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1 Introduction

The subjects of quantum theory and that of Lie algebras and their representa-
tions are quite closely connected. For any Lie algebra g, the Lie bracket on g
determines a Poisson bracket on functions on g∗. One can think of this as a
classical mechanical system, with quantization given by the universal enveloping
algebra U(g). Another piece of structure is needed to actually have a quantum
theory: a unitary representation of the Lie algebra, which realizes the algebra
U(g) as an algebra of operators on a complex vector space, the quantum state
space.
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The problem of classifying and constructing all such representations is a dif-
ficult one. A general program for how to go about this is the “orbit method”
or “orbit philosophy”, according to which irreducible representations of a Lie
group G with Lie algebra g should correspond to orbits of the co-adjoint action
of G on g∗. On such orbits the Poisson bracket is non-degenerate and the orbit
is a symplectic manifold which can be taken to be the phase space of a Hamilto-
nian classical system. If there exists an appropriate method for quantizing this
system, it should give a unitary irreducible representation of G.

Canonical quantization corresponds to the case of the 2d + 1-dimensional
Heisenberg Lie algebra h2d+1. The non-trivial co-adjoint orbits under the Heisen-
berg Lie group H2d+1 are, for each choice of a non-zero real constant, the usual
2d linear phase space, with the constant giving the normalization of the stan-
dard symplectic form. By the Stone-von Neumann theorem, quantization by
any of various methods gives unitarily equivalent representations of the Heisen-
berg group on a Hilbert space, with the choice of constant corresponding to the
choice of ~.

For reductive Lie algebras, the orbit method is just a “philosophy”, providing
neither a one-to-one map between orbits and irreducible representations nor a
uniform method for quantizing orbits. For the simplest case of g the Lie group
of SU(2), the orbits are spheres in su(2)∗ = R3. Only spheres with areas
satisfying an integrality condition will correspond to irreducible representations
(the spin n

2 representations), and it is unclear whether to associate the trivial
representation to the trivial orbit or to the smallest sphere. The orbit method
(also known as “geometric quantization”) constructs the representation using
a holomorphic line bundle over the sphere, which requires a choice of invariant
complex structure on the sphere. There are two such choices, in one of these
the representation is on holomorphic sections (H0), in the other it’s on a higher
cohomology group (H1). To get a quantization method that does not depend on
a choice of complex structure, one needs to introduce introduce spinor bundles
on the orbits and find representations in the kernel of a Dirac operator.

We would like to argue here that both from the point of view of representa-
tion theory and from the point of view of physics, it is desirable to expand the
above conception of quantization for a Lie algebra g to one based on considera-
tion of an extended version of g we will denote g̃d. This is Z2-graded, adding an
odd copy of g to the usual even one, together with a differential d. One can then
look for a quantization not of the dual of g, but of the (odd) dual of g̃d. When
g comes with a non-degenerate invariant bilinear form, the non-commutative
algebra for such a quantization is given by the quantum Weil algebra

W(g) = U(g)⊗ Cliff(g)

and quantum state spaces are given by tensoring representations of g with mod-
ules for Cliff(g) . The new odd variables here can be quantized by the usual
extension of canonical quantization to fermionic systems.

This expanded notion of the context for the relation of Lie algebra represen-
tations and quantization can be motivated in various ways. For instance:
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� The quantization of the differential d is an algebraic version of the Dirac
operator, so the Dirac operator and spinors play a fundamental role in
the basic conception of quantization, explaining their appearance in the
quantization of the orbits of SU(2) mentioned above.

� Irreducible representations of g can be characterized in terms of the action
of the center Z(g) of U(g). After introduction of fermionic variables,
the quadratic Casimir operator in Z(g) now has a square root, a Dirac
operator. This is just a more general version of the original motivation for
Dirac’s discovery of the Dirac operator, which was for the special case of
g the Poincaré Lie algebra.

� The BRST method for handling gauge symmetries is based on exactly this
sort of extension of the usual classical phase space to a pseudo-classical
one with new fermionic variables.

� In recent years, there has been a significant amount of work in repre-
sentation theory using W(g) and the algebraic Dirac operator to define
the Dirac cohomology of a representation. The original goal of this work
was to understand the precise relationship between the Dirac cohomology
story and the BRST cohomology story that physicists have been using.

2 Lie algebras and quantization

The canonical quantization method used by physicists can be understood in
terms of a specific Lie algebra, the Heisenberg Lie algebra, together with the
theory of its unitary representations. We’ll first review this story, then discuss
its generalization to arbitrary Lie algebras.

2.1 The Heisenberg Lie algebra and canonical quantiza-
tion

The method of canonical quantization starts with a classical Hamiltonian system
based on a linear phase space R2n with position and momentum coordinates
qj , pj (j = 1, · · · , n) and a Poisson bracket satisfying

{qj , pk} = cδjk

The Poisson bracket provides a Lie algebra structure on the infinite-dimensional
algebra of functions on the phase space R2n. The subspace of linear and constant
functions is a Lie subalgebra, the Heisenberg Lie algebra h2n+1, with basis
elements qj , pj , c. Here c is a constant with the same units as the action, usually
normalized to 1.

Canonical quantization then proceeds by construction of a non-commutative
algebra of operators. As a vector space this algebra is infinite-dimensional, with
basis elements the ordered products of powers of the generators

CiQj11 · · ·Qjnn P
k1
1 · · ·P knn
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and relations
[Qj , Pk] = Cδjk

C is central, commuting with all other elements of the algebra. This algebra
is also known as U(h2n+1), the universal enveloping algebra of the Heisenberg
Lie algebra h2n+1. The operators are supposed to act irreducibly on a complex
vector space with Hermitian inner product, the state space H of the quantum
system. The central element C acts as the scalar i~, chosen to be pure imaginary
so that one has a unitary representation of the Lie algebra h2n+1.

The algebra acting on H is thus the quotient

U(h2n+1)/(C − i~1)

which is just the algebra generated by the Qj , Pk, satisfying only the Heisenberg
commutation relations

[Qj , Pk] = i~δjk

2.2 Quantization and the universal enveloping algebra

For an arbitrary finite dimensional Lie algebra g of a Lie group G, one has
much the same structures as in the special case of the Heisenberg Lie algebra
above, providing a general notion of quantization, valid for any g. Since linear
functions on g∗ are elements of g, they come with a Lie bracket operation. This
can be extended to give a Poisson bracket on all functions on g∗ by defining

{f1, f2}(ξ) = ξ([df1, df2])

(here ξ ∈ g∗ and f1, f2 are functions on g∗). A co-adjoint orbit Oξ of ξ ∈ g∗

is a symplectic manifold, with (Kirillov-Kostant-Souriau) symplectic two form
given by

ωξ(X̃, Ỹ ) = ±ξ([X,Y ])

(check sign) where X̃ is the vector field on g∗ given by the co-adjoint action of
an element X ∈ g. The Poisson bracket on functions on Oξ is just the restriction
of the one on g∗ given above. The orbits Oξ with this Poisson bracket can be
thought of as generalizations of the classical notion of phase space as a vector
space of dimension 2n, which is the special case g = h2n+1.

Quantization of g∗ corresponds to considering the universal enveloping alge-
bra U(g), which can be defined as the quotient

U(g) = T ∗(g)/(X ⊗ Y − Y ⊗X − [X,Y ]), X, Y ∈ g = T 1(g)

of the tensor algebra T ∗(g) by an ideal of relations determined by the Lie bracket.
If ej are a basis of g and dim g = n, then, as a vector space, U(g) has basis
elements

em1
1 em2

2 · · · emnn mj = 0, 1, 2, · · ·

While T ∗(g) is a graded algebra, U(g) is not, since the ideal that defines
it is not homogeneous. U(g) does inherit a filtration from T ∗(g), with FpU(g)
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the subspace in U(g) spanned by products of up to p elements of g. This is an
algebra filtration since FqU(g) ⊂ FpU(g) for q < p, and

FpU(g) · FqU(g) ⊂ Fp+qU(g)

As for any such filtered algebra, one can define an associated graded algebra as

Gr(U(g)) =

∞⊕
p=0

FpU(g)/Fp−1U(g)

This graded algebra is commutative and, by the Poincaré-Birkhoff-Witt the-
orem, isomorphic to the symmetric algebra S∗(g), which in turn is isomorphic to
the algebra of polynomials on g∗. An alternative form of the Poincaré-Birkhoff-
Witt theorem is the statement that the symmetrization map

q : e1 · · · ek ∈ Sk(g)→ 1

k!

∑
σ∈Sk

eσ(1) · · · eσ(k) ∈ U(g)

is an isomorphism of filtered vector spaces (but not of algebras). One can think
of q as a “quantization” map

q : S∗(g)→ U(g)

that takes elements of the commutative algebra of polynomial functions on g∗

to elements of the non-commutative algebra U(g), which will be realized as
operators on a state space H.

From the commutator on U(g) one can define a Poisson bracket on S∗(g) as
follows. For

[α] ∈ FpU(g)/Fp−1U(g), [β] ∈ FqU(g)/Fq−1U(g)

take the Poisson bracket to be

{[α], [β]} = [αβ − βα] ∈ Fp+q−1U(g)/Fp+q−2U(g)

Such a Poisson bracket is anti-symmetric

{[α], [β]} = −{[β], [α]}

and satisfies the Jacobi identity.
Note that X ∈ g acts on U(g) in three ways:

� The left regular representation

α ∈ U(g)→ Xα

� The right regular representation

α ∈ U(g)→ −αX
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� The adjoint representation

α ∈ U(g)→ Xα− αX = [X,α]

The last of these is an example of the usual quantization of the action of a Lie
group in Hamiltonian mechanics. In this case the infinitesimal generator of the
action is the linear function X on the classical space g∗, and the group action
is the co-adjoint action on g∗.

The center Z(g) of U(g) is the subalgebra U(g)g of elements invariant under
the adjoint g action. This is a commuting subalgebra of elements that com-
mute with everything in U(g). It can be identified with the adjoint-invariant
subalgebra of Gr(U(g)) = S∗(g), or equivalently the polynomial functions on g∗

invariant under the co-adjoint action on g∗. If g has an invariant bilinear form,
this gives a distinguished element of Z(g), the quadratic Casimir element.

2.3 Representations and the orbit philosophy

A quantization of g∗ requires not just the algebra U(g), but also a representation
of the elements of this algebra as operators on a complex vector space H, the
state space of the quantum theory. This gives equivalently a module for the
algebra U(g) or a representation of the Lie algebra g. While in general g will
be a real Lie algebra (i.e. a real vector space with Lie bracket), we will only
consider complex representations, and in this case modules for U(g) are also
modules for U(gC), where gC is the complexification of g. Unitarity of the
representation is a property (skew-adjointness) of the action of g ⊂ gC on H
(for a given inner product on H).

If g is the Lie algebra of the Lie group G, then elements of g correspond
to left-invariant vector fields on G, and are represented on functions on G as
linear differential operators. Elements of U(g) then act on functions on G as
left-invariant differential operators of all orders, with product the composition
of differential operators. Such a representation is however a reducible represen-
tation, and what one really wants is to identify the possible irreducible represen-
tations. Each of these will give a quantization of g∗ that cannot be decomposed
into simpler pieces.

Finding and constructing the irreducible representations for a given Lie al-
gebra g is in general a difficult problem. One way to try and characterize an
irreducible representation is by using the fact that elements of the center Z(g)
are invariant polynomials on g∗, and will act on the representation as scalars.
As invariant polynomials, they take constant values on co-adjoint orbits, and
one can try and identify these values with their eigenvalues on an irreducible
representation.

The Kostant-Kirillov “orbit philosophy” (for two expository treatments see
[9] and [21]) posits that one can associate co-adjoint orbits to irreducible rep-
resentations. The difficult problem then is that of how to construct the repre-
sentation corresponding to a given co-adjoint orbit. These orbits are symplectic
manifolds with an action of G preserving the symplectic structure. Thinking of
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this as the phase space of a classical system, the problem of constructing the
corresponding representation is exactly the physical problem of how to “quan-
tize” a classical system. The method of “geometric quantization” in many cases
provides a solution, but this does not always work (this is why the orbit philos-
ophy is a “philosophy” and not a theorem). In the rest of this section we’ll see
some examples where it does work.

2.3.1 Canonical quantization

As discussed earlier in section 2.1, canonical quantization corresponds to the
case where g = h2n+1, the Heisenberg Lie algebra. In this case the center
Z(h2n+1) consists of polynomials in c, with co-adjoint orbits labeled by the con-
stant value C that the element c takes on the orbit. For each non-zero value
of C, the co-adjoint orbit is the usual phase space R2n with the usual Pois-
son bracket (with normalization determined by C). The Stone-von Neumann
theorem ensures that, for each choice of orbit, any two constructions of the
corresponding irreducible representation will be unitarily equivalent (assuming
that they integrate to representations of the Heisenberg group, not just the Lie
algebra). This uniqueness property explains why usual discussions of canonical
quantization just invoke the Heisenberg commutation relations

[Qj , Pk] = i~1

thereby setting the value of C at i~ (pure imaginary so that the representation
is unitary), without making a choice of representation.

