DIOPHANTINE GEOMETRY WEEK 07 NOTES

XIAORUN WU

Abstract

In this week, we will briefly talk about Néron-Tate Heights and Fermat's descent Theorem. Again, for more details, please check Bianca's notes and Bombieri [1] chapter 9.1-9.4.

Contents

1. Introduction 1
2. Néron Tate Height and Fermat's Descent Theorem 1

References

1. Introduction

The theorem of Néron-Tate height is the main recipe needed to extend MordellWeil theorem for Elliptic Curves to Abelian Varieties, namely the finite generation of the group of rational points of an abelian variety defined over a number field.

We shall see in next week's material for a historical overview. For this week, we will introduce tools that would allow us to extend this result to the general Mordell-Weil Theorem.

As in the case of the Elliptic Curve, we will split into two steps: in the first step, we will outline the proof for weak Mordell-Weil Theorem for general abelian varieties, and then we give a generalized version of Fermat's descent theorem, which will allow us to prove strong Mordell-Weil Theorem.

2. Néron Tate Height and Fermat's Descent Theorem

So ultimately, our goal is to prove the following lemma, which will be crucial in completing the proof of Mordell-Weil Theorem:
Lemma 2.1. Let K be a number field and let c be ample and even. Then \widehat{h}_{c} vanishes exactly on the torsion subgroup of $A(K)$. Moreover, there is a unique scalar product \langle,$\rangle on the abelian group A(K) \otimes_{\mathbb{Z}} \mathbb{R}$ such that

$$
\widehat{h}_{c}(x)=\langle x \otimes 1, x \otimes 1\rangle
$$

for every $x \in A(K)$,
where we will soon define \widehat{h}, which is commonly known as Néron-Tate Height. Over the rest of the section, we will give a survey of important results in Néron-Tate heights.

Let K be a field and let A be an abelian variety over K. Let X be a complete variety over K. Then we know that we have the height homomrphism

$$
\mathbf{h}: \operatorname{Pic}(X) \rightarrow \mathbb{R}^{X(\bar{K})} / O(1)
$$

which associates \mathbf{c} with the equivalence class of heights $\mathbf{h}_{\mathbf{c}}$.
But the problem with Weil Heights is, there do not exist a canonical height function associated to $\mathbf{c} \in \operatorname{Pic}(X)$, as they are only determined up to a bounded constant.

To solve this, we take our resolution to theorem of cube. for every $\mathbf{c} \in \operatorname{Pic}(A)$ we have a quadratic function

$$
\operatorname{Mor}(X, A) \rightarrow \operatorname{Pic}(X), \quad \varphi^{*} \mapsto \varphi^{*}(c)
$$

where we may decompose \mathbf{c} into an even and odd part $\mathbf{c}=\mathbf{c}_{+}+\mathbf{c}_{-}$, and we there fore have the associated decomposition of height homomorphism:

$$
q: \operatorname{Mor}(X, A) \rightarrow \mathbb{R}^{X(\bar{K})} O(1), \quad \varphi \mapsto \mathbf{h}_{\varphi^{*}(c)}
$$

We conclude that $q=q_{+}+q_{-}$for the quadratic form $q_{+}(\varphi):=h_{\varphi *}\left(c_{+}\right)$and the linear form $q_{-}(\varphi):=h_{\varphi *}\left(c_{-}\right)$. The most important fact is that, this decomposition is unique. Motivating by the observation, we have the following:

Observation 2.1. Let $h_{\boldsymbol{c} \pm}$ be an arbitrary height function in the class $\boldsymbol{h}_{\boldsymbol{c} \pm}$. For any integer n, we have $n^{2} \boldsymbol{h}_{c_{+}}=\boldsymbol{h}_{[n] *\left(c_{+}\right)}$and $n \boldsymbol{h}_{c_{-}}=\boldsymbol{h}_{[n] *\left(c_{-}\right)}$. By theorem of height function, there is a constant $C(n)$ such that for every $a \in A$

$$
\left|h_{c+}(n a)-n^{2} h_{c+}(a)\right| \leq C(n)
$$

and

$$
\left|h_{c-}(n a)-n h_{c-}(a)\right| \leq C(n)
$$

Definition 2.2 (Quasi-Homogeneous). Let \mathcal{N} be a multiplicatively closed subset of $\mathbb{R}\left(\right.$ resp. $\left.\mathbb{R}_{+}\right)$acting on a set S by means of a map such that $n(m x)=(n m) x$ for $x \in S$. A function $h: S \rightarrow R$ is quasi-homogeneous of degree $d \in N$ (resp. $d \in R+)$ for N if for $n \in \mathbb{N}$ there is a positive constant $C(n)$ such that

$$
\left|h(n x)-n^{d} h(x)\right| \leq C(n)
$$

for every $x \in S$, and is homogeneous of degree d for N if $h(n x)=n d h(x)$.
We then have the following theorem:
Theorem 2.3. Let \mathcal{N} act on the set S as before and let $h: S \rightarrow \mathbb{R}$ be quasihomogeneous of degree $d>0$. If \mathcal{N} has an element of absolute value >1, then there is a unique homogeneous function $\widehat{h}: S \rightarrow R$ of degree d for \mathcal{N} such that $\widehat{h}-h$ is bounded.

The proof of this is purely algebraic, which we will omit here. The readers are welcome to check [1], chapter 9 .

We then introduce the Tate's limit argument:
Theorem 2.4. Let $\boldsymbol{c} \in \operatorname{Pic}(A)$ and let $\boldsymbol{c}=\boldsymbol{c}_{+}+\boldsymbol{c}_{-}$be a decomposition into an even part $\boldsymbol{c}+$ and an odd part \boldsymbol{c}_{-}. Then the classes $\boldsymbol{h}_{c_{ \pm}}$are independent of the choice of the decomposition. There is a unique homogeneous height function $\widehat{\boldsymbol{h}}_{c_{ \pm}}$in the class $\boldsymbol{h}_{c_{ \pm}}$, of degree 2 in the + case and degree 1 in the - case.

This theorem allows the definition of Néron-Tate height:
Definition 2.5 (Néron-Tate height). The height function $\widehat{\boldsymbol{h}}_{c}:=\widehat{\boldsymbol{h}}_{c_{+}}+\widehat{\boldsymbol{h}}_{c_{-}}$is called the Néron-Tate height associated to c.

To complete this section, we associate our bilinear form with Néron Tate Height, which would allow us to prove the Fermat Descent Theorem.

Let M be an abelian group and let b be a real-valued symmetric bilinear form on M. We have in mind the example $M=A(K)$ and a certain bilinear form associated to a Néron-Tate height. The kernel of b is the abelian group

$$
N:=\{x \in M \mid b(x, y)=0 \text { for every } y \in M\} .
$$

Then b induces a symmetric bilinear form b on $\bar{M}:=M / N$ and the kernel of b is zero. Since b is real valued, \bar{M} is torsion free and all torsion elements of M are contained in N. We conclude that

$$
\bar{M} \rightarrow \bar{M}_{\mathbb{R}}:=\bar{M} \otimes_{\mathbb{Z}} \mathbb{R}, m m \otimes 1
$$

is injective. Let \bar{M}^{\prime} be a finitely generated subgroup of \bar{M}. The restriction of b to the free abelian group \bar{M}^{\prime} extends uniquely to a bilinear form \bar{b}^{\prime} on $\bar{M}_{\mathbb{R}}^{\prime}$. Let $\bar{M}_{\mathbb{Q}}^{\prime}=\bar{M}^{\prime} \otimes_{\mathbb{Z}} \mathbb{Q}$. An easy argument shows that

$$
\bar{M}_{\mathbb{Q}}^{\prime} \subset \bar{M}_{\mathbb{Q}}
$$

and so $\bar{M}_{\mathbb{R}}^{\prime} \subset \bar{M}_{\mathbb{R}}$. Since $\bar{M}_{\mathbb{R}}$ is the union of all \bar{M}^{\prime} and the bilinear forms \bar{b}^{\prime} coincide on overlappings by uniqueness, we have a unique extension of b to a bilinear form $b_{\mathbb{R}}$ on $\bar{M}_{\mathbb{R}}$.

