE, NORTHCOTT THEOREM, GAUSS’S & GELFOND’S LEMMA

In this section, we will introduce Mahler Measure, which would be essential in
the proof of Northcott Theorem. This will in turn be used later to verify condition
(3) in Theorem 1.3. We also introduce Gelfond and Gauss Lemma, which would be
relevant in verifying condition (1) and (2).

We first prove for finite places Gauss’s Lemma:

Lemma 3.1. If v is not archimedean, then |fgl, = |flv|glv-

Proof. The inequality |fg|, <|f|v|g|v is immediate because v is not archimedean.
Let us assume first that f(¢) and g(¢) are polynomials in one variable ¢ . We denote
by c; the coeflicient

> ab

j=k+l1
of f(t)g(t). Without loss of generality, we can assume that |f|, = 1,|g], = 1.
Suppose |fgl, < 1. Let j be the smallest index with |a;|, = 1. Since |¢;|, < 1
and |agl, < 1 for k < j, we get |bo|l, < 1. Now we apply the above formula for
the coefficient c¢;4; and conclude |bi], < 1 by induction. This contradiction proves
the lemma in the one-variable case. For several variables, let d be an integer larger
than the degree of fg. The Kronecker substitution

i-1,
2=t (G =1 )
reduces the problem to the one-variable case. [

We now introduce Mahler Measure, which we will use to prove Northcott’s The-
orem

Definition 3.2 (Mahler Measure). We define Mahler Measure of a n — variable
polynomial f as:

M(f) = exp (/]I‘ log | f(e"*, -+, ") |dpsy - "d“") ’

where we have abbreviated T for the unit circle {e®|0 < 0 < 27} equipped with the
standard measure dp = (1/2m)d0.

The advantage of Mahler Measure is two-fold: first, it permits a multiplicativity
property: it’s not hard to show that M (fg) = M(f) - M(g). Moreover, it permits
an upper and lower bound by ¢,, norm, which is a very important gradient in
Northcott’s theorem:
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Lemma 3.3. Let o € Q and let f(t) := agt®+- - -+ag be the minimal polynomial of
« over Z, where d = deg(a) and denote ay, aa, - - - g roots of f, then M(f) < £1(f).
Moreover

—1
(1)) =) < M) £ () < @+ V22

Proof. The first inequality is obvious from the definition of M (f) and the pointwise
bound |f(e?)| < ¢1(f) on T. Next by convexity, we get

M(f) < ( I |f<ei0>|2du)l/2.

Now by Parseval’s identity, the right-hand-side equals

1/2
J /

G(f) =D la;? < (d+ 1)l ().

Jj=0

Finally, we remark that

| 2d=r | = | Y oa
ag J1 Jr

J1<<Jgr
hence
d d
s < () oa [ mex(t ey

Finally by Jensen’s formula (log M (f) = log |aq| + Z?Zl log™ |a],for proof see [1]),

we have y
art < () M0

We also note another property of Mahler’s measure:

Proposition 3.1 (Property of Mahler’s Measure). Let o € Q and let f be the
minimal polynomial of o over Z. Then
log M(f) = deg(a)h(a).
In particular
log [Ng(a)/q(a)| < deg(a)h(a).
The following consequence is known as Northcott’s theorem:

Theorem 3.4 (Northcott). There are only finitely many algebraic numbers of
bounded degree and bounded height.

