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1. Introduction

Let F be a p-adic field with ring of integers O and fixed inverse of uniformizer $. Let q be
the order of the residual field. We fix an absolute value on F so that |$| = q. We consider
exceptional dual pairs G×G′ inside of an adjoint group G where each group consists of the
F points of a split reductive algebraic group. Denote by K and K ′ hyperspecial maximal
compact subgroups of G and G′ respectively. Let (Π,V) be the minimal representation of
G.

If σ′ is an irreducible representation of G′, we call an irreducible representation σ of G
a Θ-lift of σ′ if σ ⊗ σ′ is a quotient of Π. If σ, σ′ are spherical, we will prove that the
correspondence σ ↔ σ′ is functorial with respect to a natural injection on the dual groups

r : Ĝ′(C)→ Ĝ(C).

To be more precise, let C be the centralizer of r(Ĝ′) in Ĝ. Then C is a reductive, possibly
finite, group. Let f : SL2(C)→ C be a map corresponding to the regular unipotent orbit in
C by Jacobson-Morozov. Let

s = f
(
q1/2 0

0 q−1/2

)
.

Let H and H′ denote the spherical Hecke algebras of G and G′ respectively. Let T ∈ H
correspond, via the Satake isomorphism, to a finite dimensional representation V of Ĝ(C).
(We describe this in more detail in Section 2 below.) Write V =

∑
V ′ ⊗ V ′′, the restriction

of V to Ĝ′ ⊗ C. We define a map r̃ : H → H′ by

(1) r̃(V ) =
∑
V ′

TrV ′′(s)V
′.

Note that if C is finite, then s = 1, the identity in Ĝ, and r̃(V ) is just the restriction of V

to Ĝ′. We consider the following dual pairs:

G D4 D5 E6 E7 E8

G′ S3 PGL2 PGL3 G2 G2

G G2 G2 G2 PGSp6 F4

Table 1. Dual pairs G×G′ ⊂ G
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Theorem 1.1. For the dual pairs G × G′ ⊂ G in the above table, T ∈ HG and r̃ given by
(1), Π(T ) = Π(r̃(T )) as operators on VK×K′.

As a matter of terminology, if the actions of T and r̃(T ) agree on a space V , or, more
precisely, on a subset of fixed vectors, for all T ∈ HG we will say there is a matching of Hecke
operators of HG and HG′ on V or, more concisely, matching on V . We trust that the precise
space of fixed vectors will be clear from context.

An analogue of Theorem 1.1 is well known in the case of classical theta correspondences
[5]. For exceptional groups, the first example of matching was obtained by Rallis and Soudry
in [6].

The proof of Theorem 1.1 is by induction on the rank of G. The main tool is Jacquet
functors of V with respect to maximal parabolic subgroups of dual pairs. Most of the needed
functors were computed in [4]. One remaining, but rather remarkable case (for G = E8), is
computed in the last section.

2. The Satake isomorphism

Before giving the proof of Theorem 1.1 we review the facts about the Hecke algebra and
the Satake isomorphism (most of which can be found in [2]) which will be relevant, and we
give some general lemmas which will be key in the proof of Theorem 1.1.

2.1. The Hecke algebra. Let G be a split reductive group, K a hyperspecial maximal
compact subgroup, B = TU a Borel subgroup. There is an Iwasawa decomposition G = BK,
and the choice of Borel gives a set Φ+ of positive roots.

We identify the cocharacters of T , X•(T ), with the coweight lattice Λc, and we define

Λ+
c = {λ ∈ Λc | 〈λ, α〉 ≥ 0 for all α ∈ Φ+}.

Thus, via our identification, each element λ ∈ Λ+
c can be viewed as a map λ : F× → T .

Proposition 2.1. The group G is the disjoint union of double cosets Kλ($)K for λ ∈ Λ+
c .

Example. G = GL3(F ), Ĝ = GL3(C). If α1 = (1,−1, 0) and α2 = (0, 1,−1) are the simple
roots, then P+ consists of λ = (l,m, n) such that l ≥ m ≥ n. Then

λ(t) =
(
tl
tm

tn

)
and it is easy to verify directly that

GL3(F ) =
⊔

l≥m≥n

GL3(O)
(
$l

$m

$n

)
GL3(O).

Recall that the irreducible representations of Ĝ, the complex dual group ofG, are parametrized

by their highest weights λ ∈ Λ+
c . Let R(Ĝ) be the representation ring of Ĝ. That is, R(Ĝ)

is the C-vector space with basis consisting of the irreducible representation of Ĝ. We denote
the representation of highest weight λ by Vλ, and consider the map

(2) R(Ĝ)→ C[Λc] Vµ 7→
∑
µ

mλ(µ)[µ]

where mλ(µ) is the dimension of the µ-weight space in Vλ. Letting W denote the Weyl group,

this gives an isomorphism R(Ĝ) ' C[Λc]
W .
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The Hecke algebra HG consists of all locally constant compactly supported K-biinvariant
functions f : G → C. By Proposition 2.1, HG has a basis consisting of the characteristic
functions of Kλ($)K with λ ∈ Λ+

c . We denote these by Tλ.
If (σ, V ) is a smooth G-module then the action of f ∈ HG is given by

f ∗ v =

∫
G

f(g)σ(g)vdg.

We normalize the Haar measure dg so that vol(K) = 1. Let U be the unipotent radical of
B as above. By the Iwasawa decomposition, we can write

(3) Kλ($)K =
⋃
u

⋃
t

utK

for some representatives t ∈ T and u ∈ U . So if v is a K-fixed vector then

(4) Tλ ∗ v =
∑
u,t

σ(u)σ(t)v.

If rU : V → VU is the natural projection, where VU is the space of U -coinvariants, then

(5) rU(Tλ ∗ v) =
∑
t

n(t)rU(σ(t)v)

where n(t) is the number of single cosets of type utK appearing in Kλ($)K.

2.2. The (relative) Satake transform. Let δU denote the modular character of B given
by

d(bub−1) = δU(b)du.

The measure du is normalized so that vol(K ∩U) = 1. Obviously, δU is trivial on U , and so

this defines a character δ : T → R×+. We take δ
1/2
U (t) to be the positive square root of this

character. Let Φ+ denote the positive roots of G (determined by B.) Then if µ ∈ X•(T ),

(6) δ1/2(µ($)) = q〈µ,ρ〉, 2ρ =
∑
α∈Φ+

α.

