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Does Anyone Understand Quantum Mechanics?

“No One Understands Quantum Mechanics”

”I think it is safe to say that no one
understands quantum mechanics”
Richard Feynman
The Character of Physical Law, 1967
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Does Anyone Understand Quantum Mechanics?

Understanding Quantum Mechanics

Feynman was contrasting quantum mechanics to general relativity, which
could be expressed in terms of fields and differential equations.
Understanding quantum mechanics requires different mathematical tools,
less familiar to physicists, but widely used in mathematics.

Lie groups

Groups G that have the structure of a smooth manifold.

Unitary representations

Pairs (π,V ), V a complex vector space with a Hermitian inner product, π
a homomorphism

π : G → U(V )

i.e. a unitary transformation π(g) of V for each g ∈ G , with

π(g1)π(g2) = π(g1g2)
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Does Anyone Understand Quantum Mechanics?

Outline

Today would like to

Explain how Lie groups and unitary representations are related to
quantum mechanics, providing some sort of “understanding” of the
structure of the subject.

Advertise a book project in progress, based on a course taught last
year. Hope to finish draft early next year, about 80 percent done, see
my web-site at Columbia.

Explain some unanswered questions about representation theory
raised by physics.

Quickly indicate some work in progress: possible relevance of some
new ideas in representation theory (“Dirac cohomology”) to physics.
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Does Anyone Understand Quantum Mechanics?

What We Really Don’t Understand About Quantum
Mechanics

While representation theory gives insight into the basic structure of the
quantum mechanics formalism, a mystery remains

The mystery of classical mechanics

We don’t understand well at all how “classical” behavior emerges when
one considers macroscopic quantum systems.

This is the problem of “measurement theory” or “interpretation” of
quantum mechanics. Does understanding this require some addition to the
fundamental formalism? Nothing to say today about this.
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Quantum Mechanics

What is Quantum Mechanics?

Two Basic Axioms of Quantum Mechanics

The states of a quantum system are given by vectors ψ ∈ H where H
is a complex vector space with a Hermitian inner product.

Observables correspond to Hermitian linear operators on H

The mysterious part

An axiom of measurement theory is that an experiment will somehow put
the system in a state that is an eigenvector of certain observables, the
eigenvalue will be the number one measures corresponding to this
observable.
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Quantum Mechanics

Where do these axioms come from?

A unitary representation of a Lie group G gives exactly these mathematical
structures:

A complex vector space V = H, the representation space.

Differentiating the representation homomorphism π at the identity,
one gets a “Lie algebra homomorphism”

π′ : X ∈ Lie(G ) = TeG → π′(X )

The condition that the π(g) be unitary implies that the π′(X ) are
skew-Hermitian. Multiplying by i , the iπ′(X ) are Hermitian linear
operators on V .
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Quantum Mechanics

Two-dimensional quantum systems, I

For the simplest non-trivial example of this, take a quantum system with
H = C2 (called the “qubit”).
The Lie group U(2) of two-by-two unitary (U−1 = (U)T ) matrices acts on
H by the defining representation (π the identity map, π′ also the identity).
Such matrices are of the form

U = etX

where X is skew-Hermitian (X
T

= −X ).
The Lie algebra of U(2) is a four-dimensional real vector space, with basis
{i1, iσ1, iσ2, iσ3}, where the σj are Hermitian matrices, the physicist’s
“Pauli matrices”:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 8 / 30



Quantum Mechanics

Two-dimensional quantum systems, II

States of the qubit system are vectors in H = C2, observables are
two-by-two skew-Hermitian matrices. There is a four-dimensional linear
space of these.

Characteristic quantum behavior

If a state ψ is an eigenvector of one of the iσj , it has a well-defined value
for that observable (the eigenvalue).
It can’t then have a well-defined value for the other two iσj . These three
operators are non-commuting, not simultaneously diagonalizable.
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Quantum Mechanics and Unitary Representations

Relating Quantum Mechanics and Representations

Basic Principle

Quantum mechanical systems carry unitary representations π of various
Lie groups G on their state spaces H. The corresponding Lie algebra
representations π′ give the operators for observables of the system.