Thus we would like that bilinear form on $b_{\mathbb{R}}(x, y)$ determines a scalar product and an associated norm $\|x\|^{2}=b_{\mathbb{R}}(x, x)$ on $M_{\mathbb{R}}$. In fact, we have the following lemma:

Lemma 2.6. With the notation and assumptions above, the bilinear form $b_{\mathbb{R}}$ is positive definite if and only if for every finitely generated subgroup \bar{M}^{\prime} of \bar{M} and for every $C>0$ the set

$$
\left\{x \leq \bar{M} \mid b_{\mathbb{R}}(x, x) \leq C\right\}
$$

is finite.
Finally, our goal is to offer a explicit formula that would allow us to calculate Néron-Tate heights.

Theorem 2.7. Let K be a number field and let c be ample and even. Then \widehat{h}_{c} vanishes exactly on the torsion subgroup of $A(K)$. Moreover, there is a unique scalar product \langle,$\rangle on the abelian group A(K) \otimes_{\mathbb{Z}} \mathbb{R}$ such that

$$
\widehat{h}_{c}(x)=\langle x \otimes 1, x \otimes 1\rangle
$$

for every $x \in A(K)$.
For a complete proof of this would require more algebraic geometry input, which we shall omit here.

With this, we are now ready to prove the second part-Fermat Descent Theorem.

References

[1] Bombieri, Enrico, and Walter Gubler. 2006. Heights in diophantine geometry. Cambridge: Cambridge University Press. http://public.eblib.com/choice/publicfullrecord.aspx?p= 244411
[2] Robin Hartshorne, Algebraic Geometry Graduate Texts in Mathematics, Vol. 52 Chapter 1, pp. 54, Springer Science \& Business Media, 2013
[3] N. Jacobson, Basic Algebra II. First edition. W. H. Freeman \& Co., San Francisco 1980. xix +666 pp. Second edition. W. H. Freeman \& Company, New York 1989. xviii+686 pp.
[4] S. Lang, Algebraic Number Theory. Second edition. Graduate Texts in Mathematics 110. Springer-Verlag, New York 1994. xiv +357 pp.
[5] L.J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees. Proc. Cambridge Philos. Soc. 21 (1922), 179-192.
[6] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. Second Edition. PWN- Polish Scientific Publishers and Springer-Verlag, Warszawa 1990. xiv+746 pp.
[7] Jean-Pierre Serre, Lectures on the Mordell-Weil theorem, third ed., Aspects of Mathematics, Friedr. Vieweg \& Sohn, Braunschweig, 1997, Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and Serre. MR 1757192
[8] Joseph H. Silverman, The arithmetic of elliptic curves, second ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094
[9] A. Weil, L'arithm'etique sur les courbes alg'ebriques, Acta Math. 52 (1929), 281-315. Also OEuvres Scientifiques - Collected Papers. Vol. I, Corrected Second Printing, Springer-Verlag, New York-Heidelberg-Berlin 1980, 11-45.
[10] A. Weil, Sur un th'eor'eme de Mordell, Bull. Sc. Math. (2) 54 (1929), 182-191. Also OEuvres Scientifiques-Collected Papers. Vol. I, Corrected Second Printing, Springer-Verlag, New York- Heidelberg-Berlin 1980, 47-56.
[11] X. Wu, Topics in Arithmetic Geometry: Arithmetic Heights and Mordell-Weil's Theorem Part I
Email address: xiaorunw@math.columbia.edu

