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Abstract

This is a pedagogical attempt to elucidate the conceptual and mathe-
matical differences between Lagrangian quantization, causal perturbation
theory guided by the setting of algebraic QFT and some recent devel-
opments of nonperturbative intrinsic constructions of QFT based on the
conceptual setting of AQFT.

1 The aim

JFrom looking at the lively discussions taking place on various weblogs within
the quadrangle whose corners are defined by such catchwords as:

e Lagrangian quantization (canonical quantization, Euclidean functional in-
tegral representation)

e Algebraic quantum field theory (Local quantum physics)
e Loop gravity

e String theory

one realizes that often people use these words without paying much atten-
tion to their actual content. This sometimes leads to misunderstandings and
confusions even in cases of Lagrangian QFT versus AQFT where the concepts
are actually well-defined and many tested or testable physical results are avail-
able. For this reason the comparison will be limited to Lagrangian quantization
versus AQFT. Since the notion of an “action” i.e. a Lagrangian description is a
prerequisite for the functional integral approach no conceptual distinction will
be made between the two.

For a critical evaluation it is very helpful to start from an earlier attempt
in this direction. As such a reference point we will use an interesting article
by David Wallace In defence of naivité: The conceptual status of Lagrangian
quantum field theory quant-ph/0112148. Some of the points the author touched
upon within his viewpoint could have been questioned already at the time of



writing. But perhaps some important changes (which probably would lead to
some modifications of the authors actual point of view) happened during re-
cent years. I am referring to the successful adaptation of powerful concepts of
(Tomita-Takesaki) modular theory within the setting of operator algebras to the
problem of classifying and constructing nonperturbative QFT. These develop-
ments took place largely unnoticed in the shadow of the great globalized string
theory caravan. Although these new ideas are still in their beginnings, they are
already forcing us to rethink the conceptual basis of QFT.

We start by reminding the reader of some of the conceptual and mathemati-
cal limitations the functional approach faces even in the best of its mathematical
settings in QM. In a subsequent section the perturbative Lagrangian setting is
compared with that done in the spirit of AQFT. Whereas the algebraic pertur-
bative approach includes the results of the Lagrangian method it goes in two
important issues beyond it. The main power of the algebraic method shows up
in a new programmatic intrinsic setting for QFT whose first success has been
to provide a new conceptual platform for the bootstrap-formfactor construction
of factorizing models.

2  Functional Lagrangian method versus repre-
sentation theory in QM

Quantum mechanics was discovered in terms of its operator algebraic structure
in the form of Heisenberg (or the bounded Weyl algebra) commutation relations.
The functional (Feynman-Kac) representation for the (imaginary time) propa-
gation kernel and ground state correlations can be derived from the operator
form (for those systems where it applies); its rigorous formulation requires a
measure-theoretic setting which is closely related to the Wiener measure.

The functional approach is a valuable addition to the algebraic operator
approach which shows its computational power especially for quasiclassical ap-
proximations; but even though these two settings are mathematically equivalent
for standard systems (at least for systems for which the free part of the Hamil-
tonian has the standard nonrelativistic kinetic energy form), the former is not
quite a conceptual replacement for the operator formulation.

Just try to contemplate a hypothetical situation in which the transition
from the old Bohr-Sommerfeld quantum theory to the new quantum mechanics
would have been made with the help of functional integrals (the idea of inverting
Heisenberg-Feynman is not so absurd in view of the fact that those integral
representations are much closer to the quasiclassical concepts of the old theory).
The transition from the quasiclassical B-S setting would have been deceivingly
smooth but instead of a rapid and profound insight into the new mechanics there
may have been years of agonizing struggle with a good conceptual understanding
of what quantum mechanics really is about.

When we look at geometrically more complex dynamics as the quantum the-
ory of the rigid body which in the Feynman setting would be the movement of



a particle on a group manifold, one would have run against a serious paradox
which I have described before. Whereas the group-representation based opera-
tor approach leads to the result in a straightforward way, the functional setting
produces an unsolved paradox. Namely the action of the spinning top has an
infinite number of saddle points and if one evaluates the functional integral
around them up to the quadratic fluctuations and adds up all the contribu-
tions one obtains the exact result known from the operator approach. The
paradoxical situation consists in the fact that although the higher fluctuation
terms (higher perturbations) are nonvanishing, one must ignore them in order
to arrive at the rigorous result. In finite dimensional integration one observes
a similar phenomenon if the manifold to be integrated over is a flag-manifold.
Duistermaat and Heckmann unraveled the cohomological reason behind it. For-
mally the path-manifold of the rigid top is an infinite dimensional flag manifold,
but since the D-H theory is finite dimensional one must approximate the infinite
dimensional functional manifold by a sequence of finite-dimensional ones which
coincides with the necessity to regularize the path integral in order to convert
it into a mathematically well-defined object. But a regularization which main-
tains the cohomological D-H property has never been found and it is not clear
whether it exists at all.

