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1 Chapter 4: Representations of GL(2) over a p-adic Field

1.1 Smooth and Admissible Representations

1.1.1 Notations

For our discussion here, F will be a non-Archimedean local field. Let o be its ring of integers and p the

unique maximal ideal of o. Fix a uniformizer ϖ of p. Let q = |o/p| be the cardinality of the residue field.

We denote by
∫
F
dx the additive Haar measure on F normalized so that o has volume 1. We also denote by∫

F× d×x normalized so that o× has volume 1. In fact,

d×x = (1− q−1)−1|x|−1dx.

1.1.2 Definitions

We recall some definitions from topology.

Definition 1.1 (Neighborhood Base). If X is a topological space and x ∈ X, a neighborhood base at x is a

collection U of neighborhoods of x such that every neighborhood of x contains an element of U .

By a totally disconnected locally compact topological space we mean a Hausdorff topological space X such

that every point of X has a neighborhood base consisting of sets that are both open and compact. Note

that in the p-adic topology, F is totally disconnected and locally compact topological group. In fact, any

closed subset of the affine space Fn is totally disconnected and locally compact. In particular, these include

GL(n, F ) and its closed subgroups.

It is a general fact that if G is a totally disconnected and locally compact topological group, then compact

and open subgroups of G form a neighborhood base at identity. If G is in fact compact, then compact and

open normal subgroups form a neighborhood base. If G = GL(n, F ), a neighborhood base at identity can

be K(ϖn), n ∈ Z≥0, which consist of elements of GL(n, o) congruent to the identity modulo ϖn.

Definition 1.2 (Smooth Representations). Let G be a totally disconnected and locally compact group, and

let (π, V ) be a representation of G. Here V is a possibly infinite dimensional complex vector space and we do

not impose any topology on V . We say that π is smooth if for any v ∈ V , the stabilizer {g ∈ G | π(g)v = v}
is open.

Definition 1.3 (Admissible Representations). If π is smooth and for any open subgroup U ⊂ G, the space

V U of vectors fixed by U is finite dimensional, then π is called admissible.
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1.1.3 Decomposition of Smooth Representations

Smooth representations have a nice decomposition into an algebraic direct sum of isotypic components. This

decomposition also gives an alternative characterization to admissible representations. We need to introduce

some language before formulating this statement precisely.

Let Γ be a compact totally disconnected group (in particular, Γ can be finite). Let Γ̂ be the set of equiva-

lence classes of finite-dimensional irreducible representations of Γ whose kernel is open and hence of finite

index. For ρ ∈ Γ̂, we can by abuse of notation denote by (ρ, Vρ) a representation in the equivalence class of ρ.

Suppose for now that Γ is finite and (π, V ) is a representation of Γ on a possibly infinite-dimensional

vector space. If ρ ∈ Γ̂, let V (ρ) be the sum of all Γ-invariant subspaces of V that are isomorphic to Vρ

as Γ-modules. We call V (ρ) the ρ-isotypic subspace. By the theory of representations of finite groups1, we

know that Γ̂ is finite for finite Γ. We have a decomposition

V =
⊕
ρ∈Γ̂

V (ρ).

We can generalize this decomposition to smooth representations of a totally disconnected locally compact

group G. By the general topological fact above, we know that G has an open compact subgroup K. We

also know that the compact and open normal subgroups of K form a neighborhood base at the identity in

K and hence in G.

Let ρ ∈ K̂, then the kernel Kρ of ρ is a compact open normal subgroup of K. Since Kρ is of finite index in

K, we can treat ρ as a representation of the finite group K/Kρ.

Let (π, V ) be a smooth representation of G. Generalizing the previous notation for finite groups, we let V (ρ)

denote the sum of all K-invariant subspaces that are isomorphic to ρ as K-modules. We have the following

decomposition:

Proposition 1.1. Let (π, V ) be a smooth representation of G. Then

V =
⊕
ρ∈K̂

V (ρ).

The representation π is admissible if and only if each of the V (ρ) is finite-dimensional.

Proof. One first show that V is the sum of the spaces V (ρ). Since π is smooth, v ∈ V is fixed by an open

compact subgroup K0 of K. In fact, K0 can be assumed to be normal. Thus, with Γ = K/K0,

v ∈ V K0 =
⊕
ρ∈Γ̂

V (ρ) ⊂
∑
ρ∈K̂

V (ρ).

The sum can be seen to be direct by reducing to the finite group case.

Note that V (ρ) ⊂ V ker ρ. Since ker ρ is open by assumption, if π is admissible, we would have V ker ρ to be

finite dimensional. Conversely, if π is not admissible, then there exists some open normal subgroup K0 of K

such that V K0 is infinite-dimensional. This leads to a contradiction because V K0 decomposes into a finite

direct sum of V (ρ) over ρ ∈ K̂/K0.