The Satake transform ST : HG → HT is given by

(7) STf(t) = δ(t)1/2

∫
U

f(tu)du.

It is a fact that ST is injective and its image is equal to the Weyl group invariants. SinceHT =
C[X•(T )] = C[Λc], it follows from our discussion above that this defines an isomorphism

S : HG → R(Ĝ).
The Satake transform can be defined analogously for any parabolic P = MN . This yields

the relative Satake transform SM : HG → HM :

(8) SMf(m) = δ
1/2
N (m)

∫
N

f(mn)dn.

As above, dn is the measure which gives N ∩K volume 1, and δN : M → R×+ is the modular
character.

We may assume P ⊃ B, so the composition of SM with the Satake transform from HM to
HT is ST .
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2.3. Some general lemmas. In this section, we prove various simple lemmas which will
be used in our proof of Theorem 1.1.

Throughout this paper parabolic induction and the Jacquet functors will be normalized as
follows. Let P = MN be a parabolic subgroup of G. Suppose that (σ,W ) is a representation
of M which we extend trivially to P . Then we define (ρ, iGP (W )) to be the representation of
G consisting of smooth functions f : G→ W which satisfy,

(9) f(mng) = δ
1/2
N (m)σ(m)f(g) for all m ∈M,n ∈ N, g ∈ G

with right regular action ρ(g)f : h 7→ f(hg). Note that the usual induction functor is

(10) IndGP (W ) = iGP (δ
−1/2
N ⊗W ).

If (π, V ) is a representation of G, the Jacquet functor with respect to N , (πM , rN(V )), is
defined as follows. As usual,

V (N) = 〈π(n)v − v | n ∈ N, v ∈ V 〉,

so VN = V/V (N) is the space of coinvariants. Let (πM , rN(V )) be a representation of M
such that rN(V ) = VN , but the M -action is given by

(11) πM(m)v = δ
−1/2
N (m)π(m)v.

Since N is normal, it is trivial to see that this is well defined.
Since the induction and the Jacquet functor are normalized, the statement of Frobenius

reciprocity is quite simple:

(12) HomG(V, iGP (W )) = HomM(rN(V ),W ).

Lemma 2.2. Suppose that G is a split reductive group, K ⊂ G is a maximal compact
subgroup and MN = P ⊂ G is a parabolic subgroup. Let KM = K ∩M . For (π, V ) any
smooth representation of M , the following statements hold.

(i) The map ϕ : (iGP (V ))K → V KM given by f 7→ f(1) is an isomorphism.
(ii) If T ∈ H and v ∈ (iGP (V ))K then ϕ(T ∗ v) = SM(T ) ∗ ϕ(v).

Proof. Since G = PK any element g in G can be written as g = mnk, where k ∈ K, mn ∈ P ,
and we can define

ψ : V KM → (iGP (V ))K

by specifying that ψ(v)(mnk) = δN(m)1/2π(m)v. This is well defined precisely because
v ∈ V KM . Now, (i) follows by computing that ψ is the inverse of ϕ.

For remainder of the proof let S = SM . Let Tλ be the characteristic function of Kλ($)K.
Note that S(Tλ) is determined by its values on a set of coset representatives for M/KM . We
fix such a set. Using the Iwasawa decomposition G = PK, we may write (in analogy to (3))

(13) Kλ($)K =
⋃
i

⋃
j

miniK

with the mi chosen from the given set of coset representatives. If m /∈ Kλ(π)K, then
obviously S(Tλ)(m) = 0. Otherwise, m = mj0 for some mj0 appearing in the decomposition
(13). Let

n(i, j) := #{ni | mjniK appears in (13)}.
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Then

S(Tλ)(mj0) = δ1/2(mj0)

∫
N

Tλ(mj0n)dn

= δ1/2(mj0)
∑
i,j

Tλ(mj0ni)

= δ1/2(mj0)n(i, j0),

since vol(N/(K ∩N)) = 1.
Let f ∈ (IndGP V )K . By (i), ϕ(f) = f(1) = v ∈ V KM . So, by the previous calculation,

S(Tλ) ∗ v =

∫
M

S(Tλ)(m)π(m)vdm

=
∑
j

S(Tλ)(mj)π(mj)v

=
∑
j

δ1/2(mj)n(i, j)π(mj)v.

On the other hand, since f is fixed by K,

ϕ(Tλ ∗ f) = (Tλ ∗ f)(1) =

∫
G

Tλ(g)σ(g)f(1)dg

=
∑
i,j

f(1mjni)

=
∑
j

n(i, j)δ1/2(mj)π(mj)v.

By Proposition 2.1, {Tλ | λ ∈ Λ+
c } forms a basis of H. Therefore, (ii) is proved. �

Lemma 2.3. Let G be a reductive group with P = MN the Levi decomposition of a parabolic.
If V is any G-module, the map V K → V KM

N is injective.

Proof. For I ⊂ G the Iwahori subgroup, Borel (see [1]) proved that V I ↪→ V IM
N . As the

Jacquet functor is intertwining for the action of P , the image of V K is clearly fixed by KM .
Since V K ⊂ V I , this gives the desired result. �

Let G be a split reductive group defined over F . If χ : G → GL1 is a character then

χ∗ : C× → Ĝ will denote the corresponding co-character. The group χ∗(C×) is in the center

of Ĝ. For example, if G = GLn and χ = det, then χ∗(z) is the scalar matrix in Ĝ = GLn(C).

Lemma 2.4. Let χ : G → GL1 be a character. Let V be a finite dimensional irreducible

representation of Ĝ (i.e. a Hecke operator for G). Let m be a half integer. Then χ∗(qm) acts
on V as qn for some half integer n. Let π be a representation of G. Then V acts on π⊗|χ|m
as qn · V acts on π.

Lemma 2.5. Let π be a representation of G = G′ × G′′ obtained as the pullback of π′, a

representation of G′. Let s ∈ Ĝ′′ be the image of
(
q1/2 0

0 q−1/2

)
under the principal SL2 → Ĝ′′.