Proof. Let a be algebraic of degree d and height h(a) < log H. Let f(t) = aqt? +
-+« + ap be the minimal polynomial of o over Z. By Proposition 3.1, we have
M(f) < Hy . Also, Lemma 3.3 shows that max |a;| < 29M(f). Therefore, the
coefficients of f are bounded by (2H)? . Since there are d + 1 integer coefficients
for each f, they give rise to not more than (2[(2H)4] + 1)?*! distinct polynomials
f. Since each f has d roots, the number of algebraic integers of degree d and height
at most H is at most d(2[(2H)d] + 1)%+! < (5H)T+d | O

Finally, we will introduce Gelfond’s lemma:
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Lemma 3.5. Let fi, -, fm be complex polynomials in n variables and set f :=
fi- fm. Then

2_d H gw(fj) < gw(f) < 2d H EOO(fj)

Jj=1 j=1

The proof follows from Lemma 3.3. The readers are welcome to verify the results
by first proving the following statement:

Lemma 3.6. Let f(t1,---tn) be a polynomial with complex coefficients and partial
degrees dy,- -+ ,dy, then

[T+ 02010 < ta9) < TT () 3000

A direct consequence from Gauss’s Lemma and Mahler’s Lemma is the following:

Lemma 3.7. Let fi, fa, -+, fm be polynomial in n variables with coefficients in Q
and let d be the sum of the partial degrees of f := f1-+- frn. Then

—dlog2+ S h(f;) < h(f) < dlog2+ > h(f;).

j=1 j=1
4. BOUNDEDNESS OF HEIGHT FUNCTION

With all the necessary background from the last chapters, we will verify that
indeed the height function defined in the previous section would satisfy the three
condtions. For the first two conditions, we will devise a purely elementary approach
to prove the theorem. Indeed, for the extension of this result to more general abelian
variety, we need more technical tools (e.g. Naron Tate Height, Galois Cohomology),
which we will be discussing more in chapter 5 onwards.

The outline of this section is also straightforward: we will verify each of the
conditions in theorem 1.3 sequentially. The verification of first two condition follows
from a purely algebraic approach, while the verification of condition (3) we will
introduce Northcott theorem as our important tool.

To verify the first two conditions, we will first introduce the following proposition:

Proposition 4.1. Fiz m,n > 0. For any morphism F : P"(K) — P™(K) of

degree d, there exist constants C1 and Co such that for any P € P™(Q), there exists
constant Cy,Cq such that CyH(P)? < H(F(P)) < CoH(P)4.

Remark 4.1. This result allows both an upper bound and an lower bound of the
WEeil heights we defined in the last section, which we will see later.

Proof. Define P = [xg,21, -+ ,2,] and F = [fo, f1, f2, -+, fm] Where the f;s are
homogeneous without common zero. If for place v we define

|Pl, = m?*xuxilv)'

And set ¢(v) to be a constant such that ¢(v) = 1if v is Archimedean, and 0 otherwise.
We may simplify the triangle inequality as |a; + -+ + apl, = nt@) max(|a;ly).

Since the absolute value of every term in any f; must be less than or equal to
|F|,|P|2, the triangle inequality gives us

77,+d Lo
Fe)< (M) IPLIPE,
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where we note the ("1%) comes from the maximum possible number of terms in f;
Multiplying across all places v € Mg gives

n+d
d

which is the desired upper bound.

For the lower bound, we first note that because the f; is homogeneous of degree
d and share no nontrivial zeroes, the set upon which all vanish in the affine space
A"1(Q) is only (0,0,--- ,0).

Thus, we can apply the Nullstellensatz to yield that in the space Q[Xo, X1, -+ , X,,]
the ideal generated by the f;s must contain powers of every polynomial which van-
ishes at (0,0, --,0), including the polynomials Xy, X7,--- .Xy. This means that
for some integer n > 1, each X' can be written as:

X' = gl
=0

n+d

HielF () < '

)[K - QHy (F)Hy (P H(F(P)) < ( )H(F)H(P)d,

with ¢;; € Q[Xo, X1, ,X,] is homogeneous of degree n — d. If we associate
the absolute value and heights |G|, and Hx(G) the same way as we defined the
notation for F', taking the maximum across all coefficients of g;;s, then by triangle
inequality, there exists some constant £ such that

il < €1 maxc lgis (Pl F(P),

so that

n - ¢(v) ..
Py <& oax 95 (P) o F(P)]v,

Now applying the triangle inequality on each |g;;(P)ly, there exists some constant
&5 such that
9 (P)lo < &Gl PI3 ™,

so that
1Ply < &Y &DIGLIPIE (P,
[PI3 < &N |GLIF(P)]L,
Hence we have
Hg (P)! < (B1&) U Hy (G)Hi (F(P)),
which is precisely
H(P)! < (E\&)H(G)H(F(P)).