All constructions of a representation of Qj , Pk on a state space H require
a choice of an additional piece of structure, although by Stone-von Neumann
different choices will give unitarily equivalent representations. Splitting the
phase space coordinates into position and momentum coordinates allows the
Schrödinger construction of H as complex-valued functions on position space
Rn or (by Fourier transform) on momentum space Rn.

Another possibility is the Bargmann-Fock representation, which depends on
the choice of a complex structure J on R2n (an operator J such that J2 = −1).
Complexified coordinates on R2n then split up into n holomorphic coordinates
zj (+i eigenvalues of J) and n anti-holomorphic coordinates zj (−i eigenvalues
of J). Complex valued polynomials on R2n are then a tensor product

S∗(Cn)⊗ S∗(Cn)

of the space of polynomials in the zj and the space of polynomials in the zj .
One can construct an irreducible representation of U(h2n+1) on either one of
these two spaces. The construction depends on a choice of J , but different
J give unitarily equivalent representations. For a detailed discussion of this
construction, see [22].

2.3.2 Representations of compact Lie groups

A simple example to keep in mind is the case of the Lie algebra su(2), for
which co-adjoint orbits are spheres in R3. Geometric quantization requires first
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choosing a complex line bundle L over the sphere, with curvature the area form
on the sphere (this step is called “prequantization”). There is an integrality
condition on the curvature and thus on the area form of the sphere. Only for
spheres satisfying this integrality condition can one construct an appropriate
line bundle Lk (for k = 0, 1, · · · ).

The sections of Lk are a representation of SU(2), but this is an infinite-
dimensional reducible representation. To get an irreducible representation, one
needs to pick an invariant complex structure on the sphere, such that Lk is a
holomorphic line bundle. The space of holomorphic sections (H0O(Lk)) of the
line bundle will then give the spin k/2 representation of SU(2). Two things to
note are that

� One choice of invariant complex structure will give holomorphic line bun-
dles Lk with sections, the other choice (equivalently, change of orientation
of the sphere) will have no sections. For the choice with no sections, the
sections appear in higher cohomology (H1 rather than H0).

� The general method of geometric quantization requires taking into account
a “metaplectic correction”, involving a square root of the canonical bun-
dle. In this case the ambiguity in how one handles this is reflected in an
ambiguity of whether one associates the trivial representation to the zero
co-adjoint orbit or to the smallest non-zero one satisfying the quantization
condition.

For a general simple compact Lie group G, there are different types of co-
adjoint orbits, but generically the co-adjoint orbit will be the flag manifold
G/T (T is the maximal torus). The integrality conditions will correspond to
integrality of the weights λ of T . There will be a line bundle Lλ on G/T , as
well as |W | choices of invariant complex structure (here W is the Weyl group).
The Borel-Weil theorem says that one gets the irreducible representations of G
on the spaces H0′(Lλ) of holomorphic sections, for λ a “dominant” weight ( a
condition that depends on the complex structure). For non-dominant weights,
the Borel-Weil-Bott theorem describes how the representations will appear in
higher cohomology spaces. These conditions involve a “ρ-shift” by a special
weight that is half the sum of the positive roots.

Instead of working with complex structures on G/T and Dolbeault cohomol-
ogy groups of holomorphic line bundles, one can instead use the Dirac operator:

2.3.3 SL(2,R) and discrete series representations

2.3.4 SU(2, 2) and minimal representations

3 The super Lie algebras g̃d and ĝd

A fundamental idea of modern mathematics is that it is often a good idea to
consider not vector spaces, but complexes of vector spaces with a differential
(see appendix B). One example is the de Rham complex, where one replaces
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consideration of the vector space of functions on a manifold M by the de Rham
complex of differential forms on M . Given that in the orbit method we are
interested in constructing representations on vector spaces built out of functions
on orbits, it is natural to consider instead complexes of such representations,
and one finds that larger structures than g will act on such complexes.

3.1 The differential super Lie algebra g̃d

When a manifold M (such as an orbit) comes with an action of the Lie group G,
for each X ∈ g the derivative of the action will give a vector field on M (which
we’ll denote by XM ). The action of the vector field XM on functions can be
extended to an action on the space Ωk(M) of k-forms by an operator called the
Lie derivative, written LX . The LX satisfy the commutation relations

[LX , LY ] = L[X,Y ]

and provide a representation of g on the Ωk(M).
Also acting on the complex Ω∗(M) are operators

iX : Ωk(M)→ Ωk−1

corresponding to contraction by the vector field XM , which satisfy i2X = 0. The
relation between the de Rham differential d and the iX , LX is given by

LX = diX + iXd = (d+ iX)2

The structure that acts on Ω∗(M) extending the action of g by the LX can
be thought of as a “differential super Lie algebra”. By “super Lie algebra” we
mean a vector space with Z2-graded (even and odd) components, and a super
Lie bracket [·, ·]± satisfying Z2-graded versions of the usual symmetry condition
and Jacobi identity

[α, β]± = −(−1)|α||β|[β, α]±

and
[α, [β, γ]±]± + (−1)|α||β|[γ, [α, β]±]± + (−1)|β||γ|[β, [γ, α]±]±

where |α| = 0, 1 depending on whether α is even or odd. An operator D is a
super-derivation if it satisfies

D(αβ) = (Dα)β + (−1)|α||D|α(Dβ)

We are interested in the super Lie algebra

g̃ = g⊗R[ε] = g⊕ εg

where g is the usual Lie algebra with even grading, and εg is the same Lie
algebra with odd grading. The super Lie bracket relations are given by

[X,Y ]g̃ = [X,Y ]
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[X, εX]g̃ = ε[X,Y ]

[εX, εY ]g̃ = 0

The differential d acts on generators by

d(εX) = X

dX = 0

and can be thought of as the differentiation operator ∂
∂ε . One can also think of

d as an extra generator, and consider the Lie superalgebra

g̃d = g̃⊕Rd

with bracket relations
[d, d]g̃ = 0

[d,X]g̃ = 0

[d, εX]g̃ = X

A representation of g̃ will be a Z2-graded vector space V = V + ⊕ V −, with
operators on V for each element of g̃, satisfying the above commutation relations.
When we have such a representation we will write the operators corresponding to
X, εX, d as LX , iX , d respectively, with the last of the relations above appearing
as

LX = diX + iXd (1)

Elements of V g̃, i.e. elements of V invariant under the action of g̃, are said
to be “basic” elements of V . V g̃d will be the subspace of basic elements that are
also closed (d acts as 0). Whereas (see appendix B) the Lie algebra cohomology
of a representation of g is the derived functor of the g-invariants functor, the
derived functor of the g̃-invariants functor will be the equivariant cohomology.

3.2 The central extension ĝ

In the usual case of a phase space R2n, canonical quantization requires that
we pick an antisymmetric non-degenerate bilinear form on R2n and look for
representations of a central extension of R2n, the Heisenberg Lie algebra h2n+1.
Since we have introduced εg, a fermionic analog of phase space, quantization
will now require picking a symmetric bilinear form (·, ·) on g and replacing g̃
with the central extension

ĝ = g̃⊕Rc

which has super Lie bracket relations

[X,Y ]ĝ = [X,Y ]

[X, εY ]ĝ = ε[X,Y ]

[εX, εY ]ĝ = (X,Y )c
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This will be a super Lie algebra if (X,Y ) is an invariant symmetric bilinear form
on g (check). The super Lie algebra ĝ can be extended (with d having the same
bracket relations as for g̃) to a super Lie algebra

ĝd = ĝ⊕Rd

Note that the notation “ĝ” is somewhat justified by the analogy between
this situation and that of the affine Lie algebra

ĝ = g⊗C[z, z−1]⊕Rc

which involves an analogous central extension and differential ( ∂∂z ).

3.3 The dual g̃∗d

When one has a Z2-graded vector spaces V , there are two possible notions of
dual vector space:

� The even dual. This is just the usual space of linear maps from V to R.

� The odd dual. This is the space of linear maps from V to R, with R given
the odd grading.

Just as g acts by the co-adjoint representation on g∗, there is a co-adjoint
action of g̃ on g̃∗d given by

LXµ = −ad∗Xµ

LXεµ = −ad∗Xεµ

iXµ = −ad∗Xεµ

iXεµ = µ(X)c

4 Clifford algebras and fermionic quantization

We would like to replace the usual quantization, which starts with a Lie algebra
g and gives the algebra U(g) realized as operators on some state space, by a
quantization of the super Lie algebra ĝ and its differential d. ĝ contains as a
subalgebra an extra piece, the super Lie algebra central extension

εg⊕Rc

which uses an invariant symmetric bilinear form (·, ·) on the odd vector space
εg. Quantization of this will give the Clifford algebra Cliff(g).

In this section, we’ll review the usual method of fermionic quantization. This
is a precise analog of bosonic canonical quantization, where instead of starting
with phase space (an even dimensional phase space with a non-degenerate an-
tisymmetric bilinear form), one starts with a vector space V on any dimension,
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with a symmetric bilinear form. The table below gives some indication of the
analogy, for much more detail see chapters 27-32 of [22].

Bosonic Fermionic

V = R2d, even grading εV = Rn, odd grading

Non-degenerate antisymmetric
bilinear form ω(·, ·) on V

Non-degenerate symmetric
bilinear form (·, ·) on εV

Central extension

V ⊕Rc

is a Lie algebra, h2n+1

Central extension

εV ⊕Rc

is a super Lie algebra

Weyl algebra
Weyl(V ) = U(h2n+1)/(c− 1)

Clifford algebra
Cliff(V ) = U(εV ⊕Rc)/(c− 1)

Classical observables
Gr(Weyl(V )) = S∗(V )

Pseudo-classical observables
Gr(Cliff(V )) = Λ∗(V )

4.1 Clifford algebras and exterior algebras

Given any vector space V of dimension n with a symmetric bilinear form (·, ·),
one can define an associated Clifford algebra as a quotient of the tensor algebra

Cliff(V ) = T ∗(V )/(v ⊗ w + w ⊗ v − 2(v, w)1)

where v, w ∈ V = T 1(V ), 1 ∈ T 0(V ). Identifying V = T 1(V ) we will denote
by γ(v) the element in Cliff(V ) corresponding to v ∈ V . Given a basis ej of V ,
Cliff(V ) is the algebra generated by the γj , with relations

γjγk + γkγj = 2(γj , γk)1

This will be a finite dimensional algebra, of dimension 2n.
If (·, ·) is the zero bilinear form, then the associated Cliff(V ) is just the

exterior algebra Λ∗(V ) with the usual wedge product, which one can think of
as the algebra of polynomials in anti-commuting coordinates on V ∗. If (·, ·) is
non-degenerate and one is working over R, one can choose a basis such that

γjγk + γkγj = ±2δjk

while over C there is always a basis such that

γjγk + γkγj = 2δjk

Note that many authors use a different sign in the defining relation of the
Clifford algebra, imposing the relation

v ⊗ w + w ⊗ v = −2(v, w)1

13



The sign and normalization used here follow Meinrenken[17] since we’ll be using
that reference extensively later on. Also note that the γ matrices used in dis-
cussions of the Dirac equation in relativistic quantum mechanics correspond to
the case of the Lorentz metric on (according to convention) V = R3,1 or R1,3.

An alternate way to get the same definition of Cliff(V ) is to use (·, ·) to
define a super Lie algebra structure on the central extension

εV ⊕Rc

by defining the non-zero bracket to be

[εv, εw]εV⊕Rc = 2(v, w)c

The Clifford algebra is then given in terms of the universal enveloping algebra
of this super Lie algebra as

Cliff(V ) = U(εV ⊕Rc)/(c− 1)

A basis for Cliff(V ) is given by the 2n elements

1

γi1

γi1γi2

· · ·

γ1γ2 · · · γn
where i1 < i2 < · · · < ik. Cliff(V ) is a filtered algebra, with FpCliff(V ) the
subspace of elements that are products of ≤ p generators. One has

FpCliff(V )/Fp−1Cliff(V ) = Λp(V )

(actually, in this case

Λp(V ) = Fp(Cliff(V ))/Fp−2(Cliff(V ))

since degrees change by two) so the associated graded algebra is

Gr(Cliff(V )) = Λ∗(V )

with product the wedge product. While Λ∗(V ) is a Z graded algebra, Cliff(V ) =
Cliffeven(V )⊕Cliffodd(V ) is only Z2-graded, since the Clifford product does not
preserve degree but can change it by two when multiplying generators.

There is a quantization map

q : Λ∗(V )→ Cliff(V )

14



which on an orthonormal basis ej of V is given by

q(ej) = γ(ej) ≡ γj

On a wedge product of k vectors vi ∈ Λk(V ) the quantization map is the anti-
symmetrization map

q(v1 ∧ v2 ∧ · · · ∧ vk) =
1

k!