For V a finite dimensional representation of Ĝ (i.e. a Hecke operator for G), write V =∑
V ′ ⊗ V ′′, the restriction of V to Ĝ′ × Ĝ′′. Then V acts on π as

∑
TrV ′′(s)V

′ acts on π′.
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Proof. Since the Satake parameter of the trivial representation of a group G′′ is s, the result
is clear. �

Lemma 2.6. Let χ : G → GL1 be a character, and let C = χ∗(C×) ⊆ Ĝ. Let π′ be a

representation of GL1. Then π = π′ ◦ χ is a representation of G. Let s ∈ Ĝ be the image of(
q1/2 0

0 q−1/2

)
under the principal SL2 → Ĝ. For V a finite dimensional representation of Ĝ

(i.e. a Hecke operator for G), write V =
∑
V ′ ⊗ V ′′, the restriction of V to C × SL2. Then

V acts on π as
∑

TrV ′′(s)V
′ acts on π′.

Proof. We prove this for G = GLn and χ = det is the determinant. In this case C is the
center. It suffices to prove the statement for the fundamental representations Vλi

= Vi =
∧iCn where

λi = (1, . . . , 1︸ ︷︷ ︸
i times

, 0, . . . , 0).

Since Vi is miniscule, the Satake isomorphism gives S(Tλi
) = qi(n−i)/2Vi. Therefore, the

action of π(Vi) is

qi(i−n)/2

∫
Kλi($)K

π(g)dg =qi(i−n)/2 vol(Kλi($)K)π′(det(λi($)))

=qi(i−n)/2 vol(Kλi($)K)π′($)i.

The center C acts on Vi by the character z 7→ zi. Note that

s =

 q(n−1)/2

q(n−3)/2

...
q(1−n)/2

 ,

is the image of
(
q1/2

q−1/2

)
under the principal SL2 → Ĝ. So, to complete the proof we just

need to show that

qi(i−n)/2 vol(Kλi($)K) = TrVi
(s).

This is immediate from the discussion in [2, Section 3] and the fact that Vi is miniscule. �

Lemma 2.7. Let G be a reductive group. Let C∞c (G) denote the space of smooth, compactly
supported functions on G. This is a G × G module for the left and right action of G called
the regular representation. On C∞c (G)K×K we have a matching of the Hecke algebras for the
left and right action.

Proof. This is obvious since C∞c (G)K×K is nothing else but the Hecke algebra itself. To be
precise, since the left action on f in C∞c (G) is by λg(f)(x) = f(g−1x), a Hecke operator R,
acting from the right, is matched with R∗ defined by R∗(x) = R(x−1). �

Remark. Notice that this matching of Hecke operators, when considered as a matching of

virtual representations, matches V ∈ R(G) with its dual Ṽ . In particular, if V is self-dual
then it is matched with itself.
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3. Our groups

3.1. Octonions. Let O denote the non-associative division algebra of rank 8 over F . There
is an F -linear anti-involution x 7→ x̄ on O, hence norm and trace maps

N : O→ F x 7→ xx̄ = x̄x, Tr : O→ F, x 7→ x+ x̄

satisfying

N(x · y) = N(x)N(y), Tr(x · y) = Tr(y · x), Tr(x · (y · z)) = Tr((x · y) · z).

On the set O0 of trace zero elements, we have x̄ = −x. The group G2 is the automorphism
group of O.

The quadratic form N : O → F has signature (4, 4), which means that O has a basis
{1, i, j, k, l, li, lj, lk}. (Note that l2 = 1.) The following basis is particularly useful.

(14)
s1 = 1

2
(i+ li), s2 = 1

2
(j + lj), s3 = 1

2
(k + lk), s4 = 1

2
(1 + l),

t1 = 1
2
(i− li), t2 = 1

2
(j − lj), t3 = 1

2
(k − lk), t4 = 1

2
(1− l).

The multiplication table for this basis is given in Table 2.

s1 s2 s3 t1 t2 t3 s4 t4
s1 0 −t3 t2 s4 0 0 0 s1

s2 t3 0 −t1 0 s4 0 0 s2

s3 −t2 t1 0 0 0 s4 0 s3

t1 t4 0 0 0 s3 −s2 t1 0
t2 0 t4 0 −s3 0 s1 t2 0
t3 0 0 t4 s2 −s1 0 t3 0

s4 s1 s2 s3 0 0 0 s4 0
t4 0 0 0 t1 t2 t3 0 t4

Table 2. Multiplication Table for Octonions

Remark. From this basis it is evident that a subspace V ⊂ O0 on which multiplication
is trivial is at most 2-dimensional. (We call such a subspace a null space or a null sub-
space.) Indeed, let {i, j, k} = {1, 2, 3}. Then from the multiplication table we see that
s⊥i = 〈si, tj, tk〉, and the null spaces of O0 which contain si are all of the form 〈si, atj + btk〉
for fixed a, b ∈ F . Since G2 acts transitively on (nonzero) elements of trace zero and norm
zero, this phenomenon is generic.

3.1.1. Maximal parabolic subgroups in G2. They are described as the stabilizers of null sub-
spaces V ⊂ O0. Let V1 be spanned by s1 and V2 by s1 and t2. Then V3 = V ⊥1 is spanned by
s1, t2 and t3. Let P1 = M1N1 and P2 = M2N2 be the stabilizers of V1 and V2, respectively.
The Levi factor M2 acts on V2. The choice of the basis in V2 gives an isomorphism M2

∼= GL2.
The Levi factor M2 acts on V3/V1 and we have an isomorphism M1

∼= GL2. It is not difficult
to see that g ∈ GL2

∼= M1 acts on V1 by det(g). The set of all g in G2 such that all si and
ti are eigenvectors is a maximal split torus T in G2.
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The stabilizer of s4− t4 in G2 is a group isomorphic to SL3. Under the action of this group
we have a decomposition

O0 = 〈s1, s2, s3〉 ⊕ 〈t1, t2, t3〉 ⊕ 〈s4 − t4〉.

We can identify the stabilizer of s4− t4 with SL3 so that the action on 〈s1, s2, s3〉 is standard.
The torus T of G2 sits in SL3. In this way, we can represent elements in T by 3×3 matrices.
For example, if αl is a long root and αs a short root perpendicular to αl then, up to Weyl
group conjugation,

(15) α∗l (t) =

 t
1

t−1

 and α∗s(t) =

 t
t−2

t

 .