So setting C = i completes the lower bound. O

1

E1E2)H(G)

Proposition 4.1 allows the following lemma, which gives a condition for bounding;:
Lemma 4.1. If f and g are even functions, then hydeg(g) = hydeg(f) + O(1).

Proof. Firstly, note that elliptic curve that the even functions in K (FE) are exactly
the functions of K (X). This allows us to find a rational function 7(X) € K(X)
with rox = f. It follows from Weil Height’s definition that h;(P) = log H(f(P)) =
log H(r(xz(P)). We can take the logarithm of both sides in Proposition 4.1 to yield:

log H(z(P))(degr) +log Cy <log H(r(z(P)) < logH (xz(P))(degr) + log Cs
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where deg r is the degree of r, defined as the degree of numerator minus the degree
of demoninator. Treating C7,C5 as constants,

log H(r(xz(P)) = (degr)log H(x(P)) + O(1) = (degr)h,(P) + O(1).
Since deg xz = 2, we have that deg f = 2degr and thus
2hy(P) = (deg f)ha(P) + O(1)
and likewise
2hy(P) = (deg g)ha(P) + O(1)
hence
hs(P)(degg) = 5 (deg f)(dex g)ha(P) + O(1) = hy(P)(deg ).
O

Finally, we will follow the treatment on [7] and [8] to prove the following lemma,
which would allow us to verify the first two conditions:

Lemma 4.2. For P,Q € E(K) and f : E — P} even,

hy(P+ Q)+ hy(P — Q) = 2hs(P) +2hs(Q) + O(1),
where we note that the added constant O(1) is independent of the choice of P and
Q.
Proof. From the previous lemma we have 2hy = (deg f)h, +O(1). Hence substitue
this back to the equation in the lemma, we see that it suffice to prove h,, also satisfy
the equation.

Without loss of generality, we assum P,Q # O. (Otherwise if P = O and
Q@ = O gives us the trivial case with h;), , setting z(P) = [x1,1], 2(Q) = [z2,1],
z(P+ Q) = [z3,1], and (P — Q) = [z4, 1].

We also write out E in Weierstrass form:

y? =23+ Az + B.
Then the Addition formula gives us:
2(%1 + (EQ)(A + $1$2) + 4B

(371 + 372)2 — 4($1$2)
(31‘1.%‘2 — A)2 — 4B<.’1?1 + .272)

(351 + LE2)2 — 4(1’1I2)

This admits a map to [1, x3 + 24, Z324] in terms of [1, 21 + 23, x125]; which is given
by

T3+ x4 =

L3Tyg =

g:P? = P? g(a,b,c) = (b* — dac, 2b(Aa + ¢) + 4Ba®, (c — Aa)* — 4Bba) .

This, when combining with the maps o : E x E — P? (P,Q) — [1,2(P) +
2(Q),z(P)x(Q)] and G: Ex E — Ex E, G(P,Q) = (P+ Q, P — Q) clearly gives
us that cog=Goo.

We next show that g is a proper morphism on P? by showing that g([a, b, c]) #
[0,0,0] for any [a,b,c] # [0,0,0]. If a = 0, then we have g([a,b,c]) = [b%, 2bc, ?],
meaning that there are no zeroes for which a = 0 but b # 0 or ¢ # 0.

Thus, we set a = 1, giving

g([a,b,c]) = [b* — 4c,2b(A +¢) + 4B, (c — A)? — 4Bb).
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If we want all three polynomials to vanish, then we must have ¢ = ibz. This gives
us the other polynomials %b?’ + 2Ab+ 4B and %664 — %Ab2 — 4Bb + A?. Therefore

1 1
(2422 + 128A)(1—6334 - §A:v2 — 4Bx + A?) — (32 — 20Ax — 216B)

1
(§x3 +2Ax +4B) = 32(4A% + 27B?).