∑
σ∈Sk

sgn(σ)q(v1)q(v2) · · · q(vk)

which on products of basis elements is just

q(ei1 ∧ ei2 ∧ · · · ∧ eik) = γi1γı2 · · · γik

The inverse s = q−1 : Cliff(V) → Λ∗(V ) is sometimes called the “symbol
map”. This identification as vector spaces is known as the “Chevalley identi-
fication”. Using it, one can think of the Clifford algebra as just an exterior
algebra with a different product.

One can define a supercommutator on Cliff(V ) by defining it on elements
α, β that are products of |α| and |β| generators respectively as

[α, β]± = αβ − (−1)|α||β|αβ

This induces a super-Poisson bracket on Λ∗V by

{[α], [β]}± = [[α, β]±]

and gives a fermionic analog of the usual Hamiltonian formalism. V is now
a pseudo-classical phase space with classical observables in Λ∗V , which after
quantization become elements of Cliff(V ).

4.2 Clifford algebra and the orthogonal Lie algebra

The Poisson bracket {·, ·}± defined above is a Lie bracket on Λ2(V ), making it
into a Lie algebra isomorphic with the Lie algebra so(V ) of the group SO(V )
which preserves the bilinear form (·, ·). λ ∈ Λ2(V ) acts on V by

v → Aλ(v) = {λ, v}±

The quantization map
q : Λ2(V )→ Cliff(V )

is a Lie algebra isomorphism between Λ2(V ) and quadratic elements in Cliff(V ),
satisfying

[q(λ), q(λ′)]± = q({λ, λ′}±)

Given two different orthonormal basis vectors ej , ek, the isomorphism above
is

ej ∧ ek ↔
1

2
γjγk
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with this element of the Lie algebra the one that gives infinitesimal rotations
in the jk plane. The expression of Lie algebra elements as quadratic elements
of the Clifford algebra allows the construction (by exponentiation) of the group
Spin(n), which has the same Lie algebra of SO(n), but is a double cover of this
group.

4.3 Clifford modules and spinors

In the case of the universal enveloping algebra U(g), to construct a quantum
system one needed to somehow construct an irreducible representation of g,
which gives a state space H with elements of U(g) acting as operators on H.
For the fermionic case, one needs to similarly find an irreducible representation
of the Clifford algebra, whose elements then become operators on a state space
H. The Clifford algebra case is much simpler than the U(g) case, especially if
we complexify V . Over C there are isomorphisms

Cliff(V ) = M(2k,C)

(where M(j,C) is the algebra of complex j by j matrices) for dim V = n = 2k
even, and

Cliff(V ) = M(2k,C)⊕M(2k,C)

for dim V = n = 2k + 1 odd.
For simplicity, we will just discuss the n = 2k even dimensional case here.

There is then a single irreducible representation of the Clifford algebra, the

spinor representation S on H = C2k . This representation breaks up into two
irreducible representations S+, S− of the group Spin(n), since this group is
generated by quadratic elements in the Clifford algebra, so preserves the even-
odd grading.

One would like to construct the irreducible representation S in a coordinate-
invariant manner (i.e. not using a particular choice of identification of Clifford
algebra generators γj with complex matrices). From the point of view of abstract
algebra, a choice of spinor representation is a choice of a minimal left ideal in
the Clifford algebra. The situation is closely analogous to that of the Heisenberg
Lie algebra of section 2.1. In that case, given a phase space R2k, a choice of
complex structure J on this space allowed one to decompose polynomials on
phase space into the tensor product of polynomials in holomorphic and anti-
holomorphic coordinates, given an irreducible representation on S∗(Ck). For
the Clifford algebra case, for dim V = n = 2k, one can also choose a complex
structure J , and construct the irreducible spinor representation, now on the

antisymmetric tensors, on Λ∗(Ck). This gives the needed state space H = C2k

The spinor representation S is also a representation of the group Spin(n), the
non-trivial double cover of SO(n). It is reducible, with irreducible components
S+ = Λeven(Ck) and S− = Λodd(Ck). Recall from section 4.2 that the Lie
algebra of Spin(n) can be identified with quadratic elements in the Clifford
algebra. S+ and S− give representations of the Lie algebra of Spin(n) using
the action of these quadratic elements on S.
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Note that this construction of S depends on the choice of J , although dif-
ferent choices of J will give unitarily equivalent representations. The way this
works is rather subtle, for details see chapter 31 of [22]. One aspect of the story
is that for a given choice of J one will get a subgroup

U(k) ⊂ SO(2k)

that preserves J , and a double cover Ũ(k) ⊂ Spin(2k). As a representation of

this Ũ(k), one should think of S not as Λ∗(Ck), but as

Λ∗(Ck)⊗ Λk(Ck)
1
2

Projectively, the spin representation is just Λ∗(Ck), but the projective factor is
a crucial part of the story, and the way it appears depends on the choice of J .

5 Quantum and classical Weil algebras

5.1 Introduction

Given an invariant symmetric bilinear form (·, ·) on g, one can define as in
section 3.2 the super Lie algebra ĝ and then construct a generalization of the
quantization of g to a quantization of ĝ, with the role of U(g) now played by
the quantum Weil algebra

W(g) = U(ĝ)/(c− 1) = U(g)⊗ Cliff(g)

Our argument will be that it is this algebra rather than U(g) which best captures
fundamental phenomena in both quantum theory and representation theory. ĝ
has a differential d, and as a result W(g) will contain a remarkable element ��D
built out of both bosonic and fermionic generators, an algebraic version of the
Dirac operator. It is a filtered algebra, with graded algebra the classical Weil
algebra

W (g) = S∗(g)⊗ Λ∗(g)

.

5.2 The quantum Weil algebra

When one has an invariant symmetric bilinear form on g, one can use it to define
a Clifford algebra Cliff(g) and an enlargement of the enveloping algebra

W(g) = U(ĝ)/(c− 1) = U(g)⊗ Cliff(g)

called the quantum Weil algebra. In terms of generators and relations, this is
the filtered superalgebra generated by (for X ∈ g) even elements X⊗1 of degree
two and odd elements 1 ⊗ εX of degree one, satisfying the super-commutation
relations

[X⊗ 1, Y ⊗ 1]W = [X,Y ]⊗ 1, [X⊗ 1, 1⊗Y ]W = 0, [1⊗X, 1⊗Y ]W = 2(X,Y )
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WhileW(g) has a Z-filtration, it is not Z-graded, just Z2-graded (the Z2-grading
is that of the Clifford algebra). An irreducible representation of this algebra will
be of the form H = V ⊗ S, with V an irreducible representation of g and S a
spinor module for Cliff(g). This will provide a state space for a quantum theory
containing both fermionic and bosonic degrees of freedom, with elements of
W(g) acting as operators on H.

Since the inner product (·, ·) on g is invariant, for X ∈ g the adjoint action

adX(·) = [X, ·]

gives a representation of the orthogonal Lie algebra so(g) on g. We saw in
section 4.2 that elements of this Lie algbra correspond to elements of Λ2(g)
(which we’ll denote by λX) and to quadratic elements in Cliff(g) (which we’ll
denote q(λX)). The Lie algebra g acts on generators of W(g) by

LX(Y ⊗ 1) = [X,Y ]⊗ 1, LX(1⊗ Y ) = 1⊗ [X,Y ]

This is an inner action on W(g), since it is given by

LX(·) = [X ⊗ 1 + 1⊗ q(λX), ·]W

This action of g onW(g) can be extended to an action of the Lie superalgebra
g̃ = g⊕ εg by having odd elements act by

iX(Y ⊗ 1) = 0 iX(1⊗ Y ) = (X,Y )(1⊗ 1)

This is an inner operator, since it can be written

iX(·) = [1⊗ 1

2
X, ·]W

The elements of W(g) invariant under the g̃ action are those annihilated by the
X and εX actions. These will be

W(g)g̃ = U(g)g ⊗ 1 = Z(g)⊗ 1

5.3 The Dirac operator ��Dg

So far we have been considering the quantum Weil algebra as a product of two
independent algebras. The truly remarkable aspect of W(g) is that it allows
the construction of something quite new, an operator��Dg built out of generators
of both U(g) and Cliff(g), which is an algebraic version of the Dirac operator.
This operator will also provide a differential d acting on W(g).

Given an orthonormal basis ej of g (note that some ej may satisfy (ej , ej) =
−1) and corresponding generators ei of the Clifford algebra, this operator can
be defined as

��Dg =
∑
j

(ej ⊗ γj) + 1⊗ q(φ)
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The first term corresponds to the usual construction of a Dirac operator. Here
ej = ±ej is the dual vector to ej , where we are identifying g and g∗ using (·, ·).
Note that it is at this point, the construction of ��Dg, that we need (·, ·) to be
non-degenerate.

One has
(
∑
j

(ej ⊗ γj))2 =
∑
j

ejej ⊗ 1 = Ωg ⊗ 1

where Ωg ∈ Z(g) is the quadratic Casimir element for g corresponding to (·, ·).
Note that this construction of a square root of a Casimir operator by introducing
a Clifford algebra is very much in the spirit of Dirac’s initial discovery of the
Dirac operator.

The second term is a cubic element of the Clifford algebra, the quantization
of

φ =
1

3

∑
i

λei ∧ ei ∈ Λ3(g)

q(φ) is the element of Cliff(g) such that

[φ, q(X)]± = 2q(λX)

One justification for the choice of coefficient of the q(φ) term in ��Dg is that
it gives the following simple formula for the square of ��Dg

��D2
g = Ωg ⊗ 1 +

1

24
trg(Ωg)(1⊗ 1)

where Ωg is the quadratic Casimir element in U(g).
We now can define a d acting on W(g) and an inner action of the full g̃d,

given on generators by

d(1⊗X) = [��Dg, 1⊗X]W = 2(X ⊗ 1 + 1⊗ q(λX))

d(X ⊗ 1) = [��Dg, X ⊗ 1]W =

This satisfies the relations of g̃d since d, LX , iX acting on W(g) satisfy the
relation 1. The relation d2 = 0 holds since

d2(·) = [��Dg, [��Dg, ·]W ]W = [��D2
g, ·]W

and ��D2
g is in the center Z(g).

The cohomology of W(g) with respect to this differential dW is just the
constants.

For more details about the above, see [17] and [13].
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5.4 W(g) as an enveloping algebra

To be expanded

W(g) = U(ĝ)/(c− 1)

It is sometimes convenient to work with

X = 2(X ⊗ 1 + 1⊗ q(λX))

instead of X ⊗ 1, and then the action of g̃ is given by

X · (·) = [
1

2
X, ·]

and one has

d(1⊗X) = X, dX = 0

and

W(g) = U(ĝ)/(c− 1)

5.5 The classical Weil algebra

The quantum Weil algebra W(g) is a filtered algebra, with generators of U(g)
in degree two and generators of Cliff(g) in degree one. The associated graded
algebra is the classical Weil algebra:

Gr(W(g)) = Wc(g) = S∗(g)⊗ Λ∗(g)

This is a graded algebra with generators of S∗(g) carrying degree two, generators
of Λ∗(g) degree one. It comes with a super-Poisson bracket, induced from the
super-commutator onW(g). The relations satisfied by generators and the action
of g̃d are essentially the same as for W(g), replacing super-commutators by
super-Poisson brackets.

The super-Poisson bracket on generators in S∗(g)⊗ Λ∗(g) is given by

{X⊗1, Y ⊗1}± = [X,Y ]g⊗1, {X⊗1, 1⊗Y }± = 0, {1⊗X, 1⊗Y }± = 2(X,Y )

We may also want to use as generator instead of X ⊗ 1

X = 2(X ⊗ 1 + 1⊗ λX)

The classical version of the Dirac operator is

D =
∑
j

(ej ⊗ ej) + 1⊗ φ

where ej are an orthonormal basis in g = Λ1(g) and φ ∈ Λ3(g) satisfies

{φ,X}± = 2λX
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(note, likely typo on page 164 of Meinrenken).
There is an action of g̃d on W (g) is given by

LX(·) = {1

2
X, ·}±, iX(·) = {1⊗ 1

2
X, ·}±, d(·) = {D, ·}±

D satisfies
{D,D}± = 2

∑
j

ejej ⊗ 1

which Poisson commutes with everything in W (g), so d2 = 0. The cohomology
of W (g) with this d will be trivial, i.e. only in degree zero, with

H0(W ∗(g)) = R

On the separate factors S∗(g) and Λ∗(g) the quantization map q is just
the symmetrization maps to U(g) and Cliff(g) discussed earlier. Alekseev and
Meinrenken[1] show however that the full quantization map

q : W ∗(g) = S∗(g∗)⊗ Λ∗(g∗)→W(g) = U(g)⊗ Cliff(g)

is not just the tensor product map but...
Restricted to the basic subalgebras it becomes the Duflo map

q : S∗(g)g → U(g)g = Z(g)

which is an isomorphism.