3.2. Description of groups. Let P = MN be a maximal parabolic subgroup of G as in
the table below. The group N is abelian, except in the case E8, where N has one-dimensional
center Z. In order to give a uniform notation, let Z be trivial if N is abelian. Let d denote
the dimension of N/Z. Let C ∼= GL1 be the center of M . Fix an isomorphism λ∗ : GL1 → C
such that the adjoint action of λ∗(z) on N/Z is given by multiplication by z. We have a
dual pair G2 × H ⊂ G such that Q = LU = H ∩ P is a maximal parabolic of H. Let
N0 ⊆ N/Z be the complement of Ū/Z̄ under the invariant pairing induced by the Killing
form. We fix an isomorphism of L with a classical group so that the action of G2 × L on
N0 is isomorphic to O0 ⊗ F n, the space of n-tuples in O0, and h ∈ L acts on an n-tuple
(x1, . . . , xn) by (x1, . . . , xn)h−1. Since the scalar matrix z−1 in L acts on N/Z as z, the center
of L coincides with the center of M . In the case of G = E8, let i be the isogeny character of
GSp6.

G D5 E6 E7 E8

M D4 D5 E6 E7

d 8 16 27 56
L GL1 GL2 GL3 GSp6

δŪ | det | | det | | det |2 |i|8
δN̄ | det |8 | det |8 | det |9 |i|29

Table 3. Maximal parabolic subgroups

The last row of the table is the restriction of the character δN̄ to L. The group GSp6 acts
by the isogeny character i on Z̄.

3.2.1. Example: G = E7. Let J27 be the 27-dimensional Jordan algebra over F given by

(16) J27 =

A =

 a z ȳ
z̄ b x
y x̄ c

∣∣∣∣∣∣ a, b, c ∈ F, x, y, z ∈ O

 .

The determinant on J27 gives an F -valued cubic form on J27. The adjoint group G has a
maximal parabolic P = MN such that

(17) M ∼= {g ∈ GL(J27) | det(g(A)) = λ(g) det(A) for some similitude λ(g) ∈ F×},
8



a reductive group of type E6, and N ∼= J27 as M -modules. Moreover, N̄ ∼= J27, and the
natural pairing of N̄ and N can be identified with the trace on J27.

Evidently, G2 ⊂M acts term by term on the elements of A, and since g ∈ GL3 acts via

(18) g · A = (det g)−1gAgt,

the action of G2 and GL3 obviously commute, hence G2 × GL3 ⊂ M . As described in [4,
Section 5], G2 × PGSp6 ⊂ G is a dual pair, and Q = LU = PGSp6 ∩ P where U can be
identified with J6, the subalgebra of J27 consisting of (symmetric) matrices with entries in
the field F , and L ' GL3 with action on J27 ' N given by (18). Thus, the orthogonal
complement N0 of Ū in N is identified with the subspace of J27 consisting of matrices with
0 on the diagonal and traceless octonions off the diagonal, that is, N0 is identified with the
set of triples (x, y, z) of traceless octonions. Moreover, (g, h) ∈ G2×GL3 acts on (x, y, z) by
(gx, gy, gz)h−1. (The action of h follows from Cramer’s rule.)

4. The proof

4.1. The base case. Let V be the minimal representation of D4. Let G′ = S3 be the group
of permutations of 3 letters. Then S3 acts on D4, by outer automorphisms, fixing G2. Since
V can be extended to a representation of a semi-direct product of D4 and S3, we have a dual

pair G×G′ = G2 × S3 acting on V. We let Ĝ′ = S3 and

r : S3 → G2(C)

such that the centralizer C of r(S3) in G2(C) is SO(3) ⊂ SL3(C) ⊂ G2(C). (The group
SO(3) ' PGL2(C) corresponds to the subregular unipotent orbit by the Jacobson-Morozov
theorem.)

Let K ′ = G′. Then the Hecke algebra H′ is one-dimensional. With these choices, Theo-
rem 1.1 asserts that the S3-invariants of the minimal representation of D4 is the unramified
representation πsr of G2 whose Satake parameter corresponds to the subregular orbit. This
is proved in [3].

4.2. The general case. Assume that G 6= D4. Then we have a maximal parabolic P = MN
in G and the corresponding maximal parabolic Q = LU in H as in Table 3. For simplicity,
let K be the maximal compact subgroup of G2, and K ′ that of H. Assume that we want to
show matching of two operators T and T ′. By Lemma 2.3,

VK×K′ ↪→ rŪ(V)K×K
′
L

where K ′L = K ′ ∩ L. Thus Theorem 1.1 holds if we can show matching of T and SL(T ′)
on rŪ(V)K×K

′
L . If G 6= E8, the unnormalized Jacquet functor VŪ was computed in [4]. In

the context of the present work, we find it convenient to describe these results in terms of
maximal parabolic subgroups of L = GLn.

4.2.1. Maximal parabolic subgroups in L. Recall that GLn acts on F n, the space of row
vectors. For m ≤ n let Qm = LmUm be the stabilizer of the subspace consisting of the row
vectors whose last n − m entries are 0. Then Lm = GLm × GLn−m. Let g = (g1, g2) ∈
GLn−m ×GLm. The modular character δUm is

(19) δUm(g) = | det(g1)|m−n · | det(g2)|m.
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Let s, t be a pair of real numbers. Let C∞c (GLm)[s, t] be the vector space C∞c (GLm) with
an Lm-module structure defined by

(g1, g2) · f(h) = |det g2|t |det g1|s f(hg1).

We shall omit [s, t] in the notation if s = t = 0.
Let P1 = M1N1 and P2 = M2N2 by the maximal parabolic subgroups of G2 (as defined in

Section 3.1.1.) Recall that M1
∼= GL2 and M2

∼= GL2. The modular characters are

(20) δN1(g) = | det(g)|5 and δN2(g) = | det(g)|3.
Let g ∈Mm. The action of g on C∞c (GLm)[s, t] is given by

g · f(h) =

{
f(det g−1h) if m = 1,
f(g−1h) if m = 2.

With this notation in hand, we now describe the Jacquet module rŪ(V) for each of our
cases.

4.2.2. G = D5.

Proposition 4.1. As a G2 × GL1-module, rŪ(V) has a filtration with two successive sub
quotients

(1) iG2
P1

(C∞c (GL1)).

(2) V(M)⊗ | det | 12 ⊕ 1⊗ | det | 52 .

Here V(M) is the minimal representation of M/C.

Proof. This is simply a normalized version of Proposition 2.3 of [4]. Indeed, VŪ has a
filtration with two successive quotients

• IndG2
P1

(C∞c (GL1))⊗ | det |3.
• V(M)⊗ | det | ⊕ 1⊗ | det |3.

where induction is not normalized. Since rŪ(V) = VŪ ⊗ δ
− 1

2

Ū
, and δŪ = | det | by Table 3,

rŪ(V) has a filtration with two successive quotients

• IndG2
P1

(C∞c (GL1))⊗ | det | 52 .

