
Quantum Field Theory for Mathematicians:
Hamiltonian Mechanics and Symplectic

Geometry

We’ll begin with a quick review of classical mechanics, expressed in the
language of modern geometry. There are two general formalisms used in classical
mechanics to derive the classical equations of motion: the Hamiltonian and
Lagrangian. Both formalisms lead to the same equations of motion in the cases
where they both apply, but they provide rather different points of view on both
classical mechanics and the subject we will turn to next, quantum mechanics.

For more detailed information about this subject, some good references are
[1], [2], [3] and [4].

1 Hamiltonian Mechanics and Symplectic Ge-
ometry

The standard example of classical mechanics in its Hamiltonian form deals with
a single particle moving in space (R3). The state of the system at a given time t
is determined by six numbers, the coordinates of the position (q1, q2, q3) and the
momentum (p1, p2, p3). The space R6 of positions and momenta is called “phase
space.” The time evolution of the system is determined by a single function of
these six variables called the Hamiltonian and denoted H. For the case of a
particle of mass m moving in a potential V (q1, q2, q3),

H =
1

2m
(p2

1 + p2
2 + p2

3) + V (q1, q2, q3)

The time evolution of the state of the system is given by the solution of the
following equations, known as Hamilton’s equations

dpi

dt
= −∂H

∂qi

dqi

dt
=

∂H

∂pi

There is an obvious generalization of this to the description of a particle in
n dimensions, in the case phase space is R2n. Similarly, N particles can be
described by the phase space given by taking the tensor product of N copies of
R2n, which is just R2nN .

Besides the Hamiltonian function on it, phase space comes with an important
algebraic structure: a bilinear, antisymmetric bracket on functions f and g on
phase space called the Poisson bracket and given by

{f, g} =
n∑

i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂qi

∂f

∂pi
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Hamiltonian mechanics can be formulated in a geometric, coordinate invari-
ant manner on a general class of manifolds of which R2nN is just one kind of
example. These are so-called symplectic manifolds, defined by

Definition 1 (Symplectic Manifold). A symplectic manifold (M ,ω) is a
2n-dimensional manifold M with a two-form ω satisfying

• ω is non-degenerate, i.e. for each m ∈ M , the identification of Tm and
T ∗

m given by ω is an isomorphism

• ω is closed, i.e. dω = 0.

The two main classes of examples of symplectic manifolds are

• Cotangent bundles: M = T ∗N .

In this case there is a canonical one-form θ defined at a point (n, α) ∈ T ∗N
(n ∈ N, α ∈ T ∗

n(N)) by

θn,α(v) = α(π∗v)

where π is the projection from T ∗N to N . The symplectic two-form on
T ∗N is

ω = dθ

Physically this case corresponds to a particle moving on an arbitrary man-
ifold M . For the special case N = Rn,

θ =
n∑

i=1

pi ∧ dqi

and the symplectic form is

ω0 =
n∑

i=1

dpi ∧ dqi

• Kähler manifolds. Special cases here include the sphere S2 = CP 1 (with
symplectic form proportional to the area 2-form), projective algebraic va-
rieties, flag manifolds G/T where G is a compact Lie group and T is its
maximal torus.

A map
f : M → M

preserving the symplectic structure (f∗(ω) = ω) is called a symplectomorphism,
and corresponds to the physicist’s notion of a canonical transformation of phase
space. The Darboux theorem states that locally any symplectic manifold is
symplectomorphic to R2n, ω0). Thus in symplectic geometry the only local
geometric invariant is the dimension, unlike the case in Riemannian geome-
try where locally manifolds up to isometry do have geometric invariants: the
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Riemannian curvature. Physicist’s discussions of Hamiltonian mechanics often
assume that one can globally choose “canonical coordinates” on phase space
and identify it with (R2n, ω0). This is not the case for a general symplectic
manifold, with the simplest counter-example being S2.