1The sum of the square of the dimension of spaces in Γ̂ equals to the size of Γ
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We also want to define the contragradient representation of a smooth representation (π, V ). If v̂ : V → C
is a linear functional, we write ⟨v, v̂⟩ for v̂(v) when v ∈ V . We say that the linear functional v̂ is smooth if

there exists an open neighborhood U of the identity in G such that

⟨π(g)v, v̂⟩ = ⟨v, v̂⟩

whenever g ∈ U and for all v ∈ V . Let V̂ be the space of smooth linear functionals on V . We define the

contragradient representation (π̂, V̂ ), where the action of g on V̂ is defined by

⟨v, π̂(g)v̂⟩ := ⟨π(g−1)v, v̂⟩.

To check that π̂(g)v̂ ∈ V̂ , we need to find an open neighborhood U ′ of G such that

⟨π(g′)v, π̂(g)v̂⟩ = ⟨v, π̂(g)v̂⟩

whenever g′ ∈ U ′ and for all v ∈ V . Since v̂ ∈ V̂ , we can just take U ′ = gUg−1, where U is the neighborhood

for v̂, as the criterion by the definition of π̂ translates to

⟨π(g−1g′)v, v̂⟩ = ⟨π(g−1)v, v̂⟩.

Moreover, to show that (π̂, V̂ ) is a smooth representation, we need to show that for all v̂, the stabilizer

{g ∈ G | π̂(g)v̂ = v̂} is open. Note that the stabilizer is a subgroup of G, so it suffices to show that there

exists an open subgroup U of G that stabilizes v̂. That follows exactly from the definition of smooth vectors.

By the summand in Proposition 1.1, the dual space V ∗ of V is the direct product V ∗ =
∏

ρ∈K̂ V (ρ)∗. We

know that V̂ ⊂ V ∗. In fact, v̂ ∈ V̂ iff. it is zero on all but finitely many2 of the summands in 1.1. Thus, V̂

can be identified with

V̂ =
⊕
ρ

V (ρ)∗

From this identification, we can see that if (π, V ) is admissible, then so is π̂ and ˆ̂π ∼= π.

1.1.4 Hecke Algebra and Applications

We will now introducing the Hecke Algebra, which allows us to view a smooth representation of a totally

disconnected and locally compact topology group G from a different perspective.

If X is a totally disconnected topological space, we call a function f on X smooth if it is locally constant. Let

H be the space of smooth compactly supported complex-valued functions on G. Assume G to be unimodular,

which means the left and right measure coincide. Make H an algebra under convolution:

(ϕ1 ∗ ϕ2)(g) =

∫
G

ϕ1(gh
−1)ϕ2(h)dh.

We call this the Hecke Algebra and it does not have a unit. If K0 is a compact open subgroup of G, let HK0

denote the subspace of K0-biinvariant functions in H. It is easily seen that HK0
is closed under convolution.

Moreover, it has the following identity element:

ϵK0
=

vol(K0)
−1 if g ∈ K0

0 otherwise.

2If it is zero on all but finitely many, take the intersection of the kernels of ρ. For the reverse direction, show that it is zero

outside of V U , with U being the neighborhood in the definition of smooth linear functional.
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Given a representation (π, V ) of G, we can construct a representation of H as follows.

If ϕ ∈ H, we define

π(ϕ)v =

∫
G

ϕ(g)π(g)vdg.

It can be checked through relatively tedious calculation that it satisfies

π(ϕ1 ∗ ϕ2) = π(ϕ1) ◦ π(ϕ2).

The following proposition gives us some insights into the relation between representations of G and repre-

sentations of H.

Proposition 1.2. Let (π, V ) be a smooth representation of G. Assume that V is nonzero. The following

are equivalent:

(i) The representation π is irreducible.

(ii) V is simple as a H-module.

(iii) V K0 is either zero or simple as a HK0
-module for all open subgroups K0 of G.

Proof. We first show that (i) and (ii) are equivalent. Since a G-invariant subspace is also H invariant, (ii)

implies (i) is clear. For the reverse direction, we want to start with a H-invariant subspace and show that it

is G-invariant. This relies on the fact that we can describe the action of G using characteristic functions in

H.

The implication (iii) implies (ii) relies on the fact that V =
⋃

V K0 , which follows from the fact that π is

smooth.

It remains to show (ii) implies (iii). Let W0 ⊂ V K0 be a proper nonzero HK0
module. It suffices to show

that π(H)W0∩V K0 = W0. In that case, by the observation above we know that π(H)W0 is a proper nonzero

subspace of V , which is H invariant by construction. For the non obvious inclusion, one makes recursive use

of the fact that for a K0 fixed vector v, π(ϵK0
)v = v. Moreover, for ϕ ∈ H, ϵK0

∗ ϕ ∗ ϵK0
∈ HK0

.

Now we work towards some theorems that describe the relationships between certain irreducible admissible

representations using distributions on G.

Recall the definition of an intertwining operator between two representations. We have Schur’s lemma for

irreducible admissible representations, which states the following.