This means that both polynomials vanishing on any x would indicate 443 +
27Bz? = 0; which would imply E is singular; since an initial assumption is that F
is not singular, this does not occur and therefore g is a morphism.

We now have that H(o(P+Q,P—Q)) = H(g(c(P,Q))). Since g is a morphism
of degree 2, Proposition 4.1 gives us that

Ci1H(o(P,Q))* < H(g(o(P,Q))) < C2(a(P,Q))?,
or
log H(go(P,Q)) = 2log H(o(P,Q)) + O(1).
Therefore if we apply Lemma 3.7 to the polynomial:
f(T) = (T +x1)(T + x2) = T? + (21 + 22)T + 7122
to get
1
EH(xl)H(xﬂ < H([l, Tr1 + To, 3311‘2]) < 4H($1)H($2)
Taking the logarithm gives
log H(o(P,Q)) =log H([1, 21 + 22, x1x2])
= log H(Il)H(w2) + O(l) = hz(P) + hw(Q) + 0(1)7

and doing the same with z3 and x4 in the polynomial gives the corresponding result
for P+ @ and P — Q. Thus we have:

he(P+ Q) + he(P = Q) =log H(o(P + Q, P - Q)) + O(1)
— 2log H(o(P,Q)) + O(1) = 2h, (P) + 2h,(Q) + O(1),
as desired. O

We are now able to verify the first and second condition of Fermat’s Descent
Theorem:

Lemma 4.3 (First Condition of Fermat Descent Theorem). For any @ € E(K)
there exists some constant C' such that for any P € E(K), hy(P+Q) < 2hf(P)+C.

Proof. This follows immediately, as we can set the C' > 2h;(Q)+ O(1) for the O(1)
in Lemma 4.2, and then h ¢ (P4+Q)+hf(P—Q) < 2hs(P)+C and hy(P—Q) > 0. O

Lemma 4.4 (Second Condition of Fermat Descent Theorem). For any integer
m > 2, and any P € E(K), hf([m]P) = m?hs(P) + O(1) where [m]P is the sum
P+P+---+ P for m times.

Proof. This is trivial for m = 0,1 so we induct for m given the result on m — 1 and
m — 2. From Lemma 4.2 we then have that

hp([m]P) + hy([m = 2]P) = 2hs([m = 11P) + 2h;(P) + O(1),
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so that
hy([m]P) = —hys([m — 2]P) 4+ 2hs([m — 1]P) + 2h;(P) + O(1)
= (—(m —2)2+2(m — 1)? + 2)hs(P) + O(1) = m*h;(P) + O(1)
as desired. 0

The final condition we need to verify is the third condition. This will also be
relatively straightforward. We state a special case of Northcott’s Lemma we will
be using here:

Lemma 4.5 (Northcott. Special Case). The set of P € P*(Q) with H(P) < C
and [Q(P) : Q] < D for some constants C and D is finite.

From this we will see that the third condition is immediate:

Lemma 4.6 (Third condition for Descent Theorem). For any number field K and
constant ¢, the set of points of P™(K) with height less than or equal to c is finite.
In particular for an elliptic curve E/K and nonconstant function f € K(E), the
set of points P for which hy(P) < C is finite.

Proof. The first half of the statement is immediate. Since for any P € P"(K), the
degree [Q(P) : Q] < [K : Q], we apply Northcott’s theorem with d = [K : Q] for
this result.

For the second half, we note for points on E(K) for which h;(P) < C we have

log H(f(P)) < C or equivalently H(f(P)) < e®.