Significance for physicists

Identifying observables of one’s quantum system as coming from a unitary
representation of a Lie group allows one to use representation theory to
say many non-trivial things about the quantum system.

Significance for mathematicians

Whenever physicists have a physical system with a Lie group G acting on
its description, the state space H should provide a unitary representation
of G . This is a fertile source of interesting unitary representations of Lie
groups.
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Quantum Mechanics and Unitary Representations

Example: translations in space, G = R3

Physics takes place in a space R3. One can consider the Lie group G = R3

(the “space translation group”).
The quantum state space H will provide a unitary representation of this
group. The Lie algebra representation operators are called the
“momentum operators”

Pj , j = 1, 2, 3

These commute, so can be simultaneously diagonalized, in a basis of H of
states called the “momentum basis.”
Basis elements have well-defined values for the components pj of the
momentum vector (the eigenvalues of the operators Pj).
By Heisenberg uncertainty, these states are not “localized”, carry no
information about position.
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Quantum Mechanics and Unitary Representations

Wavefunctions

For a single quantum particle moving in R3, one can take the state space
to be

H = L2(R3)

The unitary representation of G = R3 is given by taking the action on
functions on R3 induced from the action on R3 by translations.
If ψ(x) ∈ H, translation by a gives

π(a)ψ(x) = ψ(x− a)

Taking the derivative π′ of this to get the Lie algebra representation, one
gets the differentiation operators ∂

∂xj
. The physicist’s momentum

operators have a factor of i , are taken to be

Pj = −i
∂

∂xj
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Quantum Mechanics and Unitary Representations

Example: Quanta, G = U(1)

Many physical systems have a group G = U(1) (circle group of phase
rotations) acting on the system. Any unitary representation of U(1) is a
direct sum of one-dimensional representations πn on C where

πn(e iθ) = e inθ

for n ∈ Z.
The Lie algebra representation is given by an anti-Hermitian operator with
eigenvalues in, n ∈ Z. The physicist’s Hermitian observable operator is
called N, and has eigenvalues n.

Where “quantum” comes from

In a very real sense, this is the origin of the name “quantum”: many
systems have a U(1) group acting, so states are characterized by an
integer, which counts “quanta”. Sometimes this has an interpretation as
“charge”.
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Quantum Mechanics and Unitary Representations

Example: Rotations, G = SO(3) or G = SU(2)

The group G = SO(3) acts on R3 by rotations about the origin, and it has
a double cover G = SU(2).
Unitary representations of SU(2) break up into direct sums of irreducible
components πn on Cn+1, where n = 0, 1, 2, . . . (for n even these are also
representations of SO(3)). Physicists call these the “spin n

2”
representations.
Recall that a basis of the Lie algebra of SU(2) is given by {iσ1, iσ2, iσ3}.
The corresponding observables are the operators

Jj = −iπ′n(iσj)

These are called the “angular momentum operators” for spin n
2 . They do

not commute and cannot be simultaneously diagonalized.
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Quantum Mechanics and Unitary Representations

Example: time translations, G = R

Time evolution is given by a unitary representation of the group G = R of
translations in time. The corresponding Lie algebra operator is

−iH

where H is a Hermitian operator called the “Hamiltonian” operator. An
eigenstate of H with eigenvalue E is said to have energy E .
The fact that −iH is the operator one gets by differentiating time
translation means one has

The Schrödinger equation

The fundamental dynamical equation of the theory is determined by the
Hamiltonian operator, it is

∂

∂t
ψ = −iHψ

on states ψ ∈ H. This is called the Schrödinger equation.

Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 15 / 30



Symmetries

Lie Group Representations and Symmetries

When the action of a Lie group G on a quantum system commutes with
the Hamiltonian operator, G is said to be a “symmetry group” of the
system, acting as “symmetries” of the quantum system. Then one has

Conservation Laws

Since the observable operators O corresponding to Lie algebra elements of
G commute with H, which gives infinitesimal time translations, if a state
is an eigenstate of O with a given eigenvalue at a given time, it will have
the same property at all times. The eigenvalue will be “conserved.”