• V(M)⊗ | det | 12 ⊕ 1⊗ | det | 52 .

and (2) follows. Since, for any s, C∞c (GLm) ∼= C∞c (GLm)⊗ | det |s as GLm ×GLm-modules,

we can replace C∞c (GL1) in the first bullet by C∞c (GL1)⊗ | det |− 5
2 . By (10), this normalizes

the induction for G2 and, at the same time, removes the character | det | 52 of GL1. Hence (1)
follows. �

Proof of Theorem 1.1 in case G = D5. The dual group of H = PGL2 is SL2(C). The map
r : SL2(C)→ G2(C) corresponds to a long root αl ofG2: r(SL2(C)) = SL2,l(C) ⊂ G2(C). The
centralizer C of SL2,l(C) in G2(C) is SL2,s(C) corresponding to a short root αs perpendicular
to αl.

Let V be a finite dimensional representation of G2(C) and T2 the corresponding Hecke
operator for G2. Let

(21) s = α∗s(q
1/2) =

(
q1/2 0

0 q−1/2

)
∈ SL2,s(C).
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If the restriction of V to SL2,l(C)× SL2,s(C) is
∑
V ′⊗ V ′′, we define T1 as corresponding to∑

TrV ′′(s)V
′. We want to show that T2 matches with SL(T1) on rŪ(V). Since L̂ is the torus

α∗l (C×) ⊆ SL2,l(C), the operator SL(T1) corresponds to the representation
∑

TrV ′′(s)V
′ of

α∗l (C×) obtained by restricting each V ′ to the torus α∗l (C×).
First, we show matching on (1) in Proposition 4.1. By Lemma 2.2, we need to show

matching of SM1(T2) and SL(T1) on C∞c (GL1). The operator SM1(T2) corresponds to the

restriction of V to M̂1. Since M1 corresponds to a long root, M̂1 ' GL2,s(C). The center
of GL2,s(C) is the torus α∗l (C×) ⊆ SL2,l(C). Let s be as in (21) and let V =

∑
V ′ ⊗ V ′′

be the restriction of V to SL2,l(C) × SL2,s(C), as before. By Lemma 2.6, SM1(T2) acts on
C∞c (GL1) as the Hecke operator for GL1 that corresponds to the representation

∑
TrV ′′(s)V

′

of α∗l (C×), the center of GL2,s(C). In particular, this is the same GL1-operator as SL(T1).
Matching now follows from Lemma 2.7.

Using the previously proved base case, matching on (2) in Proposition 4.1 reduces to a

simple check on two G2 × L modules: πsr ⊗ | det | 12 and 1⊗ | det | 52 . �

4.2.3. G = E6.

Proposition 4.2. As a G2 × GL2-module, rŪ(V) has a filtration with three successive sub
quotients

(1) iG2
P2

(C∞c (GL2)).

(2) iG2×GL2
P1×Q1

(C∞c (GL1)[−1
2
, 1]).

(3) V(M)⊗ | det | 12 ⊕ 1⊗ | det | 32 .

Here V(M) is the minimal representation of M/C.

This is a normalized version of Theorem 4.3 of [4] which states that VŪ has a filtration
with three successive quotients

• IndG2
P2

(C∞c (GL2))⊗ | det |2.

• IndG2×GL2
P1×Q1

(C∞c (GL1))⊗ | det |2.

• V(M)⊗ | det | ⊕ 1⊗ | det |2.

Proof of Theorem 1.1 in case G = E6. The dual group of H = PGL3 is SL3(C). We have
an inclusion r : SL3(C)→ G2(C) where SL3(C) ⊂ G2(C) is given by the long roots.

Let V be a finite dimensional representation of G2(C) and T2 the corresponding Hecke
operator for G2. We restrict V to SL3(C), and let T2 be the corresponding Hecke operator
for PGL3. We want to show that T2 matches with SL(T1) on rŪ(V).

First, we consider matching on V(M)⊗| det | 12 . The dual group of L = GL2 is GL2,l(C) ⊆
SL3(C). The group L acts on V(M) by its quotient PGL2. The dual group of PGL2 is
SL2,l(C). The operator SL(T1) acts on V(M) as the Hecke operator for PGL2 that corre-

sponds to the restriction of V to SL2,l(C). We need to take into account the twist by | det | 12 .
Let χ be the determinant character of L. Let χ∗ : C× → GL2,l(C) be the corresponding
co-character. Note that χ∗ = α∗s. Let s = α∗s(q

1/2) ∈ SL2,s(C). Let V =
∑
V ′ ⊗ V ′′ be

the restriction of V to SL2,l(C) × SL2,s(C). Let T be the Hecke operator for PGL2 that
corresponds to the representation

∑
TrV ′′(s)V

′ of SL2,l(C). By Lemma 2.4, SL(T1) acts on

V(M) ⊗ | det | 12 as T acts on V(M). But T is matched with T2 on V(M), by the case
G = D5.

11



To prove matching on (1) in Proposition 4.2 it suffices to show that SM2(T2) and SL(T1) are

matching on C∞c (GL2), by Lemma 2.2. Since M2 corresponds to a short root, M̂2 ' GL2,l(C).
Thus, the dual groups of M2 and L are conjugate in G2(C) and matching follows from Lemma
2.7. (See also the remark following Lemma 2.7.)

Matching on (2) is similar to (1), albeit slightly more complicated to write down, so we
omit details. �

4.2.4. G = E7.

Proposition 4.3. As a G2 × GL3-module, rŪ(V) has a filtration with three successive sub
quotients

(1) iG2×GL3
P2×Q2

(C∞c (GL2)).

(2) iG2×GL3
P1×Q1

(C∞c (GL1)[−1
2
, 1

2
]).

(3) V(M)⊕ 1⊗ | det |.
Here V(M) is the minimal representation of M/C.

This is a normalized version of Theorem 5.3 of [4] which states that VŪ has a filtration
with three successive quotients

• IndG2×GL3
P2×Q2

(C∞c (GL2))⊗ | det |2.

• IndG2×GL3
P1×Q1

(C∞c (GL1))⊗ | det |2.

• V(M)⊗ | det | ⊕ 1⊗ | det |2.