Proposition 1.3 (Schur’s Lemma). Let (π, V ) be an irreducible admissible representation of the totally

disconnected locally compact group G. Let T : V → V be an intertwining operator for π. Then there exists a

complex number c such that T (v) = cv for all v ∈ V .

The reason why we can remove the finite-dimensionality condition on V is because that admissibility of π

ensures the existence of a finite-dimensioanl subspace of V that T acts on. An immediate consequence is that

the center of G acts by scalars on the irreducible admissible representation (π, V ). Thus, if G = GL(n, F ),

there exists a quasicharacter ω of F×, called the central quasicharacter such that

π(zIn)v = ω(z)v.

Note that a quasicharacter is a character when assumed to be unitary.

We also have a result about the canonical pairing between V and V̂ between an admissible representation

and its contragradient.
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Proposition 1.4. Let (π, V ) be an admissible representation of the totally disconnected locally compact

group G, and let (π̂, V̂ ) be the contragradient. Let K0 be an open and compact subgroup of G. Then the

canonical pairing between V and V̂ induces a nondegenerate pairing between V K0 and V̂ K0 .

We now define what we call the character of an admissible representation of a totally disconnected locally

compact group G, which also plays an important role in the study of representations, just like the case of

finite groups. We will define the character as a distribution on G.

For a totally disconnected locally compact topological space, a distribution on X is a linear functional

on C∞
c (X), the ring of smooth compactly supported functions X → C. We denote by D(X) the space of

distributions on X. In the case of G, we know C∞
c (G) = H, and a distribution on G is just a linear functional

on the Hecke algebra.

We first need to define trace of some linear operators over possibly infinite dimensional vector space. If

f : V → V is an endomorphism of a possibly infinite-dimensional vector space, we say f has finite rank if its

image is finite dimensional. Let U be a finite dimensional subspace of V that contains the image of f , then

f |U is an endomorphism of U and we define Tr(f) to be the trace of f |U .
Now let (π, V ) be an admissible representation of G. If ϕ ∈ H, it is locally constant and compactly supported,

and therefore, ϕ ∈ HK0 for some compact open subgroup K0. The operator π(ϕ) has its image in the space

of K0-fixed vectors, which is finite dimensional because of admissibility. Thus, π(ϕ) has finite rank and we

can define the character of the representation χ : H → C by χ(ϕ) = Tr(π(ϕ)).

We give a sufficient condition for two irreducible admissible representations to be isomorphic to each other.

Theorem 1.1. Let (π1, V1) and (π2, V2) be irreducible admissible representations of the totally disconnected

compact group G. If the characters of π1 and π2 agree, then the two representations are isomorphic.

The proof requires the following two facts.

Proposition 1.5. Let R be an algebra over a field k. Let E1, E2 be simple R-modules that are finite

dimensional over k. For each r ∈ R, multiplication by r induces endomorphisms mi(r) of Ei. If Tr(m1(r)) =

Tr(m2(r)) for all r ∈ R, then E1 and E2 are isomorphic as R-modules.

Proposition 1.6. Let (π1, V1) and (π2, V2) be irreducible admissible representations of the totally discon-

nected compact group G. If V K1
1

∼= V K1
2 as HK1-modules for every open and compact subgroup K1 of G,

then π1
∼= π2.

Note that this is in fact true if there exists one such K such that the condition of the proposition is

satisfied.

Proof of Theorem 1.1. Applying the first fact to k = C, R = HK1
, Ei = V K1

i , we obtain that the Ei’s are

isomorphic as R-modules, which is exactly what requires for the two representations to be isomorphic by the

second fact.

Remark 1.1.1. This theorem illustrates the applications enabled by the Hecke algebra modules structure.

In the proof of the second fact, one starts with an HK1 module isomorphism and extend it to its open

subgroups in a compatible way. One then defines the H-module homomorphism using the HK1 module

isomorphisms developed. Finally the H-module isomorphism obtained is translated into an intertwining

operator by representing the action of G with the action of H.
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With this sufficient condition, we can explicitly describe the contragradient representation we defined earlier.

Theorem 1.2. Let G = GL(n, F ) and let (π, V ) be an irreducible admissible representation of G.

(i) Define a representation (π1, V ) on the same space by π1(g) = π(⊤g−1). Then π̂ ∼= π1.

(ii) Suppose that n = 2. Let ω be the central quasicharacter of π. Define a representation (π2, V ) on the

same space by π2(g) = ω(det(g))−1π(g). Then π̂ ∼= π2.

Remark 1.2.1. The proof of this theorem uses the result below on the distributions of G. The proof of that

result requires more knowledge on distributions than we have developed so far.

Proof. Following Theorem 1.1, one wants to compare the characters of two representations. They can be

shown to be the same using the fact that the character as a distribution is invariant under conjugation and

transpose.

An easy consequence of the theorem is that π is irreducible iff. π̂ is irreducible.
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