Degeneracy of Energy Eigenstates

Eigenspaces of H will break up into irreducible representations of G . One
will see multiple states with the same energy eigenvalue, with dimension
given by the dimension of an irreducible representation of G .
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Symmetries

Lie Group Representations Are Not Always Symmetries

The state space of a quantum system will be a unitary representation of
Lie groups G , even when this action of G on the state space is not a
symmetry, i.e. doe not commute with the Hamiltonian.
The basic structure of quantum mechanics involves a unitary group
representation in a much more fundamental way than the special case
where there are symmetries. This has to do with a group that already is
visible in classical mechanics. This group does not commute with any
non-trivial Hamiltonian, but it plays a fundamental role in the theory.
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Quantization

Classical (Hamiltonian) Mechanics

The theory of classical mechanical systems, in the Hamiltonian form, is
based on the following structures

An even dimensional vector space R2n, called the “phase space” M,
with coordinate functions that break up into position coordinates
q1, · · · , qn and momentum coordinates p1, · · · , pn.

The “Poisson bracket”, which takes as arguments two functions f , g
on M and gives a third such function

{f , g} =
n∑

j=1

(
∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj
)

A state is a point in M, observables are functions on M. There is a
distinguished function, h, the Hamiltonian, and observables evolve in time
by

df

dt
= {f , h}
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Quantization

The Group of Canonical Transformations

Sophus Lie first discovered Lie groups in the context of Hamiltonian
mechanics. It turns out that there is an infinite-dimensional group acting
on a phase space M, known to physicists as the group of “canonical
transformations”.
For mathematicians, this is the group G = Symp(M) of
symplectomorphisms, the group of diffeomorphisms of M preserving the
symplectic form, a two-form ω on M given by

ω =
n∑

j=1

dqj ∧ dpj

It turns out that the Lie algebra of this group is given by the functions on
M, with the Poisson bracket giving the Lie bracket, the structure which
reflects the infinitesimal group law near the identity of the group. The
Poisson bracket has the right properties to be the Lie bracket of a Lie
algebra: it is anti-symmetric, and satisfies the Jacobi identity.
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Quantization

First-year Physics Example

A classical particle of mass m moving in a potential V (q1, q2, q3) in R3 is
described by the Hamilton function h on phase space R6

h =
1

2m
(p2

1 + p2
2 + p2

3) + V (q1, q2, q3)

where the first term is the kinetic energy, the second the potential energy.
Calculating Poisson brackets, one finds

dqj

dt
= {qj , h} =

pj

m
=⇒ pj = m

dqj

dt

and
dpj

dt
= {pj , h} = −∂V

∂qj

where the first equation says momentum is mass times velocity, and the
next is Newton’s second law (F = −∇V = ma).
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Quantization

Heisenberg Commutation Relations

The quantum theory of a single particle includes not just momentum
operators P, but also position operators Q, satisfying the Heisenberg
commutator relation

[Q,P] = i1

Soon after the discovery (1925) by physicists of this relation, Hermann
Weyl realized that it is the Lie bracket relation satisfied by a certain
nilpotent Lie algebra, now called the “Heisenberg Lie algebra” (it’s
isomorphic to the Lie algebra of strictly upper-triangular 3 by 3 matrices).
There’s a corresponding group, the Heisenberg group (sometimes called
the “Weyl group” by physicists).
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Quantization

Dirac and Quantization

Dirac noticed the similarity of the Poisson bracket relation {q, p} = 1 and
the Heisenberg operator relation [Q,P] = i and proposed the following
method for “quantizing” any classical mechanical system

Dirac Quantization

To functions f on phase space, quantization takes

f → Of

where Of are operators satisfying the relations

O{f ,g} = −i [Of ,Og ]
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Quantization

Quantization and Symplectomorphisms

Dirac’s proposal can be stated very simply in terms of representation
theory, it just says

Dirac quantization

A quantum system is a unitary representation of the group of
symplectomorphisms of phase space.