5.6 The Weil algebra, Chern-Weil theory and equivariant
cohomology

The conventional Weil algebra is defined by

W (g) = S∗(g∗)⊗ Λ∗(g∗)

Since it involves S∗(g∗) instead of S∗(g) = Gr(U(g)), unlike Wc(g) it does not
naturally come with a notion of quantization or a super-Poisson bracket. How-
ever, when g has a non-degenerate inner product, this provides an isomorphism
between g and g∗, which can be used to identify W (g) and Wc(g).

W ∗(g) does come with an action of g̃d, given on generators by

LX(µ⊗ 1) =, LX(1⊗ µ) =

iX(µ⊗ 1) =, iX(1⊗ µ) =

d(µ⊗ 1) =, d(1⊗ µ) =

Same story about change of variables as in the non-commutative case. Define
the dual of g̃, and dual of ĝ, then

W (g) = S∗(ĝ∗)/(c− 1)
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Before doing this, need to rewrite section of the dual of the super Lie algebra.
If g is the Lie algebra of a Lie group G, and P is a principal G-bundle over a

manifold M , then the free G action on P gives an action of g̃d on the differential
forms Ω∗(P ). A connection on P corresponds to an equivariant map

A : g∗ → Ω∗(P )

This can be extended to a g̃d-equivariant algebra homomorphism

θ : W ∗(g)→ Ω∗(P )

which takes the generators of Λ∗(g∗) to connection one-forms on P , the gener-
ators of S∗(g∗) to curvature two-forms.

In each case one can define a basic sub-complex of the algebra, the sub-
complex annihilated by these operators. One has (Ω∗(P ))basic = Ω∗(M), and
(W ∗(g))basic = S∗(g∗)g, the invariant polynomials on g.

Restricting to basic sub-complexes, a connection gives a homomorphism

θ : S∗(g∗)g → Ω∗(M)

This is the Chern-Weil homomorphism which takes invariant polynomials on g
to differential forms on M constructed out of curvature two-forms. Taking co-
homology, for compact G, this homomorphism is independent of the connection
and gives invariants of the bundle in H∗(M).

Discuss Chern-Simons A remarkable property of the Dirac operator ��Dg is
that it can be defined by

��Dg = q(CS)

i.e., as the quantization of the Chern-Simons element CS ∈W (g). Given a con-
nection θ : W (g) → Ω∗(P ), CS is the element that maps to the Chern-Simons
form of the connection. It satisfies d(CS) = C2, where C2 is the quadratic
element of S∗(g∗) constructed from the Killing form.

Another remarkable property of ��Dg is the formula for its square. Using

��D2
g =

1

2
[��Dg,��Dg]± =

1

2
d(��Dg) =

1

2
dq(CS) =

1

2
q(dCS) =

1

2
q(C2)

Some comments on equivariant cohomology:
In this case one can think of the complex W ∗(g) as a subcomplex of the de

Rham complex Ω∗(EG) of a homotopically trivial space EG with free G-action,
one that carries its cohomology, just as the Chevalley-Eilenberg complex is a
subcomplex of Ω∗(G) carrying the cohomology of the manifold G. For the
classifying space BG = EG/G, its cohomology ring can be computed as the
cohomology of W ∗(g)basic, which, since the differential is trivial, is just the ring
of invariant polynomials S∗(g∗)g.

For more details on the Weil algebra, a good reference is the book of Guillemin
and Sternberg[6].
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6 Subalgebras and Dirac cohomology

Since the quantum Weil algebra W(g) has a differential d satisfying d2 = 0, we
can define a “Dirac cohomology” algebra as

H�D(g) =
Ker(d)

Im(d)

but this turns out to just be the constants. To get something more interesting,
we need to chose a subalgebra r ⊂ g and look at the r-basic sub-algebra

W(g)r

This will also come with a differential d satisfying d2 = 0, with a more interesting
cohomology given by

H�D(g, r) = U(r)r

say something about the relation to equivariant cohomology?
On representations V of g we can define

H�D(g, r, V )

which will give an interesting characterization of the representation, and come
with an action of H�D(g, r).

Given a subgroup R ⊂ G with Lie algebra r, the space EG has a free action
of R, and EG/R = BR. The Weil algebra W (g) provides a tractable algebraic
model for the de Rham cohomology of EG, and the subalgebra W (g)r−basic of
basic elements for the r action (annihilated by LX , iX , for X ∈ r) provides a
model for the deRham cohomology of BR. One has

H∗(W (g)r−basic) = H∗(BR) = (S∗(r∗))r

In the quantum Weil algebra case, one has

H∗(W(g)g−basic) = Z(g)

and expects that
H∗(W(g)r−basic) = Z(r)

In a more explicit form, this sort of statement was first conjectured by Vogan,
then proved by Huang-Pandzic[7], and more generally, by Kostant[12]. For a
more abstract proof, see Alekseev-Meinrenken[2] and Kumar[16].

6.1 Quadratic subalgebras and the Dirac operator for a
pair r ⊂ g

In this section, start by defining quadratic subalgebras
In such a situation one can define
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� s is the orthocomplement to r with respect to B. One has g = r ⊕ s as
vector spaces and [r, s] ⊂ s. In general s is just a vector subspace, it is not
a Lie sub-algebra of g.

� Cliff(s) is the Clifford algebra associated to s and the inner product
B(·, ·)|s.

� S is a spinor module for Cliff(s). For s even (complex) dimensional, this
is unique up to isomorphism.

To make this isomorphism more explicit, note first that

W(g)r−basic = (U(g)⊗ Cliff(s))r

The Lie algebra also acts by the inner action the r-invariant sub-complex of
U(g)⊗ Cliff(s). r acts “diagonally” here, not just on the U(g) factor. In other
words, we are using the homomorphism

ζ : U(r)→ U(g)⊗ Cliff(s)

defined by
ζ(X) = X ⊗ 1 + 1⊗ ν(X)

where
ν : r→ Lie(SO(s)) ⊂ Cliff(s)

is the representation of r on the spinor module S as quadratic elements in Cliff(s)
coming from the fact that the adjoint action of r on s is an orthogonal action.

The Kostant Dirac operator is defined as the difference of the algebraic Dirac
operators for g and r

��Dg,r =��Dg −��Dr

It is an element of W(g)r−basic and the restriction of the differential d on W(g)
to W(g)r−basic is given by

d(·) = [��Dg,r, ·]

The map
Z(r) = U(r)r →W(g)r−basic = (U(g)⊗ Cliff(s))r

takes values on cocycles for d and is an isomorphism on cohomology.
Even more explicitly, one can write

��Dg,r =

n∑
i=1

Zi ⊗ Zi + 1⊗ v

where

v =
1

2

∑
1≤i,j,k≤n

B([Zi, Zj ], Zk)ZiZjZk

and the Zi are an orthonormal basis of s.
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The square of the Kostant Dirac operator is given by

��D2
g,r = −Ωg ⊗ 1 + ζ(Ωr) + (|ρr|2 − |ρg|2)1⊗ 1

where ρg is half the sum of the positive roots for g, ρr the same for r.

��D2
g,r commutes with all elements of U(g)⊗Cliff(s) so the differential d satis-

fies d2 = 0. The differential d is an equivariant map for the U(r) action given by
ζ, so it is also a differential on (U(g)⊗Cliff(s))r. The operator Dirac cohomology
is defined as

H�D(g, r) = Ker d/Im d

on (U(g)⊗Cliff(s))r. The Vogan conjecture says that it is isomorphic to Z(ζ(r)).
Note that in general this will be not Z-graded, but just Z2-graded, using the
Z2 grading of Cliff(s)).

So, for any representation V of g, we have an algebra of operators (U(g) ⊗
Cliff(s))r acting on V ⊗ S, with differential d = ad(��Dg,r) and cohomology iso-
morphic to the center Z(r).

6.2 Dirac cohomology: states

��Dg,r acts on V ⊗ S, and one can define the state Dirac cohomology as

H�D(g, r;V ) = Ker��Dg,r/(Im��Dg,r ∩Ker��Dg,r)

Since ��D2
g,r 6= 0, this is not a standard sort of homological differential. In par-

ticular, one has no assurance in general that

Im��Dg,r ⊂ Ker��Dg,r

However, if V is either finite-dimensional or a unitary representation, then an
inner product on V ⊗S can be chosen so that ��Dg,r will be skew self-adjoint. In
that case Ker(��Dg,r) = Ker(��D2

g,r) and one has

H�D(g, r;V ) = Ker��Dg,r

7 Examples: reductive Lie algebras

Note that the same Dirac operator appears earlier in the physics literature as
the supersymmetry generator for the superparticle on the group G (see, e.g.
[4]).

Dirac cohomology gives a version of the standard highest-weight theory for
representations of semi-simple Lie algebras, as well as other applications in
representation theory. For an exposition of some of these applications, see the
recent book by Huang and Pandzic[8].

For an irreducible representation V of g, a well-known invariant is the in-
finitesimal character χ(V ). Such infinitesimal characters can be identified with
orbits in h∗ (h is a Cartan sub-algebra) under the Weyl group Wg, with a rep-
resentation of highest weight λ ∈ h∗ corresponding to the orbit of λ + δg. The
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Dirac cohomology H�D(g, r;V ) of a representation V also provides an invariant
of the representation V . For a finite-dimensional V , it will consist of a collection
of |Wg|/|Wr| r irreducibles. These will all have the same infinitesimal character
as V , when one includes t∗ ⊂ h∗ (t is the Cartan sub-algebra of r) by extending
element of t∗ as zero on h/t. This phenomenon was first noticed by Pengpan
and Ramond for the case G = F4 and R = Spin(9) and was explained in general
in [5], which led to Kostant’s discovery[15] of his version of the Dirac operator.

For specific choices of g and r, one can compute the Dirac cohomology of rep-
resentations. In each case, determination of the Dirac cohomology H�D(g, r;V )
depends upon the formula

��D2 = −Ωg ⊗ 1 + ζ(Ωr) + (||ρr||2 − ||ρg||2)1⊗ 1

and the fact that Ωg acts by the scalar

||λ+ ρ||2 − ||ρ||2

on an irreducible representation of highest-weight λ.

7.1 The cases r = 0 and r = g

� r = 0

This is the case of no un-gauged symmetry, corresponding to the quantum
Weil algebra itself. Here

H�D(g, 0) = C

and
H�D(g, 0;V ) = 0

for any V . On an irreducible representation of highest weight λ,

��D2
g = −|λ+ ρg|2Id

where ρg is half the sum of the positive roots. This is negative-definite,
so ker��Dg = 0 for the action of Dg on V ⊗ S, for any representation V .

� r = g

This is the case of no gauged symmetry. Here one has

H�D(g, g) = Z(g)

and
H�D(g, g;V ) = V
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7.2 Generalized highest-weight theory

The case r = h, the Cartan subalgebra of a complex semi-simple Lie algebra
reproduces the Cartan-Weyl highest-weight theory, of finite dimensional repre-
sentations, as generalized by Bott[3] and Kostant[14]. In this case

g = h⊕ n⊕ n

and one can identify Dirac cohomology and Lie algebra cohomology in the man-
ner discussed above. One has

H�D(g, h) = Z(h) = S∗(h∗)

and
H�D(g, h;Vλ) =

∑
w∈W

Cw(λ+δg)

which has dimension |W |.
The Weyl character formula for the character ch(Vλ) function on the Cartan

sub-algebra can be derived from this, by taking a supertrace, i.e., the difference
between the part of the Dirac cohomology lying in the half spinor S+ and that
lying in the half spinor S−. One has

Vλ ⊗ S+ − Vλ ⊗ S− =
∑
w∈W

(−1)l(w)Cw(λ+δg)

as h representions. So the character satisfies

ch(Vλ) =
ch(Vλ ⊗ S+ − Vλ ⊗ S−)

ch(S+ − S−)

which is ∑
w∈W (−1)l(w)ew(λ+δg)∑
w∈W (−1)l(w)ew(δg)

More generally, if p = l⊕ u is a parabolic sub-algebra of g, with Levi factor
l and nilradical u, then again Dirac cohomology can be identified with the Lie
algebra cohomology for the subalgebra u. One finds

H�D(g, l) = Z(l)

and
H�D(g, l;Vλ) =

∑
w∈W/Wl

Vw(λ+δg)−δl

which is a sum of |W/Wl| l-modules.
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7.3 (g, K) modules

For real semi-simple Lie algebras g0, corresponding to real Lie groups G with
maximal compact subgroup K (with Lie algebra k0), the interesting unitary
representations are infinite-dimensional. The simplest example here is g0 =
sl(2,R), K = SO(2) which has important applications in the theory of au-
tomorphic forms. These representations can be studied in terms of the corre-
sponding Harish-Chandra (g,K) modules, using relative Lie algebra cohomol-
ogy H∗(g,K;V ) to produce invariants of the representations (see [10] and [11]).
Here g, k are the complexifications of g0, k0. Dirac cohomology can also be used
in this context, and one finds (see [8], chapter 8)

H∗(g,K;V ⊗ F ∗) = Homk(H�D(g, k;F ), H�D(g, k;V ))

when V is an irreducible unitary (g,K) module with the same infinitesimal
character as a finite dimensional (g,K) module F .