Setting ¢ = e in the above result tells us that there are finitely many points f(P) €
P™(K) where this occurs. Since the function f is in K (F) and is nonconstant, the
preimage of each point in P*(K) will be finite, meaning that the union of the
preimages of each f(P) with H(f(P)) < e“ is finite as desired. O

We are now in good shape to put all things together for Mordell-Weil Theorem
Over Elliptic Curves.

5. PUTTING IT ALTOGETHER: MORDELL-WEIL THEOREM OF E(K)

So now to prove Theorem 1.1, we are just missing two things:

(1) Proof of Theorem 1.2 (weak Mordell-Weil);
(2) Proof of Theorem 1.3 (Fermat’s descent).
The proof of (1) is quite involved: in the next section, we would outline the
important lemmas . For a detailed proof, the readers may check [8] or [1]. The
proof of (2) is in fact straightforward, which we will write up in detail.

5.1. Proof of weak Mordell-Weil. We first reformulate Theorem 1.2 into two
corollaries:

Corollary 5.1. Let E be an elliptic curve over a number field K with 2- torsion
also defined over K. Then E(K)/2E(K) is finite.

Corollary 5.2. Let A be an abelian variety defined over a field K and let L be
a finite separable extension of K. Let m be a positive integer and suppose that

A(L)/mA(L) is a finite group. Then A(K)/mA(K) is a finite group.
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To prove corollary 5.1 would require the following input from commutative al-
gebra:

Proposition 5.1. Let K be a number field. Then we can find a finite set of places
S of K such that for any finite set of places T' € Mg with T D S, the ring Or i
is a principal ideal domain and hence a unique factorization domain.

For proof of this see [4] and [6].
We also observe that ' may be viewed as a plane curve in P% , given in standard
affine coordinates by

y2 + a1y +asy = 2> + a2m2 —+ asx + ag

for some a; € K. Replacing y by y — %(alx + a3) (which is allowed because
char(K) # 2), we may assume that a; = a3 = 0. Therefore, after this simplifica-
tion, the affine part of E has equation

Y = (r — 1)z — o)z — a3)

with a; € K,1=1,2,3.
with this observation we would be able to prove the following proposition:

Proposition 5.2. The group E[2] of 2-torsion points of E consists of the identity
element O and the points («;,0), i = 1,2,3, of order 2.

In particular, this will allow us to prove the following:

Lemma 5.1. The map ¢ : BE(K) — (K*/K*?)3 is a group homomorphism with
kernel 2E(K).

whic will in turn allow us to prove:

Proposition 5.3. Let R be a unique factorization domain with quotient field K.
Assume that char(K) # 2 and that the group of units R* in R is finitely generated.
Let E be the elliptic curve given by

y? = (z—an)(z — aa)(w — as),

where a1, ag, a3 are distinct elements of R. Then there exists a constant C such
that |E(K)/2E(K)| < C.

So putting all these together we will be able to prove Corollary 5.1:

Proof of Corollary 5.1. The ring of integers O is not necessarily a unique factor-
ization domain. However, by Proposition 5.1, we can find a finite set of places S
in K such that for any finite set of places T' € Mg with T' D S , the ring R of
T-integers in K is a unique factorization domain. By Dirichlet’s unit theorem, its
group of units R* is finitely generated. Now by Proposition 5.2 and the obser-
vation, we have that E is K-isomorphic to an elliptic curve of the form required
in Proposition 5.3, because we can always enlarge the ring R so as to ensure that
every a; € R. The result now follows from Proposition 5.3. O

Now with Corollary 5.1, we introduce an additional Proposition, which would
allow us to prove Corollary 5.2:
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Proposition 5.4. Let n € Z\ {0}. Then [n] is a finite flat surjective morphism
of degree n>3™(A) - The separable degree of [n] equals the number of points of any
fibre. If char(K) t n, then [n] is an étale morphism and

Aln] = (Z/nz)?4mA),
If p = char(K) divides n, then [n] is not separable.