Proof of Theorem 1.1 in case G = E7. The dual group of H = PGSp6 is Spin7(C). Let Z3

be the root lattice of Spin7(C) so that the short roots correspond to the standard basis
vectors e1, e2, e3 in Z3. Let V8 be the spin representation of Spin7(C). The weights of V8 are

(±1
2
,±1

2
,±1

2
). Under the action of L̂ ∼= GL3(C) the spin representation decomposes as

V8 = V1 ⊕ V3 ⊕ V ∗3 ⊕ V ∗1
where V3 is the standard representation of GL3(C) and V1 is the determinant character. The
weights these 4 summands are (x, y, z) such that x+ y + z = 3

2
, 1

2
,−1

2
,−3

2
, respectively. We

have an injection

r : G2(C)→ Spin7(C)

where G2(C) is defined as the stabilizer of a non-zero vector in V1, for example. In particular,
G2(C) ∩GL3(C) = SL3(C).

Let V be a finite dimensional representation of Spin7(C) and T1 the corresponding Hecke
operator for PGSp6. We restrict V to G2(C), and let T2 be the corresponding Hecke operator
for G2. We want to show that T2 matches with SL(T1) on rŪ(V). Matching on (3) in
Proposition 4.3 trivially follows from the previously proved case G = E6.

To prove matching on (1) it suffices to show that SM2(T2) matches with SL2 ◦ SL(T1)

on C∞c (GL2). Since M2 corresponds to a short root, M̂2 ' GL2,l(C) ⊆ SL3(C) where,
for definiteness, g ∈ GL2,l(C) sits in SL3(C) as a block diagonal matrix (g, det g−1). The
operator SM2(T2) corresponds to the restriction of V to GL2,l(C). Since L2 = GL2 × GL1

and GL1 acts trivially on C∞c (GL2), the operator SL2 ◦SL(T1) acts on C∞c (GL2) as the Hecke
operator for GL2 that corresponds to the restriction of V to GL2(C), the first factor of

L̂2 = GL2(C)×GL1(C) ⊆ GL3(C) ⊆ Spin7(C).
12



This GL2(C) is conjugated to GL2,l(C) in Spin7 by the reflection corresponding to the short
root e3. Matching on (1) now follows from Lemma 2.7.

To prove matching on (2) it suffices to show that SM1(T2) matches with SL1 ◦ SL(T1) on

C∞c (GL1). Since M1 corresponds to a short root, M̂1 ' GL2,s(C). The center of GL2,s(C) is
the torus α∗l (C×) ⊆ SL2,l(C). By Lemma 2.6, SM2(T2) acts on C∞c (GL1) as the Hecke opera-
tor for GL1 that corresponds to the restriction of V to α∗l (C×), weighted by the eigenvalues
of α∗s(q

1/2). On the other hand, the operator SL1 ◦ SL(T1) acts on C∞c (GL1) as the Hecke
operator for GL1 that corresponds to the restriction of V to GL1(C), the first factor of

L̂1 = GL1(C)×GL2(C) ⊆ GL3(C) ⊆ Spin7(C),

weighted by the eigenvalues of

s =

 q−
1
2

q
1
2

q
1
2

 ·
 1

q
1
2

q−
1
2

 ∈ GL3(C) ⊆ Spin7(C),

where the first matrix in the above product reflects the twisting [−1
2
, 1

2
] in (2), and the

second comes from Lemma 2.5. The pairs (α∗l (C×), α∗s(q
1/2)) (see (15)) and (GL1(C), s) are

conjugated in Spin7(C) by the reflection corresponding to the short root e3. Matching on
(2) now follows from Lemma 2.7. �

4.2.5. G = E8. We start with a description of maximal parabolic subgroups in GSp2n.
This is a group of isogenies of a symplectic form (·, ·) on a 2n dimensional space. Let
e1, . . . , en, f1, . . . , fn be a symplectic basis, i.e.

(ei, fj) = −(fj, ei) = δij and (ei, ej) = (fi, fj) = 0.

Using this basis we identify the symplectic space with F 2n, the space of 2n-tuples. We identify
GSp2n with the group of 2n× 2n matrices action on F 2n from the right, and preserving the
symplectic form, up to an isogeny character :

(vg−1, ug−1) = i(g)−1(v, u).

For every m ≤ n, let Qm = LmUm be the subgroup of GSp2n preserving the subspace spanned
by e1, . . . , em. Then Qm

∼= GLm ×GSp2(n−m) where g = (g1, g2) ∈ GLm ×GSp2(n−m) acts as

follows: eig
−1
1 , for 1 ≤ i ≤ m, fig

−1
1 for 1 ≤ i ≤ m and trivially on other basis elements; g−1

2

is an isogeny on the symplectic space spanned by em+1, . . . , en and fm+1, . . . , fn, eig
−1
2 = ei,

for 1 ≤ i ≤ m, and fig
−1
2 = i(g2)−1 · fi for 1 ≤ i ≤ m. The modular character δUm is

(22) δUm(g) = | det(g1)|−(2n−m+1)|i(g2)|
m(2n−m+1)

2

Let s, t be a pair of real numbers. Let C∞c (GLm)[s, t] be an Lm-module defined as follows.
As a vector space C∞c (GLm)[s, t] = C∞c (GLm), and (g1, g2) ∈ GLm ×GSp2(n−m) acts by

(g1, g2) · f(h) = |det g1|s |i(g2)|t f(hg1).

Proposition 4.4. As a G2 ×GSp6-module, rŪ(V) has a filtration with three successive sub
quotients

(1) i
G2×GSp6
P2×Q2

(C∞c (GL2)[1,−3
2
]).

(2) i
G2×GSp6
P1×Q1

(C∞c (GL1)[1
2
,−1

2
]).

(3) V(M)⊗ |i|−1 ⊕ 1⊗ |i|.
13



Here V(M) is the minimal representation of M/C.

The proof of this proposition is given in Section 5.

Proof of Theorem 1.1 in case G = E8. The map r : G2(C)→ F4(C) is described as follows.
A split, simply connected group Gsc of type E6 can be realized as a subgroup of GL(J27)
fixing det : J27 → F . As described in 3.2.1, there is a dual pair G2 × SL3 ⊆ Gsc. The group
F4 is the subgroup of Gsc consisting of elements fixing the identity matrix in J27. It is easy
to check that (G2×SL3)∩F4 = G2×SO3. This defines r, and the centralizer C of r(G2(C))

is SO3(C). The dual group L̂ of L = GSp6 is a Levi factor of type B3. Let i∗ : C× → L̂ be
the co-character corresponding to the isogeny character i of GSp6. Then i∗(C×) is the center

of L̂. We can conjugate G2(C) in F4(C) so that

G2(C) ⊆ Spin7(C) = [L̂, L̂].

