
1 AQFT, its original aim and what was actually

achieved up to now

QFT as QM was born in form in form of a parallelism to classical physics
named quantization. In due time (as the result of works of von Neumann, Weyl,
Mackey..., see also recent papers by Klaas Landsman) it became quite clear that
QM admits an autonomous formulation and the main role of classical setting
is to “baptize” interactions by a nice classical names. The non-autonomous
Lagrangian quantization setting (in which form Pascual Jordan discovered QFT)
was more persevering within QFT; although as far back as 1929 he pleaded for
an autonomous QFT, in his words a QFT “without classical crutches”, the first
concrete attempts in this direction were only undertaken after the discovery
of renormalized perturbation theory. The first step was taken by Irvine Segal.
His C∗ algebra setting lacked a pivotal physical property: causal localizability.
Thanks to Haag’s profound conceptual grip on QFT, the setting of AQFT was to
a large extent in place at the beginnings of the 60s. Its (verbal) description was
as follows : autonomous QFT is a spacetime indexed net of operator algebras
which may have (or not have) field generators. Pointlike field generators are
necessarily singular objects (“operator-valued distributions”).

The analogy to modern coordinate-free differential geometry is obvious.
There is a large class of pointlike fields (Borchers class) which act in the same
Hilbert space and (if smeared with test functions having their support in the
same given spacetime region) generate the aforementioned spacetime-indexed
algebra. However in contrast to coordinates in differential geometry (which are
usually chosen to be regular), the field coordinatization is inexorably singular
(well-defined as operator-valued distributions but delicate to handle in multi-
plicative operations), the regular “invariant” objects are really the spacetime-
localized operator algebras. Under certain technical assumption one can pass
from the net of spacetime-indexed operator algebras to the generating field-
coordinatizations and backward. The case of chiral nets is the most favored
since one can pass from the net formulation to the pointlike field generators
without additional technical assumptions. Please be aware that the connection
with differential geometry is only an analogy i.e. the latter does not help at
all to achieve autonomy of QFT (this is the point where I think Peter would
disagree with me).

The 70s and 80s were years of impressive structural progress in AQFT. One
of the most remarkable structural discoveries is that the observable net already
determines all the other (charged) representations (the work of Doplicher, Haag
and Roberts, see Haag’s book) which together with the vacuum representation
make up the full field-algebra i.e. all charge-transfer operators from one to
another representations. This reconstruction of the full theory (charges, their
statistics...) from its observable shadow is the solution of a conceptually ex-
tremely ambitious “inverse problem” resembling Mark Kac’s famous “how to
hear the shape of a drum”. You cannot even think of doing this in a Lagrangian
quantization setting.
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The last decade is characterized by constructive use of AQFT. On the per-
turbative side there is the already mentioned generalization of renormalized
perturbation theory to curved spacetime. But the most unexpected progress is
presently happening in nonperturbative AQFT. It turned out that by combining
the AQFT setting with the idea of on-shell particle based concepts as the S-
matrix, one arrives at a very powerful new constructive setting which I will refer
to as the setting of modular localization. The mathematical basis of this new
completely intrinsic (no quantization reference to classical theory) approach is
the Tomita-Takesaki theory which is part of operator algebra theory. Next to
the Hilbert space theory of quantum mechanics modular theory is the second
great meeting ground between physics and mathematics. Different from the
Hilbert space theory and the role of differential geometry in physics, modular
theory was not a piece of ready made mathematics which physicists found use-
ful, rather different aspects of modular theory were simultaneously developed
by mathematicians and physicists The physical entrance to this theory was the
work of Haag Hugenholz and Winnink on quantum statistical mechanics of open
system and their main mathematical contribution was the new conceptual role
of the KMS property which in the hands of Kubo, Martin and Schwinger was
just a computational trick in order to bypass the computation of Gibbs traces.
Later it turned out that modular theory is also related to the most important
concepts of QFT: localization and causality. Although this relation was first ob-
served around 1975 by Bisognano and Wichmann it took another two decades to
become aware of its constructive power in the form of modular localization.
To its recent successes belong the final understanding of the localization aspects
of the third family of positive energy Wigner representations: the so-called zero
mass infinite spin family (more appropriately helicity tower). These are rep-
resentations which have a semiinfinite stringlike localization; they cannot be
described in terms of Lagrangian quantization. It seems that this third kind of
matter has very unusual thermal properties.

Roughly speaking modular localization is the kind of localization inherent
in QFT (where fields are restricted to certain spacetime regions) but modular
localization is an intrinsic concept which is completely independent on the kind
of field coordinatization one uses for the description of the theory and therefore
it fits perfectly with the description in terms of spacetime-indexed local nets of
AQFT. It may be seen in analogy to the step from coordinate-based geometry to
modern invariant differential geometry. The concepts for intrinsicness of QFT
are however more complex and different from those of differential geometry and
contrary to a widespread opinion differential geometry contributes very little to
a more profound understanding of QFT.