This difficulty is typical for the functional integral setting as soon as one goes
beyond the standard setting of quantum mechanics. Since e.g. sigma model field
theories can be considered as field-theoretic higher dimensional generalizations
of the quantum mechanical rigid top, the functional approach becomes even
more ill-defined and unmanageable. But even though its mathematical status
is dubious (see next section), it is of significant “artistic” (non-mathematical)
value because it carries potentially the locality and spectral principles (hidden in
the reflection positivity) in a rather compact manner (for more see next section).
Here ”potentially” means that you do not follow any mathematical rules but
artistically implement your intuitive ideas you have about what QFT is about,
including a distinction between Lagrangian- and physical- parameters as a result
of vacuum fluctuations. With other words you ”vivisect” the functional integral
into its gruesome details and apply renormalization theory to the infinitely many
different pieces, not giving a damn whether the resulting renormalized physical
series can be rewritten again into a functional integral representation of the kind
you started with (for strictly renormalizable models it cannot!).

Since many quantum physicists subconsciously share Einstein’s nostalgia
for a return to a classical geometric setting, the popularity of the functional
approach will be also guarantied in the future notwithstanding its mathematical
shortcomings.



3 The deceiving beauty of functional integration
in QFT

For reasons mentioned before the mathematical status of functional integral
representations worsens considerably in QFT. At the same time the absence of
a powerful operator approach and the ease of injecting geometrical structures
into actions generate an irresistible temptation to use it as a short-hand starting
point and to repair its ill-defined intermediate steps by renormalization. So the
functional approach gains its popularity by its deceiving formal beauty (never
mind the gruesome vivisection you have to go into afterwards) and the feeling
that there is no alternative.

It is important to clarify one common point of confusion before going on.
Constructing covariant local free fields for a given (m,s) one-particle Wigner rep-
resentation is not the same as Lagrangian quantization. Whereas the Wigner ap-
proach is totally intrinsic (no reference to any classical parallelism) and unique,
the Lagrangian quantization approach requires as an input a classical Lagrangian
(quadratic in free case) and only after its quantization (replacing the classical
canonical equal time Poisson (or covariant Peierls bracket) structure with the
commutation relation) one knows whether it is consistent with the Hilbert space
structure and what is its particle content.

It is very easy to write down quadratic Lagrangians which contain in ad-
dition to the desires (m,s) elementary objects additional ”stuft”, the difficulty
(especially in case of higher spin) is to find Lagrangians whose Euler-Lagrange
equations possess a totality of solutions which describe precisely the desired
(m,s) object. Most of the countably infinitely many covariant fields for a given
Wigner representation (m,s) with finite spin (helicity) have no Lagrangian e.i.
such pointlike fields do not obey Euler-Lagrange equations in the aforementioned
sense. One particular choice of intertwiner from the Wigner- to the covariant-
setting leads to the well-known Bargmann-Wigner spinorial (dotted-undotted
spinor indices) fields which solve a kind of generalized Dirac equation, only for
Wigner spin <2 these equations have the Euler-Lagrange property (or can be
brought into a E-L form). Of course at that point you may want to argue that
for formulating the Standard model you don’t need to know this. This seems
to be Weinberg’s point of view who starts his book with a very detailed presen-
tation of Wigner’s representation approach only in order to dismiss one of the
three big representation classes (the ”infinite spin” representation) and to work
with low spin Lagrangians.

The important point here is that for the representation in terms of a func-
tional integral representation one needs the Lagrangian setting, whereas for
causal perturbation theory (which follows the intrinsic spirit of AQFT) any of
the infinitely many covariantizations can be used to define interaction densi-
ties by coupling the spinorial free fields into invariant interaction polynomials
(having specified the interaction in terms of one field-coordinatization the inter-
action polynomial of course has to be transformed appropriately). The infinite
set of (m,s) covariant free fields is only the “linear part” of an infinite set of all



relatively local covariant fields in the same Fock space, the so-called Borchers
class; the linear part consists precisely of those fields whose one-time application
to the vacuum is a genuine one-particle state without any vacuum-polarization
admixture. In view of formal equivalence theorems securing that the different
members of this huge class have the same S-matrix, it is very suggestive to
expect that there exist a formulation of perturbation theory which is fully in-
dependent of the field-coordinatization from this Borchers class which one uses
for the perturbation; indeed there does, it is AQFT.