7.4 Examples not related to Lie algebra cohomology

A remarkable property of Dirac cohomology is that it exists and allows the
definition of a physical space of states for a system with a symmetry group G,
where a specified subgroup R remains ungauged, even in cases where g/r is not
a Lie algebra and is not even of the form u ⊕ u for u a Lie algebra. In other
words, there is no Lie algebra to apply Lie algebra cohomology and the BRST
method to.

A simple example is the case g = spin(2n+ 1), r = spin(2n). Here for n > 1
spin(2n+ 1)/spin(2n) cannot be decomposed as u⊕u, which corresponds to the
fact that even dimensional spheres S2n cannot be given an invariant complex
structure for n > 1. In this case

H�D(spin(2n+ 1), spin(2n)) = Z(spin(2n))

and
H�D(spin(2n+ 1), spin(2n);Vλ)

is a sum of two spin(2n) representations. For the trivial representation, these
are just the two half-spinor representations of spin(2n).

8 Relating BRST/Lie algebra cohomology to Dirac
cohomology

The BRST method uses an operator Q satisfying Q2 = 0, and describes states
in terms of Lie algebra cohomology of the gauged subgroup, whereas the Dirac
cohomology construction described above appears to be rather different. It
depends on a choice of un-gauged subgroup R and defines states as the kernel
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of an operator that does not square to zero. It turns out though that these two
methods give essentially the same thing in the case that

g/r = u⊕ u

In this case, u and u are isotropic subspaces with respect to the symmetric
bilinear form B, and one can identify u∗ = u. The spinor module S for Cliff(s)
can be realized explicitly on either Λ∗(u) or on Λ∗(u). However, when one does
this, the adjoint r action on Λ∗(u) differs from the spin(s) action on S = Λ∗(u)
by a scalar factor Cρ(u). Here ρ(u) is half the sum of the weights in u.

The Dirac operator in this situation can be written (for details of this, see
[?]) as the sum

��Dg,r = C+ + C−

where (using dual bases ui for u and u∗i for u∗)

C+ =
∑
i

u∗i ⊗ ui + 1⊗ 1

4

∑
i,j

uiuj [u
∗
i , u
∗
j ]

C− =
∑
i

ui ⊗ u∗i + 1⊗ 1

4

∑
i,j

u∗i u
∗
j [ui, uj ]

The operators C+ and C− are differentials satisfying (C−)2 = (C+)2 = 0,
and negative adjoints of each other. This is very much like the standard Hodge
theory set-up, and one has

V ⊗ S = Ker��Dg,r ⊕ Im C+ ⊕ Im C−

Ker C+ = Ker��Dg,r ⊕ Im C+

Ker C− = Ker��Dg,r ⊕ Im C−

If one identifies S = Λ∗(u), then V ⊗ S with differential C+ is the complex
with cohomology H∗(u, V ), and if one identifies S = Λ∗(u), then V ⊗ S with
differential C− is the complex with homology H∗(u, V ). Both of these can be
identified with the cohomology H�D(g, r;V ) = Ker Dg,r. Note that one gets
not the usual r action on H∗(u, V ) or H∗(u, V ), but the action twisted by the
one-dimensional representation Cρ(u).

For the details of this, see Chapter 9 of [8].

9 Constructing representations

Using Dirac cohomology of the regular representation to get irreducible repre-
sentations.
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9.1 Dirac operators on G/R

:Work out Dirac cohomology in geometric case on G/R
The Dirac operator appearing here is an algebraic version of the Dirac oper-

ator. For the case of a group manifold, one can get geometric Dirac operators
by taking the representation to be functions on the group.

Relation to the supersymmetric quantum mechanics proof of the index the-
orem, which has sometimes been claimed to come from a BRST-fixing of in-
finitesimal translations on the manifold.

A Appendix: Semi-simple Lie algebras

A.1 Structure of semi-simple Lie algebras

A semi-simple Lie algebra is a direct sum of non-abelian simple Lie algebras.
Over the complex numbers, every such Lie algebra is the complexification gC of
some real Lie algebra g of a compact, connected Lie group. The Lie algebra g
of a compact Lie group G is, as a vector space, the direct sum

g = t⊕ g/t

where t is a commutative sub-algebra (the Cartan sub-algebra), the Lie algebra
of T , a maximal torus subgroup of G.

Note that t is not an ideal in g, so g/t is not a subalgebra. g is itself a
representation of g (the adjoint representation: π(X)Y = [X,Y ]), and thus a
representation of the subalgebra t. On any complex representation V of g, the
action of t can be diagonalized, with eigenspaces V λ labeled by the correspond-
ing eigenvalues, given by the weights λ. These weights λ ∈ t∗C are defined by
(for v ∈ V λ, H ∈ t):

π(H)v = λ(H)v

Complexifying the adjoint representation, the non-zero weights of this rep-
resentation are called roots, and we have

gC = tC ⊕ ((g/t)⊗C)

The second term on the right is the sum of the root spaces V α for the roots
α. If α is a root, so is −α, and one can choose decompositions of the set of roots
into “positive roots” and “negative roots” such that:

n+ =
⊕

+ roots α

(gC)α, n− =
⊕

− roots α

(gC)α

where n+ (the ”nilpotent radical”) and n− are nilpotent Lie subalgebras of gC.
So, while g/t is not a subalgebra of g, after complexifying we have decomposi-
tions

(g/t)⊗C = n+ ⊕ n−

30



The choice of such a decomposition is not unique, with the Weyl group W (for
a compact group G, W is the finite group N(T )/T , N(T ) the normalizer of T
in G) permuting the possible choices.

Recall that a complex structure on a real vector space V is given by a
decomposition

V ⊗C = W ⊕W

so the above construction gives |W | different invariant choices of complex struc-
ture on g/t, which in turn give |W | invariant ways of making G/T into a complex
manifold.

The simplest example to keep in mind is G = SU(2), T = U(1), W = Z2,
where g = su(2), and gC = sl(2,C). One can choose T to be the diagonal
matrices, with a basis of t given by

i

2
σ3 =

1

2

(
i 0
0 −i

)
and bases of n+, n− given by

1

2
(σ1 + iσ2) =

(
0 1
0 0

)
,

1

2
(σ1 − iσ2) =

(
0 0
1 0

)
(here the σi are the Pauli matrices). The Weyl group in this case just inter-
changes n+ ↔ n−.

A.2 Highest weight theory

Irreducible representations V of a compact Lie group G are finite dimensional
and correspond to finite dimensional representations of gC. For a given choice
of n+, such representations can be characterized by their subspace V n+

, the
subspace of vectors annihilated by n+. Since n+ acts as “raising operators”,
taking subspaces of a given weight to ones with weights that are more positive,
this is called the “highest weight” space since it consists of vectors whose weight
cannot be raised by the action of gC. For an irreducible representation, this
space is one dimensional, and we can label irreducible representations by the
weight of V n+

. The irreducible representation with highest weight λ is denoted
Vλ. Note that this labeling depends on the choice of n+.

A.3 Casimir operators

For the case of G = SU(2), it is well-known from the discussion of angular
momentum in any quantum mechanics textbook that irreducible representations
can be labeled either by j, the highest weight (here, highest eigenvalue of J3 ),
or by j(j+1), the eigenvalue of J · J. The first of these requires making a choice
(the z-axis) and looking at a specific vector in the representation, the second
doesn’t. It was a physicist (Hendrik Casimir), who first recognized the existence
of an analog of J · J for general semi-simple Lie algebras, and the important role
that this plays in representation theory.
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Recall that for a semi-simple Lie algebra g one has a non-degenerate, invari-
ant, symmetric bi-linear form (·, ·), the Killing form, given by

(X,Y ) = tr(ad(X)ad(Y ))

If one starts with g the Lie algebra of a compact group, this bilinear form is
defined on gC, and negative-definite on g. For a simple Lie algebra, taking the
trace in a different representation gives the same bilinear form up to a constant.
As an example, for the case gC = sl(n,C), one can show that

(X,Y ) = 2n tr(XY )

here taking the trace in the fundamental representation as n by n complex
matrices.

One can use the Killing form to define a distinguished quadratic element Ω
of U(g), the Casimir element

Ω =
∑
i

XiX
i

where Xi is an orthonormal basis with respect to the Killing form and Xi is the
dual basis. On any representation V , this gives a Casimir operator

ΩV =
∑
i

π(Xi)π(Xi)

Note that, taking the representation V to be the space of functions C∞(G) on
the compact Lie group G, ΩV is an invariant second-order differential operator,
(minus) the Laplacian.

Ω is independent of the choice of basis, and belongs to U(g)g, the subalgebra
of U(g) invariant under the adjoint action. It turns out that U(g)g = Z(g), the
center of U(g). By Schur’s lemma, anything in the center Z(g) must act on
an irreducible representation by a scalar. One can compute the scalar for an
irreducible representation (π, V ) as follows:

Choose a basis (Hi, Xα, X−α) of gC with Hi an orthonormal basis of the
Cartan subalgebra tC, and X±α elements of n± in the ±α root-spaces of gC,
orthonormal in the sense of satisfying

(Xα, X−α) = 1

Then one has the following expression for Ω:

Ω =
∑
i

H2
i +

∑
+ roots

(XαX−α +X−αXα)

To compute the scalar eigenvalue of this on an irreducible representation
(π, Vλ) of highest weight λ, one can just act on a highest weight vector v ∈
V λ = V n+

. On this vector the raising operators π(Xα) act trivially, and using
the commutation relations

[Xα, X−α] = Hα
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(Hα is the element of tC satisfying (H,Hα) = α(H)) one finds

Ω =
∑
i

H2
i +

∑
+roots

Hα =
∑
i

H2
i + 2Hρ

where ρ is half the sum of the positive roots, a quantity which keeps appearing
in this story. Acting on v ∈ V λ one finds

ΩVλv = (
∑
i

λ(Hi)
2 + 2λ(Hρ))v

Using the inner-product 〈·, ·〉 induced on t∗ by the Killing form, this eigenvalue
can be written as:

〈λ, λ〉+ 2〈λ, ρ〉 = ||λ+ ρ||2 − ||ρ||2

In the special case g = su(2), gC = sl(2,C), there is just one positive root,
and one can take

H1 = h =

(
1 0
0 −1

)
, Xα = e =

(
0 1
0 0

)
, X−α = f =

(
0 0
1 0

)
Computing the Killing form, one finds

(h, h) = 8, (e, f) = 4

and

Ω =
1

8
h2 +

1

4
(ef + fe) =

1

8
h2 +

1

4
(h+ 2fe)

On a highest weight vector Ω acts as

Ω =
1

8
h2 +

1

4
h =

1

8
h(h+ 2) =

1

2
(
h

2
(
h

2
+ 1))

This is 1/2 times the physicist’s operator J · J, and in the irreducible represen-
tation Vn of spin j = n/2, it acts with eigenvalue 1

2j(j + 1).
In the next section we’ll discuss the Harish-Chandra homomorphism, and

the question of how the Casimir acts not just on V n+

= H0(n+, V ), but on all
of the cohomology H∗(n+, V ). After that, taking note that the Casimir is in
some sense a Laplacian, we’ll follow Dirac and introduce Clifford algebras and
spinors in order to take its square root.

A.4 The Harish-Chandra homomorphism

The Casimir element discussed in the last section is a distinguished quadratic
element of the center Z(g) = U(g)g (note, here g is a complex semi-simple Lie
algebra), but there are others, all of which will act as scalars on irreducible rep-
resentations. The information about an irreducible representation V contained
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in these scalars can be packaged as the so-called infinitesimal character of V , a
homomorphism

χV : Z(g)→ C

defined by zv = χV (z)v for any z ∈ Z(g), v ∈ V . Just as was done for the
Casimir, this can be computed by studying the action of Z(g) on a highest-
weight vector.

Note: this is not the same thing as the usual (or global) character of a
representation, which is a conjugation-invariant function on the group G with
Lie algebra g, given by taking the trace of a matrix representation. For infinite
dimensional representations V , the character is not a function on G, but a
distribution ΘV . The link between the global and infinitesimal characters is
given by

ΘV (zf) = χV (z)ΘV (f)

i.e. ΘV is a conjugation-invariant eigendistribution on G, with eigenvalues for
the action of Z(g) given by the infinitesimal character. Knowing the infinitesimal
character gives differential equations for the global character.

The Poincare-Birkhoff-Witt theorem implies that for a simple complex Lie
algebra g one can use the decomposition (here the Cartan subalgebra is h = tC)

g = h⊕ n+ ⊕ n−

to decompose U(g) as

U(g) = U(h)⊕ (U(g)n+ + n−U(g))

and show that If z ∈ Z(g), then the projection of z onto the second factor is in
U(g)n+∩n−U(g). This will give zero acting on a highest-weight vector. Defining
γ′ : Z(g) → Z(h) to be the projection onto the first factor, the infinitesimal
character can be computed by seeing how γ′(z) acts on a highest-weight vector.