In this way, i∗(C×) is a maximal torus in SO3(C), the centralizer of G2(C). The image of(
q1/2 0

0 q−1/2

)
∈ SL2(C) in SO3(C) is s = i∗(q).

Let V be a finite dimensional representation of F4(C) and T1 the corresponding Hecke
operator for F4. If V =

∑
V ′⊗V ′′ is the restriction of V to G2(C)×SO3(C), we have defined

T2 as corresponding to
∑

TrV ′′(s)V
′. We want to show that T2 matches with SL(T1) on

rŪ(V). The operator SL(T1) corresponds to the representation L̂ obtained by restricting V to

L̂. We now show matching on (3). Let V =
∑
Vn be the restriction of V to Spin7(C) = [L̂, L̂],

where i∗(q) act as qn on Vn. Let T be the Hecke operator for PGSp6 that corresponds to the
representation

∑
q−nVn of Spin7(C) Then, by Lemma 2.4, SL(T1) acts on V(M) ⊗ |i|−1 as

T acts on V(M). Matching on V(M) ⊗ |i|−1 now follows from the previously proved case

G = E7. Let sp ∈ G2(C) be the image of
(
q1/2 0

0 q−1/2

)
∈ SL2(C) under the principal

f : SL2(C)→ G2(C).

Then T2 acts on 1 ⊗ |i| as the scalar
∑

TrV ′′(s) · TrV ′(sp). Under the inclusion G2(C) ⊆
Spin7(C), the composite f : SL2(C) → Spin7(C) is the principal SL2(C) in Spin7(C). By
Lemma 2.4, SL(T1) acts on 1⊗ |i| as the scalar

∑
qn TrVn(sp). Since∑

qn TrVn(sp) =
∑

TrV ′′(s) · TrV ′(sp),

matching is now proved on (3). The remaining cases are similar to G = E7, so we leave
them as an exercise. �

5. A Jacquet module for E8

In this section we prove Proposition 4.4. In this case N is a Heisenberg group. A starting
point is the following (Theorem 6.1 [4]).

Proposition 5.1. Let Ω be the M-orbit of the highest weight vector in N/Z. We have the
following exact sequence of P̄ -modules,

0→ C∞c (Ω)→ VZ̄ → VN̄ → 0.

The action of P̄ on f ∈ C∞c (Ω) is given by:

• For every n̄ ∈ N̄
Π(n)f(x) = ψ(〈x, n̄〉)f(x).

14



• For every m ∈M
Π(m)f(x) = |i(m)|5f(m−1xm).

Here ψ is a non-trivial additive character, 〈·, ·〉 is a pairing between N/Z and N̄/Z̄ induced
by the Killing form, and i : M → GL1 is the character obtained by acting on Z̄. Moreover,
VN̄
∼= V(M) ⊗ |i|3 ⊕ |i|5 where V(M) is the minimal representation of M with the center

acting trivially.

By Section 7 in [4] we have an identification of vector spaces

N/Z ∼= N̄/Z̄ ∼= F ⊕ J27 ⊕ J27 ⊕ F

so that the pairing 〈·, ·〉 is given by

〈(a,B,C, d), (a′, B′, C ′, d′)〉 = aa′ + Tr(BB′) + Tr(CC ′) + bb′.

Under these identifications, the action of G2 on N/Z is the obvious one, and the centralizer
of G2 in N̄/Z̄ is

Ū/Z̄ ∼= F ⊕ J6 ⊕ J6 ⊕ F
where J6 is the space of 3× 3 matrices with coefficients in F . It follows that the orthogonal
complement of Ū/Z̄ in N/Z can be identified by J0⊕ J0 where J0 is the set of B ∈ J of the
form

B =

 0 z −y
−z 0 x
y −x 0


with x, y, z ∈ O0. Given this, we may denote an element (B,B′) ∈ J0 ⊕ J0 by a six-tuple

(u, u′) = ((x, y, z), (x′, y′, z′))

of traceless octonions. The action of G2 × GSp6 on these elements is simple to describe.
First, g ∈ G2 acts on every component of the six-tuple (u, u′) from the left, and h ∈ GSp6

acts by (u, u′)h−1. In this way, the character i of M restricts to the isogeny character of
GSp6. We highlight the action of certain subgroups: SL2 × SL2 × SL2 ⊆ Sp6 acting on the
pairs (x, x′), (y, y′) and (z, z′) respectively in the obvious way, and h ∈ GL3 by

(uh−1, u′ht).

Note that GSp6 preserves, up to the isogeny character,

J0 ⊕ J0 → ∧2O0 ((x, y, z), (x′, y′, z′)) 7→ x ∧ x′ + y ∧ y′ + z ∧ z′.

Let Ω0 be the intersection of Ω with J0 ⊕ J0, the orthogonal complement of Ū/Z̄. It
follows, from Proposition 5.1, that there is an exact sequence of G2 ×GSp6-modules

0→ C∞c (Ω0)→ VŪ → VN̄ → 0,

where (g, h) ∈ G2 ×GSp6 acts on f ∈ C∞c (Ω0) by

Π(g, h)f(x) = |i(h)|5f(g−1xh).

In order to understand C∞c (Ω0), we need to compute G2 ×GSp6-orbits on Ω0.
15



Proposition 5.2. The set Ω0 consists of pairs of ((x, y, z), (x′, y′, z′)) ∈ J0 × J0 such that
〈x, y, z, x′, y′, z′〉 is a non-zero null subspace of O0, and such that

x ∧ x′ + y ∧ y′ + z ∧ z′ = 0.

Moreover, Ω0 consists of two G2 ×GSp6 orbits Ω1 and Ω2 where

Ωm = {((x, y, z), (x′, y′, z′)) ∈ Ω | dim(〈x, y, z, x′, y′, z′〉) = m}.