Besides the greater generality there is a second advantage in the AQFT
supported causal perturbation theory. Whereas Lagrangian formalism in par-
ticular in its canonical quantization form (inherited by the functional approach)
still contains a lot of quantum mechanical relics(By this I mean the idea of
occupying energy levels which tends to ignore the pivotal role of vacuum po-
larization through spacetime localization see a paper by Hollands and Wald gr-
qc/0405082) which prevent a clear QFT perspective on its own merits, causal
perturbation theory is better suited to keep track of the necessarily singular
nature of pointlike fields (operator-valued distribution). The renormalization
theory in this setting shows its true nature as a distributional extension prob-
lem (subject to a minimal scaling requirement) without the necessity of any
cutoff or regularization in intermediate steps. In this way one obtains a pertur-
bative series which is completely rigorous in the mathematical sense of a formal
power series (i.e. in the same sense as mathematicians treat the vertex algebra
construction of Kac-Moody algebras). Physically one wants it to be asymptotic
to a genuine solution. In the case of superrenormalizable interactions (which are
only available in low spacetime dimensions e.g. the book by Glim-Jaffe) where
the vacuum fluctuations are very mild (so that functional-analytic theorems of
quantum mechanics are still applicable) one has been able to proof the existence
of a nonperturbative solution as well as the property that the perturbative series
is asymptotic to the exact solution.

Perhaps the greatest achievment of this causal perturbation theory is that
it is capable to be adjusted to any curved spacetime metric with local quantum
matter. In order to implement this one has to separate the algebraic pertur-
bative structure from the structure of states. The Feynman approach and its
more concise systematic extensions aim directly at vacuum expectation values
i.e. products of operators (the algebraic part) evaluated in a reference state (in
the standard Minkowskian case the vacuum). However permitting oneself to
be guided by the concepts of AQFT it is possible to construct field-generators
of the net of local algebras and place them into selected states in a second
step. In QFT in curved spacetime there is a priori no preferred state but only
a distinguished folium of states (those which satisfy the micro-causal spectrum
condition) and therefore the dichotomy between the algebraic structure (the
perturbation is done on the algebraic level) and states (which the Lagrangian
approach cannot implement) is extremely important. Whereas the causality-
preserving isometric diffeomorphisms have a simple functorial algebraic image,
the action on such transformations on states is more involved, in general states
are changed in such a way that only the folium is preserved. This observation



explains why in (localizable) the search for diffeomorphism invariant states led
to negative results. Theories which aim at diffeomorphism invariant states as
loop gravity seems to do have necessarily a very different algebraic structure
than that of laboratory supported QFT for which localization is the central
structure in the formulation and physical interpretation of the theory.

The algebraic perturbative approach may lack the compactness of a single
formal for the functional integral representation, but we have seen that this
elegance is deceiving because you have to vivisect in gruesome detail and at the
end the physical renormalized result does not fulfil the formula from which you
started. Getting perturbative AQFT going may be less compact, but at least
it is an honest enterprize in that your result fulfills exactly those requirements
which you set out to demand and in achieving this you did not have to wade
through ultraviolet infinities. All the claims in this section can be backed up by a
body of papers of which most of them are mentioned in the recent Fredenhagen-
Rehren-Seiler review.

In some previous communication I wondered why such a powerful approach
is often dismissed as offering no computational access to particle physics. I
speculated that the reason for this is that Nobel prize winners cannot only direct
public interests towards aphysical fashions but also (wittingly or unwittingly)
keep newcomers away from real promising new physical ideas. It is not necessary
for them to say something negative; given the trend towards monocultures it is
simply enough to ignore such contributions alltogether.

To say that Lagrangian QFT is computationally more powerful than the
algebraic approach is absolute rubbish. The only treatment of the Hawking
radiation (in the way as Hawking intended) as a nonstationary collapse of a
star was given by Fredenhagen and Haag using ideas of AQFT. One only has to
look at Wald’s book on QFT in CST and Black-Hole Thermodynamics in order
to realize how deeply this contribution was appreciated. The list of examples can
be continued. Of course articles in AQFT deliver precisely what they promise;
may be the modern reader prefers more the imaginative style of story-telling
and speculations as produced in string theory.

If there is enough interest I can write a separate section about recent in-
roads into nonperturbative QFT under a title: How Local Quantum Physics
implements the principles underlying QFT