Remarkably, it turns out that one gets something much simpler if one com-
poses γ′ with a translation operator

tρ : U(h)→ U(h)

corresponding to the mysterious ρ ∈ h∗, half the sum of the positive roots.
To define this, note that since h is commutative, U(h) = S(h) = C[h∗], the
symmetric algebra on h, which is isomorphic to the polynomial algebra on h∗.
Then one can define

tρ(φ(λ)) = φ(λ− ρ)

where φ ∈ C[h∗] is a polynomial on h∗, and λ ∈ h∗.
The composition map

γ = tρ ◦ γ′ : Z(g)→ U(h) = C[h∗]

is also homomorphism, known as the Harish-Chandra homomorphism. One can
show that the image is invariant under the action of the Weyl group, and the
map is actually an isomorphism

γ : Z(g)→ C[h∗]W
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It turns out that the ring C[h∗]W is generated by dim h independent homoge-
neous polynomials. For g = sl(n,C) these are of degree 2, 3, · · · , n (where the
first is the Casimir).

To see how things work in the case of g = sl(2,C), where there is one
generator, the Casimir Ω, recall that

Ω =
1

8
h2 +

1

4
(ef + fe) =

1

8
h2 +

1

4
(h+ 2fe)

so one has

γ′(Ω) =
1

4
(h+

1

2
h2)

Here tρ(h) = h− 1, so

γ(Ω) =
1

4
((h− 1) +

1

2
(h− 1)2) =

1

8
(h2 − 1)

which is invariant under the Weyl group action h → −h. Once one has the
Harish-Chandra homomorphism γ, for eachλ ∈ h∗ one has a homomorphism

χλ : z ∈ Z(g)→ χλ(z) = γ(z)(λ) ∈ C

and the infinitesimal character of an irreducible representation of highest weight
λ is χλ+ρ.

B Lie algebra and equivariant cohomology

B.1 Lie algebra cohomology

In the case of g∗ and its quantization, the Lie algebra g acts on the algebras of
classical and quantum observables S∗(g) and U(g) in the obvious way induced
from the adjoint action. In the Fermionic case, again there is an action of g on
Λ∗(g) and Cliff(g) induced from the adjoint action, but there is also a larger
structure which is acting, involving a differential and a super-Lie algebra. In
this section we’ll discuss the differential, in the next the super-Lie algebra.

To understand this larger structure, it is perhaps best to think about the
geometry of a Lie group G with Lie algebra g, and the differential form Ω∗(G)
on G. Elements of g can be identified with left-invariant vector fields, and then
elements of Λ∗(g) are the left-invariant differential forms, which we’ll denote
Ω∗(G)G. The action of g induced from the adjoint action is given by the Lie
derivative operator LX , for X the left-invariant vector field corresponding to
X ∈ g. These operators preserve the degree of a differential form, and satisfy

[LX , LY ] = L[X,Y ]

There de Rham differential d acts by

d : Ωk(G)→ Ωk+1(G)
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It can be written in terms of its action on a basis αj of left-invariant one-forms
dual to a basis Xj of g as

dαi =

where the structure constants are

[Xj , Xk] = cjklXl

The operator d satisfies d2 = 0 and thus gives a complex

0 −→ Ω0(G)G
d−→ Ω1(G)G

d−→ · · · d−→ Ωdim G(G)G −→ 0

The cohomology of this complex is the Lie algebra cohomology H∗(g,C).
IfG is a compact, connected Lie group, its de Rham cohomologyH∗deRham(G)

is the cohomology of the complex

0 −→ Ω0(G)
d−→ Ω1(G)

d−→ · · · d−→ Ωdim G(G) −→ 0

In this case, the operation of averaging over differential forms by the left action
of G to get the left-invariant ones commutes with d and does not change the
cohomology, so

H∗deRham(G) = H∗(g,C)

The right-action of G on the group induces an action on the left-invariant forms
Λ∗(g), which again commutes with the differential (infinitesimally, this is given
by the LX). Again, averaging gives a complex

0 −→ (Λ0(g∗))G −→ (Λ1(g∗))G −→ · · · −→ (Λdim g(g∗))G −→ 0

where now all the differentials are zero, so the cohomology is given by

H∗(g,C) = (Λ∗(g∗))G = (Λ∗(g∗))g

the adjoint-invariant pieces of the exterior algebra on g∗. Finding the cohomol-
ogy has now been turned into a purely algebraic problem in invariant theory.

Note that complexifying the Lie algebra and working with gC = g ⊗ C
commutes with taking cohomology, so we get

H∗(gC,C) = H∗(g,C)⊗C

Complexifying the Lie algebra of a compact semi-simple Lie group gives a com-
plex semi-simple Lie algebra, and we have now computed the cohomology of
these as

H∗(gC,C) = (Λ∗(gC))gC

Besides H0, one always gets a non-trivial H3, since one can use the Killing
form < ·, · > to produce an adjoint-invariant 3-form

ω3(X1, X2, X3) =< x1, [X2, X3] >
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For G = SU(n), gC = sl(n,C), and one gets non-trivial cohomology classes
ω2i+1 for i = 1, 2, · · ·n, such that

H∗(sl(n,C)) = Λ∗(ω3, ω5, · · · , ω2n+1)

the exterior algebra generated by the ω2i+1.
To compute Lie algebra cohomology H∗(g, V ) with coefficients in a repre-

sentation V , we can go through the same procedure as above, starting with
Ω∗(G,V ), the differential forms on G taking values in V , or we can just use
exactness of the averaging functor that takes V to V G. Either way, we end up
with the result

H∗(g, V ) = H∗(g,C)⊗ V g

The H0 piece of this is just the V g that we want when we are doing BRST, but
we also get quite a bit else: dim V g copies of the higher degree pieces of the Lie
algebra cohomology H∗(g,C). The Lie algebra cohomology here is quite non-
trivial, but doesn’t interact in a non-trivial way with the process of identifying
the invariants V g in V .

Rest of what needs to happen here: need to reformulate everything in terms
of the super Poisson Lie bracket, show that LX is given by a Poisson bracket,
and that d is given by a Poisson bracket.

Remarkably (this was first noticed by Kostant-Sternberg[13]) one can use the
invariant inner product on g to get the final operator needed to make Λ∗(g∗)
a g-differential algebra, the differential d, by taking the Poisson bracket with a
degree 3 element Ω ∈ Λ3(g∗), where

Ω(X,Y, Z) = −(X, [Y, Z])

To show this, we just need to show that Poisson bracket with Ω gives the
action of d on Λ1(g∗). Recall the following formula for d acting on θ = Λ1(g∗)
which one gets when one computes the de Rham differential on left-invariant
1-forms:

dθ(Y,Z) = −θ([Y, Z])

Taking the one-form θX = (X, ·), one has

dθX(Y,Z) = −θX([Y, Z]) = −(X, [Y, Z]) = {X,Ω} = {Ω, X}

so
d = {Ω, ·}

B.1.1 Lie algebra cohomology as a derived functor

The last section discussed one of the simplest incarnations of BRST cohomol-
ogy, in a formalism familiar to physicists. This fits into a much more abstract
mathematical context, and that’s what we’ll turn to now.

Given a Lie algebra g, we’ll consider Lie algebra representations as modules
over U(g). Such modules form a category Cg: what is interesting is not just
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the objects of the category (the equivalence classes of modules), but also the
morphisms between the objects. For two representations V1 and V2 the set of
morphisms between them is a linear space denoted HomU(g)(V1, V2). This is
just the set of linear maps from V1 to V2 that commute with the action of g:

HomU(g)(V1, V2) = {φ ∈ HomC(V1, V2) : π(X)φ = φπ(X) ∀X ∈ g}

Another conventional name for this is the space of intertwining operators be-
tween the two representations.

For any representation V , its g-invariant subspace V g can be identified with
the space HomU(g)(C, V ), where here C is the trivial one-dimensional repre-
sentation. Having a way to pick out the invariant piece of a representation
also allows one to solve the more general problem of picking out the subspace
that transforms like a specific irreducible W : just find the invariant subspace of
V ⊗W ∗.

The map V → V g that takes a representation to its g-invariant subspace is a
functor: it takes the category Cg to CC, the category of vector spaces and linear
maps (C - modules and C - homomorphisms).

It turns out that when one has a category of modules like Cg, these can
usefully be studied by considering complexes of modules, and this is the subject
of homological algebra. A complex of modules is a sequence of modules and
homomorphisms

· · · ∂−→ U
∂−→ V

∂−→W
∂−→ · · ·

such that ∂ ◦ ∂ = 0. If the complex satisfies im ∂ = ker ∂ at each module, the
complex is said to be an “exact complex”.

To motivate the notion of exact complex, note that

0 −→ V0 −→ V −→ 0

is exact iff V0 is isomorphic to V , and an exact sequence

0 −→ V1 −→ V0 −→ V −→ 0

represents the module V as the quotient V0/V1. Using longer complexes, one
gets the notion of a resolution of a module V by a sequence of n modules Vi.
This is an exact complex

0 −→ Vn −→ · · · −→ V1 −→ V0 −→ V −→ 0

The deviation of a sequence from being exact is measured by its homology,
H∗ = ker ∂

im ∂ . Note that if one deletes V from its resolution, the sequence

0 −→ Vn −→ · · · −→ V1 −→ V0 −→ 0

is exact except at V0. Indexing the homology in the obvious way, one has Hi = 0
for i > 0, and H0 = V . A sequence like this whose only homology is V at H0 is
another manifestation of a resolution of V .

38



The reason this construction is useful is that, for many purposes, it allows
us to replace a module whose structure we may not understand by a sequence
of modules whose structure we do understand. In particular, we can replace a
U(g) module V by a sequence of free modules, i.e. modules that are just sums
of copies of U(g) itself. This is called a free resolution, and more generally one
can work with projective modules (direct summands of free modules).

A functor that takes exact complexes to exact complexes is called an exact
functor. Homological invariants of modules come about in cases where one has
a functor on a category of modules that is not exact. Applying such a functor
to a free or projective resolution gives the homological invariants.

There are many possible choices of a free resolution of a module. For the case
of U(g) modules, one convenient choice is known as the Koszul (or Chevalley-
Eilenberg) resolution. To construct a resolution of the trivial module C, one
uses the exterior algebra on g to make free modules

Yk = U(g)⊗C Λk(g)

and get a resolution of C

0 −→ Ydim g
∂dim g−1−→ · · · ∂1−→ Y1

∂0−→ Y0
ε−→ C −→ 0

The maps are given by

ε : u ∈ Y0 = U(g)→ ε(u) = const. term of u

and

∂k−1(u⊗X1 ∧ · · · ∧Xk) =

k∑
i=1

(−1)i+1(uXi ⊗X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xk)

+
∑
i<j

(−1)i+j(u⊗ [Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xk)

To get Lie algebra cohomology, we apply the invariants functor

V −→ V g = HomU(g)(C, V )

replacing the trivial representation by its Koszul resolution. This gives us a
complex with terms

Ck(g, V ) = HomU(g)(Yk, V ) = HomU(g)(U(g)⊗ Λk(g), V )

= HomU(g)(U(g), HomC(Λk(g), V ))

= HomC(Λk(g), V ) = V ⊗ Λk(g∗)

and induced maps di

0 −→ C0(g, V )
d0−→ C1(g, V ) · · · ddim g−1−→ Cdim g(g, V ) −→ 0
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The Lie algebra cohomology H∗(g, V ) is just the cohomology of this complex,
i.e.

Hi(g, V ) =
ker di
im di−1

|Ci(g,V )

This is exactly the same definition as that of the BRST cohomology defined in
physicist’s formalism in the last section with H = C∗(g, V ).

One has H0(g, V ) = V g and so gets the g-invariants as expected, but in
general the cohomology will be non-zero also in other degrees.

For a much more detailed exposition of Lie algebra cohomology, see Anthony
Knapp’s book Lie Groups, Lie Algebras, and Cohomology [10].

B.2 Lie algebra cohomology of the nilpotent Lie subalge-
bra

In the last section we discussed the Lie algebra cohomology H∗(g, V ) for g a
semi-simple Lie algebra. Because the invariants functor is exact here, this tells
us nothing about the structure of irreducible representations in this case. In this
section we’ll consider a different sort of example of Lie algebra cohomology, one
that is intimately involved with the structure of irreducible g-representations.

Getting back to Lie algebra cohomology, while H∗(g, V ) = 0 for an irre-
ducible representation V , the Lie algebra cohomology for n+ is more interest-
ing, with H0(n+, V ) = V n+

, the highest weight space. t acts not just on V ,
but on the entire complex C(n+, V ), in such a way that the cohomology spaces
Hi(n+, V ) are representations of t, so can be characterized by their weights.