Proof. If (0, B,B′, 0) ∈ Ω0 then, by Lemma 7.5 in [4], B is a rank one matrix, B2 = Tr(B)B.
Since Tr(B) = 0, we have B2 = 0, and this is equivalent to

x2 = y2 = z2 = xy = yz = 0,

i.e. the entries of B span a null subspace of O0. Acting by SL2 × SL2 × SL2, we can replace
x, y and z (all or some) by x′, y′ and z′, respectively. Hence 〈x, y, z, x′, y′, z′〉 is a non-zero
null subspace of O0. If the dimension of this null space is 1. Without loss of generality, we
can assume that x 6= 0. Then (u, u′) is in the GSp6 orbit of ((x, 0, 0), (0, 0, 0)). Since G2 acts
transitively on 1-dimensional null subspaces, we have one G2×GSp6 orbit. Assume that the
dimension is 2. Without loss of generality, we can assume that x and z are a basis of this
space. Using the action of GL3 we can arrange that y = 0. Since

x′ = ax+ cz, y′ = ex+ fz, z′ = bz + dx

for some a, b, c, d, e, f ∈ F ,

x ∧ (ax+ cz) + 0 ∧ (ex+ fz) + z ∧ (bz + cx) = (c− d)(x ∧ z)

and this is 0 if and only if c = d. If c = d then it is not too difficult to see that (u, u′)
is in the GSp6 orbit of ((x, 0, z), (0, 0, 0)). Since G2 acts transitively on 2-dimensional null
subspaces, we have one G2×GSp6 orbit. Thus, to finish the proof we must show that c = d.
This is done in Lemma 5.3, using that B′ = A×B (the cross product) for some A ∈ J27, by
Lemma 7.5 in [4]. �

Lemma 5.3. Suppose that x, z ∈ O0 be linearly independent such that x2 = z2 = xz = 0.
Let x1, y1, z1 ∈ O0, and set

A = A0 +
( 0 z1 −y1
−z1 0 x1
y1 −x1 0

)
, B =

(
0 z 0
−z 0 x
0 −x 0

)
where A0 ∈ J6. If

A×B =

(
0 z′ −y′
−z′ 0 x′

y′ −x′ 0

)
is such that x′, y′, z′ ∈ O0 then x′, y′, z′ ∈ Fx+ Fz. Moreover,

(23) x′ = bx+ cz, and z′ = az + cx

for some constants a, b, c ∈ F .

Proof. Since G2 acts transitively on the set of 2-dimensional null spaces of O0, by the G2

action (which commutes with the cross product), we may assume that x = s1 and z = t2,
16



and let

x1 = ax1s1 + ax2s2 + ax3s3 + bx1t1 + bx2t2 + bx3t3 + cx(s4 − t4),

y1 = ay1s1 + ay2s2 + ay3s3 + by1t1 + by2t2 + by3t3 + cy(s4 − t4),

z1 = az1s1 + az2s2 + az3s3 + bz1t1 + bz2t2 + bz3t3 + cz(s4 − t4)

where the elements si, tj ∈ O are the basis elements given in (14).
The cross product is given by

A×B = A ◦B − 1
2
ATrB − 1

2
B TrA+ 1

2
(TrATrB − Tr(A ◦B)).

From this a simple calculation shows that if A = A0 then the condition (23) is satisfied1. We
may therefore assume that A0 = 0. We find that

A×
(

0 z 0
−z 0 x
0 −x 0

)
=

1

2

 −Tr(z1z) y1x zx1 + z1x
xy1 0 zy1

xz1 + x1z y1z −Tr(xx1)

 .

Note that the fractor of 1/2 can be safely ignored since it can be absorbed into x1, y1, z1.
This imposes several conditions:

(A) Tr(z1z) = Tr(xx1) = 0
(B) xy1, y1z ∈ O0

(C) xz1 + x1z ∈ O0

Notice that for w = a1s1 + a2s2 + a3s3 + b1t1 + b2t2 + b3t3 + c(s4 − t4) ∈ O0, we have

wz = wt2 = a2s4 + b1s3 − b3s1 − ct2,
xw = s1w = −a2t3 + a3t2 + b1s4 − cs1.

Combining this calculation with condition (A) shows that az2 = bx1 = 0. With (B) it implies
that ay2 = by1 = 0, and with condition (C) we get that bz1 = −ax2 . Putting this all together,
we have

x′ = −y1z = by3s1 + cyt2,

y′ = xz1 + x1z = (az3 − cx)t2 − (cz + by3)s1,

z′ = −xy1 = −ay3t2 + cys1.

This proves the Lemma. �

Proposition 5.2 implies that C∞c (Ω2) is a submodule of C∞c (Ω0) and C∞c (Ω1) is a quotient.
Let S1 and S2 be the stabilizers of ((s1, 0, 0), (0, 0, 0)) and ((s1, t2, 0), (0, 0, 0)) in G2×GSp6,
respectively. Let Pm and Qm, m = 1, 2, be the maximal parabolic subgroups in G2 and
GSp6, respectively, as introduced in 3.1.1 and 4.2.5. In particular, these parabolic groups
come with maps Pm × Qm → GLm × GLm. Then Sm is the inverse image of ∆(GL(m)),
the diagonally embedded GLm into GLm × GLm. Now one can easily deduce that VŪ , as
a representation of G2 × GSp6, has the following three sub quotients, here induction is not
normalized.

(1) C∞c (Ω2) ∼= Ind
G2×GSp6
P2×Q2

(C∞c (GL2))⊗ |i|5.

(2) C∞c (Ω1) ∼= Ind
G2×GSp6
P1×Q1

(C∞c (GL1))⊗ |i|5.

1This is the action of Sp6
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(3) VN̄
∼= V(M)⊗ |i|3 ⊕ 1⊗ |i|5.

Proposition 4.4 is simply a normalized version of this result.

References

[1] Armand Borel. Admissible representations of a semi-simple group over a local field with vectors fixed
under an Iwahori subgroup. Invent. Math., 35:233–259, 1976.

[2] Benedict H. Gross. On the Satake isomorphism. In Galois representations in arithmetic algebraic geometry
(Durham, 1996), volume 254 of London Math. Soc. Lecture Note Ser., pages 223–237. Cambridge Univ.
Press, Cambridge, 1998.

[3] Jing-Song Huang, Kay Magaard, and Gordan Savin. Unipotent representations of G2 arising from the
minimal representation of DE

4 . J. Reine Angew. Math., 500:65–81, 1998.
[4] K. Magaard and G. Savin. Exceptional Θ-correspondences. I. Compositio Math., 107(1):89–123, 1997.
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