Proof of Corollary 5.2. Let d = [L : K| and let 6 be a positive integer such that
we can write d = dod; with do|m?~! and ged(dy,m) = 1. Let also E be a set of
representatives of A(L)/mA(L) in A(L).

The group A(L)/m°A(L) is again a finite group, since a set of representatives
for it is contained in the finite set

E@)=E+mE+---+mLE.

Let F' be the Galois closure of L over K, let G = Gal(F/K), let H be the subgroup
of G of index d fixing L, and denote by R a full set of representatives for the
left-cosets of H in G.

Let © € A(K) C A(L). Then we have z — m’y € E(4) for some y € A(L). We
apply the automorphisms ¢ € R to this equation and deduce

dx —mPz € £'(9),
where z := )" _ oy and

£'(6) = (Z 0) £(5).

oER
Clearly, z € A(K) because any element 7 € Gal(F'/K) permutes the left-cosets of
H. Since dy divides mdé — 1, we may divide by dy , getting

dyz —m(m®~Y/dy)z € A(K) N difl(é),
0

and A(K)N %8’ (0) is still a finite set use Proposition above. Finally, since d; and

m are coprime, by Bézout the euclidean algorithm produces integers u and v such
that dyu — mv = 1. After multiplication by w, it follows that

z — m((m® Jdo)uz — vz) € A(K) N dﬁe'(a),
0
which completes the proof U

Finally, we conclude the proof of Mordell-Weil Theorem by proving Fermat’s
Descent Theorem:

5.2. Proof of Fermat’s Descent Theorem. Recall that Fermat’s Descent The-
orem states the following:

Theorem 5.2. Let A be an Abelian group. If there exists some m > 2 and a
function h : A — R such that:

(1) For any Q € A there exists some constant Cq such that for VP € A,
WP+ Q) < 2h(P) + Ca;
(2) There exists some finite C such that for any P € A, h(mP) > m*h(P)—C;
(3) For any k € R, h(P) < k only holds for finitely many P € A;
(4) The quotient A/mA is finite
then the group A is finitely generated.
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Proof. We start by selecting the representatives of each coset of mA in A. Since
A/mA is finite, there are finitely many cosets and thus this gives a finite set
leQQa' o aQn~

For any point P, we denote the representative of the coset containing P as Q) p.

Now, taking any starting point Py € A, we can write that Py — QP € mA, or
Py = QPy+mP, for some P; € A. We can repeat this process an arbitrary number
of times as well, each time taking P, = QP + mPjy1.

Our aim now is to show that there exists some constant M for which, given any
Py, there is eventually a value of k for which h(P;) < M. Condition (2) gives us
that

m2h(Py) < h(mPy) + C

or

! (h(mPy) + C),

which, plugging in the equation relating Px_1 to Py gives

WP < o (h(Pey — Qr, ) +C).

Setting

C, = max C_p,
max 1<i<n Qi

allows us to in turn apply (1) which tells us that
h(Py—1 — QPy—1) <2h(Pr—1) + C_gp,_, <2h(Py—1) + Crax

and thus
1

h(Py) < —

(2h(Py—1) + Crax + O).

m
Since m > 2, we have that

1
h(Pk—l) + 7(Cmax + C)a

h(Py) < 1

DN | =

hence ) ) )
h(Pk:) - Q(Cmax + C) S i(h(Pkfl) - §(Cmax + C))

Thus for any Py there must eventually be some value of K for which h(Py) —
%(Cmax +C)<1,or h(Py) <1+ %(Cmax + C), giving us our constant M. Thus,
we have that any Py € A can be written as a sum using only elements of height
<1+ %(C'm;LX + () (which, since C' and Ciyax are independent of Py, is a finite set
by (3)) and the coset representatives @; (a finite set by (4)). Thus, we have a finite
set of generators from which every element of A may be produced. O

Hence Fermat Descent, combined with Weak Mordell-Weil Theorem, allows us
to complete the proof of Mordell-Weil Theorem for Elliptic Curves.
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