For an irreducible representation Vλ, one would like to know which higher
cohomology spaces are non-zero and what their weights are. The answer to this
question involves a surprising ”ρ - shift”, a shift in the weights by a weight ρ,
where

ρ =
1

2

∑
+roots

α

half the sum of the positive roots. This is a first indication that it might be
better to work with spinors rather than with the exterior algebra that is used in
the Koszul resolution used to define Lie algebra cohomology. Much more about
this in a later section.

One finds that dimH∗(n+, Vλ) = |W |, and the weights occuring inHi(n+, Vλ)
are all weights of the form w(λ+ ρ)− ρ, where w ∈ W is an element of length
i. The Weyl group can be realized as a reflection group action on t∗, generated
by one reflection for each ”simple” root. The length of a Weyl group element
is the minimal number of reflections necessary to realize it. So, in dimension 0,
one gets H0(n+, Vλ) = V n+

with weight λ, but there is also higher cohomology.
Changing one’s choice of n+ by acting with the Weyl group permutes the differ-
ent weight spaces making up H∗(n+, V ). For an irreducible representation, to
characterize it in a manner that is invariant under change in choice of n+, one
should take the entire Weyl group orbit of the ρ - shifted highest weight λ, i.e.
the set of weights
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{w(λ+ ρ), w ∈W}

In our G = SU(2) example, highest weights can be labeled by non-negative
half integral values (the ”spin” s of the representation)

s = 0,
1

2
, 1,

3

2
, 2, · · ·

with ρ = 1
2 . The irreducible representation Vs is of dimension 2s + 1, and

one finds that H0(n+, Vs) is one-dimensional of weight s, while H1(n+, Vs) is
one-dimensional of weight −s− 1.

The character of a representation is given by a positive integral combination
of the weights

char(V ) =
∑

weights ω

(dim V ω)ω

(here V ω is the ω weight space). The Weyl character formula expresses this as a
quotient of expressions involving weights taken with both positive and negative
integral coefficients. The numerator and denominator have an interpretation in
terms of Lie algebra cohomology:

char(V ) =
χ(H∗(n+, V ))

χ(H∗(n+,C))

Here χ is the Euler characteristic: the difference between even-dimensional coho-
mology (a sum of weights taken with a + sign), and odd-dimensional cohomology
(a sum of weights taken with a - sign). Note that these Euler characteristics are
independent of the choice of n+.

The material in this last section goes back to Bott’s 1957 paper Homoge-
neous Vector Bundles[3], with more of the Lie algebra story worked out by
Kostant in his 1961 Lie Algebra Cohomology and the Generalized Borel-Weil
Theorem[14]. For an expository treatment with details, showing how one ac-
tually computes the Lie algebra cohomology in this case, for U(n) see chapter
VI.3 of Knapp’s Lie Groups, Lie Algebras and Cohomology[10], or for the gen-
eral case see chapter IV.9 of Knapp and Vogan’s Cohomological Induction and
Unitary Representations[11].

We have computed the infinitesimal character of a representation of highest
weight λ by looking at how Z(g) acts on V n+

= H0(n+, V ). On V n+

, z ∈ Z(g)
acts by

z · v = χV (z)v

This space has weight λ, so U(h) = C[h∗] acts by evaluation at λ

φ · v = φ(λ)v

These two actions are related by the map γ′ : Z(g)→ U(h) and we have

χV (z) = (γ′(z))(λ) = (γ(z))(λ+ ρ)
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It turns out that one can consider the same question, but for the higher coho-
mology groups Hk(n+, V ). Here one again has an action of Z(g) and an action
of U(h). Z(g) acts on k-cochains Ck(n+, V ) = HomC(Λkn+, V ) just by acting
on V , and this action commutes with d so is an action on cohomology. U(h)
acts simultaneously on n+ and on V , again in a way that descends to cohomol-
ogy. The content of the Casselman-Osborne lemma is that these two actions
are again related in the same way by the Harish-Chandra homomorphism. If µ
is a weight for the h action on Hk(n+, V ), then

χV (z) = (γ′(z))(µ) = (γ(z))(µ+ ρ)

Since χV (z) = (γ(z))(λ + ρ), one can use this equality to show that the
weights occurring in Hk(n+, V ) must satisfy

(µ+ ρ) = w(λ+ ρ)

and thus
µ = w(λ+ ρ)− ρ

for some element w ∈ W . Non zero elements of Hk(n+, V ) can be constructed
with these weights, and the Casselman-Osborne lemma used to show that these
are the only possible weights. This gives the computation of Hk(n+, V ) as an h
- module referred to earlier in these notes, which is known as Kostant’s theorem
(the algebraic proof was due to Kostant[14], an earlier one using geometry and
sheaf cohomology was due to Bott[3]).

For more details about this and a proof of the Casselman-Osborne lemma,
see Knapp’s Lie Groups, Lie Algebras and Cohomology[10], where things are
worked out for the case of g = gl(n,C) in chapter VI.

So far we have been considering the case of a Cartan subalgebra h ⊂ g,
and its orthogonal complement with a choice of splitting into two conjugate
subalgebras, n+⊕n−. Equivalently, we have a choice of Borel subalgebra b ⊂ g,
where b = h ⊕ n+. At the group level, this corresponds to a choice of Borel
subgroup B ⊂ G, with the space G/B a complex projective variety known as a
flag manifold. More generally, much of the same structure appears if we choose
larger subgroups P ⊂ G containing B such that G/P is a complex projective
variety of lower dimension. In these cases Lie P = l ⊕ u+, with l (the Levi
subalgebra) a reductive algebra playing the role of the Cartan subalgebra, and
u+ playing the role of n+.

In this more general setting, there is a generalization of the Harish-Chandra
homomorphism, now taking Z(g) to Z(l). This acts on the cohomology groups
Hk(u+, V ), with a generalization of the Casselman-Osborne lemma determin-
ing what representations of l occur in this cohomology. The Dirac cohomology
formalism to be discussed later generalizes this even more, to cases of a reduc-
tive subalgebra r with orthogonal complement that cannot be given a complex
structure and split into conjugate subalgebras. It also provides a compelling
explanation for the continual appearance of ρ, as the highest weight of the spin
representation.
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B.2.1 Kostant’s Theorem

The computation of the Lie algebra cohomology of the nilpotent radical was
done by Kostant in 1961, with the result

Theorem 1 (Kostant’s Theorem). For a finite dimensional highest-weight rep-
resentation V λ of a complex semi-simple Lie algebra g

Hi(n+, V λ) =
⊕

w∈W :l(w)=i

Cw(λ+ρ)−ρ

There are at least four possible approaches to proving this:

� One can use the BGG resolution and the fact that for Verma modules
Hi(g, V (µ)) is Cµ for i = 0, 0 for i > 0. This requires knowing the BGG
resolution, which is a stronger result since it carries information about
homomorphisms between Verma modules.

� One can prove Borel-Weil-Bott by other (e.g. topological) methods, then
use this to prove Kostant’s theorem. For an example of such a proof of
Borel-Weil-Bott, see Jacob Lurie’s notes[?].

� One can find explicit elements in H∗(n+, V λ) that represent the coho-
mology classes in Kostant’s theorem. One way to do this is to look for
elements in

Ci(n+, V λ) = Λi(n+)∗ ⊗ V λ

that represent these cohomology classes. Note that the weights of (n+)∗

are multiples of −α where α ∈ R+, the positive roots. A choice that gives
the right element in degree i for each Weyl group element w such that
l(w) = i is:

ω−β1
∧ ω−β2

∧ · · · ∧ ω−βi ⊗ V λ(wλ)

where
ω−βj ∈ (n+)∗−βj

for βj a positive root such that wβj is a negative root. V λ(wλ) is the
transform by w of the highest weight space. The more difficult part of
this sort of proof is showing that only these elements can occur. One way
to do this is to construct an analog of the Laplacian, and show that it acts
like the Casimir on cohomology (this was Kostant’s original method). A
generalization of this uses the full center of the enveloping algebra, and the
Casselman-Osborne lemma, which says that the center much act on the
higher cohomology in just the way that the Harish-Chandra ismorphism
says it acts in degree zero cohomology (the highest weight space). For
more details on this argument see Goodman-Wallach[?].

� One can replace the use of the exterior algebra and a Laplacian by closely
related spinors, and a “square-root” of the Laplacian known as the Dirac
operator. We’ll try and come back to this argument after developing the
technology of spinors and Clifford algebras in the next couple weeks.
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B.3 Equivariant cohomology

B.4 Verma modules and resolutions

C Appendix: Borel-Weil and Borel-Weil-Bott

C.1 The Borel-Weil theorem

We’ll now turn to a geometric construction of irreducible finite-dimensional
representations, using induction on group representations, rather than at the
Lie algebra level. In this section G will be a compact Lie group, T a maximal
torus of G.

Recall that according to the Peter-Weyl theorem

L2(G) =
⊕̂

i
Vi ⊗ V ∗i

with the left regular representation of G on L2(G) corresponding to the action
on the factor Vi and the right regular representation corresponding to the dual
action on the factor V ∗i . Under the left regular representation L2(G) decomposes
into irreducibles as a sum over all irreducibles, with each one occuring with
multiplicity dim Vi (which is the dimension of V ∗i ). To make things simpler
later, we’ll interchange our labeling of representations and use Peter-Weyl in
the form

L2(G) =
⊕̂

i
V ∗i ⊗ Vi

i.e. the left regular representation will be on V ∗i , the right regular on Vi.
Recall also that we can induce from representations Cλ of T to representa-

tions of G, with the induced representation interpretable as a space of sections
of a line bundle Lλ over G/T .

IndGT (Cλ) = Γ(Lλ)

Here
Γ(Lλ) ⊂ L2(G)

is the subspace of the left-regular representation picked out by the condition

f(gt) = ρλ(t−1)f(g)

Here the representation (ρλ,C)of T is one dimensional and if t = eH

ρλ(t−1) = e−λ(H)

where λ is an integral weight in t∗.
This condition says that under the action of the subgroup TR ⊂ GR, Γ(Lλ)

is the subspace of L2(G) that has weight −λ. In other words

Γ(Lλ) =
⊕̂

i
V ∗i ⊗ (Vi)−λ
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or

Γ(L−λ) =
⊕̂

i
V ∗i ⊗ (Vi)λ

where (Vi)λ is the λ weight space of Vi.
Our induced representation Γ(L−λ) thus breaks up into irreducibles as a sum

over all irreducibles V ∗i , with multiplicity given by the dimension of the weight
λ in Vi. We can get a single irreducible if we impose the condition that λ be a
highest weight since by the highest-weight theorem λ will be the highest weight
for just one irreducible representation.

So if we impose the condition on Γ(L−λ) that infinitesimal right translation
by an element of a positive root space give zero, we will finally have a construc-
tion of a single irreducible: it will be the dual of the irreducible with highest
weight λ. It turns out (see discussion of complex structures in next section,
more detail in [20]) that imposing the condition of infinitesimal right invariance
under the action of n+ on Γ(L−λ) is exactly the holomorphicity condition cor-
responding to using the complex structure on G/T to give Lλ the structure of
a holomorphic line bundle. So, on the subspace

Γhol(L−λ) ⊂ Γ(L−λ) ⊂ L2(G)

we have

Γhol(L−λ) =
⊕̂

i
V ∗i ⊗ {v ∈ Vi :

{
n+v = 0

v ∈ (Vi)λ
}

=
⊕

Vi has highest-weight λ

V ∗i ⊗ (Vi)λ

= (V λ)∗ ⊗C

where V λ is the irreducible representation of highest weight λ.
The Borel-Weil version of the highest-weight theorem is thus:

Theorem 2 (Borel-Weil). As a representation of G, for a dominant weight λ,
Γhol(L−λ) is the dual of a non-zero, irreducible representation of highest weight
λ. All irreducible representations of G can be constructed in this way.

For an outline of the proof from the point of view of complex analysis, see
[19] chapter 14. Note however, that we have shown how the Borel-Weil theo-
rem is related to the highest-weight classification of irreducible representations
discussed using Lie algebras and Verma modules, with a different explicit con-
struction of the representation. The Lie algebra argument made clear that
having a dominant, integral highest weight is a necessary condition for a finite
dimensional irreducible. The Verma module construction was such that it was
not so easy to see that these conditions were sufficient for finite dimensionality.
Finite dimensionality can be proved for the Borel-Weil construction using either

� General theorems of algebraic geometry to show that

Γhol(Lλ) = H0(G/T,O(Lλ))
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is finite dimensional (sheaf cohomology of a holomorphic bundle over a
compact projective variety is finite-dimensional), or

� Hodge theory. Picking a metric the Cauchy-Riemann operator has an
adjoint, and the corresponding Laplacian is elliptic. An elliptic operator
on a compact manifold has finite-dimensional kernel.

C.2 Flag manifolds and complex structures.

We need to show that the holomorphicity condition on the space of sections
Γ(Lλ) corresponds to imposing the condition that Lie algebra elements in the
positive root spaces act trivially, as vector fields corresponding to the infinitesi-
mal right-action of the group. For a detailed argument, see [20], section 7. 4.3.
The complex geometry involved goes as follows.