Technically speaking AQFT and on-shell S-matrix concepts match in an
interesting way because the S-matrix has in addition to its role in scattering
theory an important conceptual place in modular theory. It is contained in the
modular objects of wedge algebras in relation to the vacuum state (A(W ), Ω).
For those of you who know that modular theory associates two modular objects
with such a situation: a one-parametric modular unitary operator group ∆it

and a reflection J which is closely related to the famous antiunitary TCP re-
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flection. The S-matrix accounts for the difference between the interacting and
the free J. As the Lagrangian approach starts from the form of the classical La-
grangian, the approach built on modular localization starts from the algebraic
structure of generators of wedge algebras A(W ). There is as yet no general clas-
sification theory for such generators but there is an important subclass which
permits such a classification and which is quite suitable for explaining the gen-
eral idea behind the modular localization-based approach. this is the special case
of vacuum-polarization-free-generators (PFG). These are fields which like free
fields when applied to the vacuum generate one-particle states without any addi-
tional vacuum polarization admixture. They are however not pointlike localized
fields rather their localization region is a wedge. PFGs with good mathemati-
cal properties only exist in d=1+1 spacetime dimensions and their S-matrix is
necessarily purely elastic. It can be shown that tempered PFGs lead precisely
to the so called factorizing theories of the two-dimensional bootstrap-formfactor
program and the on-shell Fourier transform are precisely those operators fulfill-
ing Zamolodchikov-Faddeev algebra commutation relations. In this sense the
modular localization approach explains the recipes of the bootstrap-formfactor
construction in terms of the principles of QFT and in particular reveals the
spacetime localization properties behind the Z-F algebra operators. The con-
struction of the localized algebras in the net is achieved by forming intersections
of wedge algebras and the nontriviality of a particular model is identical to the
non-triviality of these intersections. This nourishes the idea that there may
exist a truly intrinsic perturbative approach even for general interacting QFT
which aims at the perturbative construction of generators of wedge algebras and
avoids the computational use of singular pointlike fields; such an approach may
finally arrive at a truly intrinsic frontier between admissible and nonsensical
QFTs, an insight which the present power counting division between renomal-
izable/nonrenormalizable cannot reveal.

The conceptual beauty and perfection of AQFT is its interpretive auton-
omy/intrinsicness. Let me explain this important point in an example. It is
common practice to deal with the thermal aspects of QFT by starting with a
temperature Gibbs state on a system in a quantization box of volume V and then
pass to the thermodynamic limit (with the appropriately normalized correlation
functions fulfilling the KMS condition as a relic of the Gibbs property). The in-
tuitive picture which everybody has in mind is that of a sequence of inclusively
increasing partial (local) systems which approach from the inside the infinite
(open) system to which the laws of thermodynamic equilibrium apply. But this
intuitive picture is strictly speaking a metaphorical image. All the systems
in the sequence are mathematically different (different quantizations) and there
is no natural implementation of an inclusive embedding. The interpretive image
is that of the acting physicist and not intrinsic aspect of this particular calcu-
lation. Fortunately AQFT disposes of a completely intrinsic description of this
situation. This description is conceptually more subtle since it is based on the
(only known to AQFTists) split property which can be derived with modular
localization for theories with a “tempered” degrees of freedom behavior (the
nuclearity criterion, see Haag’s book, in more popular terminology: the absence
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of a Hagedorn temperature). In this setting the finite system really does be-
come a material part of the open system. Although the detailed fluctuations in
this correct treatment are such that for large systems the leading behavior in
V is identical to that of the standard metaphorical picture (so that energy and
entropy will be proportional to V in both descriptions), the nonleading terms
are expected to deviate. Thanks to special properties of holographic images of
actual QFTs one can directly map the heat bath thermal behavior on the glob-
alized horizon into the localization thermality in the restricted vacuum state
(hep-th/0511291) and obtain e.g. the entropical area law. The crucial property
from which all these wonderful results derive are the vacuum fluctuations of the
living space (in the sense of modular localization) of quantum matter.

The use of metaphorical arguments in QFT is only a trick to have simpler
calculations. In each case of their use in QFT they can be replaced by intrinsic
(generally more demanding) arguments. Not so in string theory. As a result
of the fact that quantum matter in a string theory description receives its only
quantum fluctuation aspect from the 2-dimensional source space (i.e. the chiral
field theory) and not from the target space, all statements (already from its very
beginning) are metaphorical. You can open any paper on string theory, take for
example Verlinde’s power point images of the recent 2006 string meeting, all the
spacetime interpretations of modular forms (to the extend that they go beyond
Gibbs temperatures) are metaphorical. This makes string theory extraordinar-
ily eery and unreal from a physical viewpoint, never mind its mathematical
sophistication. The cause of this is the absence of direct quantum fluctuations
in target space. This is what I mean by “mismatch” of scale-sliding arguments
string →QFT and structural arguments. The credibility of the former require
the validity of the latter.

In case there are further questions on this pivotal point I will come back to
it in the form of direct answers.
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