Dirac quantization is just the infinitesimal or Lie algebra aspect of this.
The Lie algebra representation is a homomorphism taking functions on
phase space to operators, with the Poisson bracket going to the
commutator. Unfortunately it turns out this doesn’t work....
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Quantization

Bad News and Good News

It turns out that if one tries to follow Dirac’s suggestion one finds

Bad News, Groenewold-van Hove

No-go theorem: there is a representation that quantizes polynomial
functions on phase space of degree up to two, but this can’t be done
consistently for higher degrees.

but also

Good News, Stone-von Neumann

The quantization of quadratic polynomials is unique up to unitary
equivalence. For a phase space M of dimension 2n, one gets a unitary
representation not of the infinite-dimensional symplectomorphism group,
but of the group whose Lie algebra is the quadratic polynomials: a
semi-direct product of a Heisenberg group and a symplectic group
(actually, of a double-cover, called the metaplectic group)
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Quantization

The Friedrichs-Segal-Berezin-Shale-Weil representation

This unique representation of the metaplectic group is perhaps the central
object in quantum theory, has been studied by a long list of
mathematicians and mathematical physicists.
It even appears in various places in number theory (as the Weil
representation), where one application is in the theory of theta functions.
Over p-adic fields, it is used to construct supercuspidal representations of
p-adic groups.

Peter Woit (Columbia University) Quantum Mechanics and Representation Theory November 2013 25 / 30



Open Questions From Physics

Quantum Field Theory

Modern fundamental quantum theories are “quantum field theories”, with
phase spaces that are infinite-dimensional function spaces.
The Stone-von Neumann theorem is not true in infinite dimensions: one
gets inequivalent representations, depending on how one constructs the
representation from the phase space.
This is one of the main sources of difficulty in quantum field theory,
related to the problem of “renormalization” (if one approximates the phase
space by something finite-dimensional, and tries to take the limit, the limit
is singular).
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Open Questions From Physics

Infinite-dimensional symmetry groups in physics

The best fundamental physics theories (the Standard Model of particle
physics, and General Relativity) involve infinite dimensional groups

The diffeomorphism group Diff (M), where M is one’s space (e.g.R3)

So-called gauge groups, which are locally groups of maps from M to
compact Lie groups like U(1) or SU(2).

Open Question

What can one say about representations of these groups?

Much is known for M one-dimensional (representation theory of affine Lie
algebras, the Virasoro algebra), where similar methods to ones that work
in finite-dimensions are available (analogs of Borel or parabolic
subalgebras). These are a major part of the subject of “Conformal Field
Theory”, which are quantum field theories in this dimension. Little is
known in higher dimension.
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Homological Methods and Dirac Cohomology

BRST and Lie algebra cohomology

Physicists use homological methods for dealing with the quantum theory
of gauge groups, under the name “BRST Cohomology”. This is a
well-known technique in mathematics: replace modules for an algebra by
complexes of modules, functors on modules by “derived functors”.
For representations of Lie algebras, one gets Lie algebra cohomology: for a
Lie algebra g and a representation V there are cohomology groups

H∗(g,V )

These are derived functors of the functor of taking the g-invariant piece of
a representation, so in degree 0 one has

H0(g,V ) = V g

For semi-simple Lie algbras, this functor is exact, so higher cohomology
not so interesting. For solvable Lie algebras (including the Borel
subalgebra of a semi-simple Lie algebra), one gets interesting invariants of
representations and one can develop the representation theory of
semi-simple Lie algebras this way.
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Homological Methods and Dirac Cohomology

Dirac cohomology

A recent development in representation theory is the replacement of Lie
algebra cohomology methods by something called “Dirac cohomology”.
This replacement involves

Koszul resolution using Λ∗(g)→ use of spinors

d → Dirac Operator D

Z− graded H∗(g,V )→ Z2 − graded H∗D(g,V )

So far this has just been used in mathematics, with mathematicians
borrowing the physicist’s Dirac operator. Can these techniques be applied
back in physics (replacing the BRST technique)?
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Summary

Summary

Representation theory is a subject that brings together many different
areas of mathematics, providing an often surprising “unification” of
mathematics.
It is remarkable that exactly this sort of mathematics underlies and gives
us some understanding of our most fundamental physical theory, quantum
mechanics.
There likely is much more to be learned about the relation of fundamental
physics and mathematics, with representation theory like to play a major
role.
Thanks for your attention!
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