We’ll need the general notion of what a complex structure on a manifold is.
To begin, on real vector spaces:

Definition 1 (Complex structure on a vector space). Given a real vector space
V of dimension n, a complex structure is a non-degenerate operator J such that
J2 = −1. On the complexification V ⊗C it has eigenvalues i and −i, and an
eigenspace decomposition

V ⊗C = V 1,0 ⊕ V 0,1

V 1,0 is a complex vector space with complex dimension n, with multiplication by
i given by the action of J , V 0,1 its complex conjugate.

For manifolds

Definition 2 (Almost complex manifold). A manifold with a smooth choice of
a complex structure Jx on each tangent space Tx(M) is called an almost complex
manifold.

and

Definition 3 (Complex manifold). A complex manifold is an almost complex
manifold with an integrable complex structure, i.e. the Lie bracket of vector
fields satisfies

[T 1,0, T 1,0] ⊂ T 1,0

By the Newlander-Nirenberg theorem, having an integrable complex struc-
ture implies that one can choose complex coordinate charts, with holomorphic
transition functions, and thus have a notion of which functions are holomorphic.

Going back to Lie groups and case of the manifold G/T , to even define the
positive root space, we need to begin by complexifying the Lie algebra

gC = tC ⊕
∑
α∈R

gα
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and then making a choice of positive roots R+ ⊂ R

gC = tC ⊕
∑
α∈R+

(gα + g−α)

Note that the complexified tangent space to G/T at the identity coset is

TeT (G/T )⊗C =
∑
α∈R

gα

and a choice of positive roots gives a choice of complex structure on TeT (G/T ),
with decomposition

TeT (G/T )⊗C = T 1,0
eT (G/T )⊕ T 0,1

eT (G/T ) =
∑
α∈R+

gα ⊕
∑
α∈R+

g−α

While g/t is not a Lie algebra,

n+ =
∑
α∈R+

gα, and n− =
∑
α∈R+

g−α

are each Lie algebras, subalgebras of gC since

[n+, n+] ⊂ n+

(and similarly for n−). This follows from

[gα, gβ ] ⊂ gα+β

The fact that these are subalgebras also implies that the almost complex struc-
ture they define on G/T is actually integrable, so G/T is a complex manifold.

Note that the choice of positive roots is not unique or canonical. There are
|W | inequivalent choices that will work. The Weyl group acts on the inequivalent
complex structures. In particular, it permutes the Weyl chambers, and it is the
choice of positive roots that determines which Weyl chamber is the dominant
one. Changing choice of positive roots will correspond to changing choice of
complex structure. We’ll see later on that a representation appearing as a
holomorphic section (in H0) with respect to one complex structure, appears in
higher cohomology when one changes the complex structure.

The choice of a decomposition into positive and negative roots takes the
original g/t, which is not a Lie subalgebra of g, and, upon complexification,
gives two Lie subalgebras instead:

g/t⊗C = n+ ⊕ n−

Recall that in the case u(n), this corresponds to the fact that, upon complexifi-
cation to gl(n,C), the non-diagonal entries split into two nilpotent subalgebras:
the upper and lower triangular matrices.
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Another important Lie subalgebra is

b = tC ⊕ n+

This is the Borel subalgebra of gC. One also has parabolic subalgebras, those
satisfying

b ⊆ p ⊂ gC

The Borel subalgebra is the minimal parabolic subalgebra. Other parabolic
subalgebras can be constructed by adding to the positive roots some of the neg-
ative roots, with the possible choices corresponding to the nodes of the Dynkin
diagram.

Corresponding to the Lie sub-algebras n+, b, p one has Lie subgroupsN+, B, P
of GC. One can identify

G/T = GC/B

and another approach to Borel-Weil theory would be to do “holomorphic induc-
tion”, inducing from a one-dimensional representation of B on C to a represen-
tation of GC using holomorphic functions on GC.

One can see that the complex manifolds G/T = GC/B and GC/P are actu-
ally projective varieties as follows (for more details, see [18]):

Pick a highest-weight vector vλ ∈ V λ and look at the map

g ∈ GC → [gvλ] ∈ P (V λ)

i.e. the orbit in projective space of the line defined by the highest-weight vector.
For a generic dominant weight, the Borel subgroup B will act trivially on this
line, for weights on the boundary of the dominant Weyl chamber one gets larger
stabilizer groups, the parabolic groups P . The orbit can be identified with
GC/B or GC/P , and this gives a projective embedding.

In the special case that the orbit is the full projective space, one can under-
stand the Borel-Weil theorem in the following way:

Given a projective space P (V ), one can construct a “tautological” line bundle
above it by taking the fiber above a line to be the line itself. In the complex
case, this give a holomorphic bundle L, one that has no holomorphic sections.
But for each element of V ∗, one can restrict this to the line L, getting a section
of the dual bundle Γ(L∗). It turns out this is an isomorphism

V ∗ = Γhol(L
∗)

and more generally one has

homogeneous polys on V of degree n = Γhol((L
∗)⊗n)

i.e. the sections of the n’th power of the dual of the tautological bundle are
the homogeneous polynomials on V of degree n. These give special cases of the
Borel-Weil theorem, and we’ll see explicitly how this works for V = C2 in the
next section.
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C.3 Borel-Weil-Bott

Recall that in our discussion of the Borel-Weil theorem we were using a complex
line bundle Lλ over the flag manifold G/T (G is a compact simple Lie group,
T a maximal torus). The integral weight λ labels a T representation ρλ on C.
Sections of this line bundle are explicitly

Γ(Lλ) = {f : G→ C, f(gt) = ρλ(t−1)f(g)}
= (C∞(G)⊗Cλ)T

= (C∞(G))−λ

and holomorphic sections are the subspace of this invariant under the right
action of n+.

We are interested now in using the structure of G/T as a complex manifold
(which depends on the choice of positive roots) to define a holomorphic version
of cohomology. The usual topological cohomology computes the derived functor
of the functor of taking global sections of the sheaf of locally constant functions.
For a complex manifold, we instead use the sheaf of local holomorphic functions,
or more generally the sheaf of local holomorphic sections of a holomorphic line
bundle such as Lλ. Just as the de Rham theorem allows computation of topo-
logical cohomology using differential forms, the Dolbeault theorem says we can
compute holomorphic cohomology using the the bi-graded complex

(Ω0,i(G/T,Lλ), ∂)

of differential forms with coefficients in line bundle Lλ, of degree i in local
variables dz (and degree 0 in the dz). In degree 0 we just get

H0(G/T,Lλ) = Γhol(Lλ)

the holomorphic sections, but we can also get higher cohomology, in degrees up
to the complex dimension of G/T .

If one works out explicitly what the Dolbeault complex is in this case, gen-
eralizing the case of holomorphic sections, one finds

(Ω0,i(G/T,Lλ), ∂) = ((Hom(Λi(n+), C∞(G)⊗Cλ))T , d)

where T acts on n+ by the adjoint representation, and the d is the d of Lie
algebra cohomology for n+, with n+ acting on C∞(G) by infinitesimal right
translation.

Note that one has a commuting action of G on this complex, coming from
the left G action on functions on G, so we will get G representations on the
cohomology spaces

Hi(G/T,Lλ)
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Recall that the way Borel-Weil works is that one uses Peter-Weyl to see that

Γ(Lλ) = (C∞(G)⊗Cλ)T

= (C∞(G))−λ

=
⊕

µ dominant

(V µ)∗ ⊗ V µ−λ

and thus that
Γhol(L−λ) = (V λ)∗

For higher cohomology, one has

H(Ω0,i(G/T,Lλ), ∂) = H((Hom(Λi(n+), C∞(G)⊗Cλ))T , d)

= H(
⊕

µ dominant

(V µ)∗ ⊗ (Hom(Λi(n+), V µ ⊗Cλ))T , d)

=
⊕

µ dominant

(V µ)∗ ⊗ (Hi(n+, V µ ⊗Cλ))T

=
⊕

µ dominant

(V µ)∗ ⊗Hi(n+, V µ)−λ

so
H(Ω0,i(G/T,L−λ), ∂) =

⊕
µ dominant

(V µ)∗ ⊗Hi(n+, V µ)λ

This show that in this case computing holomorphic cohomology comes down
to computing n+ Lie algebra cohomology.

C.4 Borel-Weil-Bott and the Weyl Character Formula

Kostant’s theorem gives the Borel-Weil-Bott theorem very directly. Recall that

Hi(G/T,O(L−λ)) =
⊕
µ

(V µ)∗ ⊗Hi(n+, V µ)λ

where the sum is over dominant integral weights µ. By Kostant’s theorem we
have

Hi(n+, V µ)λ = (
⊕

w∈W :l(w)=i

Cw(µ+ρ)−ρ)λ

and this has a one-dimensional contribution iff

w(µ+ ρ)− ρ = λ

or equivalently
w(µ+ ρ) = λ+ ρ
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Note that the set of weights of the form µ + ρ for µ dominant integral are in
the interior of the dominant Weyl chamber, and acting on these by Weyl group
elements gives us sets of weights in the interiors of the other Weyl chambers.
Weights λ such that λ+ρ is on the boundary of a Weyl chamber will not occur.
In summary, we have

Theorem 3 (Borel-Weil-Bott). If λ + ρ is a singular weight then for all i we
have

Hi(G/T,O(L−λ)) = 0

If λ+ρ is a non-singular weight, there will be an i such that w(λ+ρ) = µ+ρ
is in the interior of the dominant Weyl chamber for a w : l(w) = i and

Hi(G/T,O(L−λ)) = (V µ)∗

As usual, the simplest example is G = SU(2), G/T = CP 1, and the Borel-
Weil-Bott theorem can be proved via Serre duality, which says that for line
bundles L on a curve C one has

H1(C,L) = H0(C,L∗ ⊗ ωC)

where ωC is the canonical bundle on C. In our case C = CP 1, and line bundles
Ln are labeled by an integer n with ρ corresponding to n = 1. The canonical
bundle is L2.

For n ≥ 0 we have, as in the Borel-Weil theorem

H0(CP 1, L−n) = (V n)∗

where V n is the irreducible SU(2) representation of dimension n+ 1. By Serre
duality

H1(CP 1, L−n) = H0(CP 1, Ln+2)

which is consistent with Borel-Weil-Bott which tells us that

H1(CP 1, L−n) = (V −n−2)∗

when n < −1 and, in the singular n = −1 case

H1(CP 1, L1) = H0(CP 1, L1) = 0

So, for n > 0 one gets all irreducibles as holomorphic sections, whereas for
n < −1 one gets all irreducibles again, but in higher cohomology (H1).

Another quick corollary of Kostant’s theorem is the Weyl character formula.
Recall that this says that the character ch(V λ) of a finite-dim irreducible of
highest weight λ is given by

ch(V λ) =

∑
w∈W (−1)l(w)ew(λ+ρ)−ρ∑
w∈W (−1)l(w)ew(ρ)−ρ

This follows from an application of the Euler-Poincaré principle, which says
that in the case of an Abelian invariant like the character, its value on the
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alternating sum of the cohomology groups (the Euler characteristic) is the same
as its value on the alternating sum of whatever co-chains ones uses to define
cohomology, i.e. here we have∑

i

(−1)ich(Hi(n+, V )) =
∑
i

(−1)ich(Ci(n+, V ))

This follows from two facts: the first is that

ch(Ci(n+, V )) = ch(Zi(n+, V )) + ch(Bi+1(n+, V ))

since we have an exact sequence

0→ Zi(n+, V ) −→ Ci(n+, V )
d−→ Bi+1(n+, V )→ 0

(here Zi(n+, V ) are the co-cycles on which d = 0, Bi+1(n+, V ) are the co-
boundaries which are in the image of d. Since

Hi(n+, V ) = Zi(n+, V )/Bi(n+, V )

we also have a second fact

ch(Hi(n+, V )) = ch(Zi(n+, V ))− ch(Bi(n+, V ))

and this together with our first fact gives the Euler-Poincaré principle.
Recall that

Ci(n+, V ) = Hom(Λi(n+), V ) = Λi(n+)∗ ⊗ V

so we have ∑
i

(−1)ich(Ci(n+, V λ)) =
∑
i

(−1)ich(Λi(n+)∗)ch(V λ)

whereas Kostant’s theorem tells us that the Euler characteristic is∑
i

(−1)ich(Hi(n+, V λ)) =
∑
w∈W

(−1)l(w)ew(λ+ρ)−ρ

Applying the Euler-Poincaré principle in the case λ = 0 gives∑
w∈W

(−1)l(w)ew(ρ)−ρ =
∑
i

(−1)ich(Λi(n+)∗)

and thus in the general case the Weyl character formula as∑
w∈W

(−1)l(w)ew(λ+ρ)−ρ = (
∑
w∈W

(−1)l(w)ew(ρ)−ρ)ch(V λ)
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