In many interesting cases of symplectic manifolds, there is another interest-
ing geometrical structure that enters the story. Often the symplectic two-form
ω is actually the curvature 2-form of a principal U(1) bundle or of a complex
line bundle.

The symplectic structure can be used to write Hamilton’s equations in a
coordinate invariant manner. Note that these equations on R2n are similar to
the equations for a gradient flow in 2n dimensions

dpi

dt
= − ∂f

∂pi

dqi

dt
= − ∂f

∂qi

These equations correspond to flow along a vector field ∇f which comes from
choosing a function f , taking −df , then using an inner product on R2n to dualize
and get a vector field from this 1-form. In other words we use a symmetric non-
degenerate 2-form (the inner product < ·, · >) to produce a map from functions
to vector fields as follows:

f → ∇f : < ∇f , · >= −df

Hamilton’s equations correspond to a similar construction, with the sym-
metric 2-form coming from the inner product replaced by the antisymmetric
symplectic 2-form

ω =
n∑

i=1

dpi ∧ dqi

In this case, starting with a Hamiltonian function H, one produces a vector field
XH as follows

H → XH : ω(XH , ·) = iXH
ω = −dH

Hamilton’s equations are then the dynamical system for the vector field XH .
XH is sometimes called the symplectic gradient of H. While the flow along a
gradient vector field of f changes the magnitude of f as fast as possible, flow
along XH keeps the value of H constant since

dH = −ω(XH , ·)

dH(XH) = −ω(XH , XH) = 0

since ω is antisymmetric.
One can check that in the case of R2n, the equation

iXH
ω = −dH
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implies Hamilton’s equations for XH since equating

−dH = −
n∑

i=1

∂H

∂qi
dqi −

n∑
i=1

∂H

∂pi
dpi

and

iXH

n∑
i=1

dpi ∧ dqi

implies

XH = −
n∑

i=1

∂H

∂qi

∂

∂pi
+

n∑
i=1

∂H

∂pi

∂

∂qi

The equation
iXH

ω = −dH

continues to make sense on any symplectic manifold, for any Hamiltonian func-
tion XH , and H will be constant along the trajectories of XH . Another impor-
tant property of XH is that

LXH
ω = (diXH

+ iXH
d)ω = d(−dH) = 0

since dω = 0 (where LXH
is the Lie derivative with respect to XH). In general

Definition 2 (Hamiltonian Vector Field). A vector field X that satisfies

LXω = 0

is called a Hamiltonian vector field and the space of such vector fields on M,ω
will be denoted V ect(M,ω).

Since ω is non-degenerate, the equation

iXH
ω = −dH

implies that if XH = 0, then dH = 0 and H = constant. As a result, we have
an exact sequence of maps

0 → R → C∞(M) → V ect(M,ω)

One can also ask whether all Hamiltonian vector fields (elements of V ect(M,ω))
actually come from a Hamiltonian function. The equation

LXω = (diX + iXd)ω = 0

implies
diXω = 0

so iXω is a closed 1-form. When H1(M,R) = 0, closed 1-forms are all exact,
so for any Hamiltonian vector field X one can find a Hamiltonian function H
such that X = XH . In general we have an exact sequence

0 → R → C∞(M) → V ect(M,ω) → H1(M,R) → 0
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Most of the examples we will be interested in will be simply connected and thus
have H1 = 0.

Just as we saw that dH = 0 along XH , one can compute the derivative of
an arbitrary function g along a Hamiltonian vector field Xf as

dg(·) = −ω(Xg, ·)

dg(Xf ) = −ω(Xg, Xf ) = ω(Xf , Xg)

which leads to the following definition

Definition 3 (Poisson Bracket). The Poisson bracket of two functions on
M,ω is

{f, g} = ω(Xf , Xg)

One can check that this definition of the Poisson bracket agrees with the
standard one used by physicists for the case R2n,ω.

The Poisson bracket satisfies

{f, g} = −{g, f}

and
{f1, {f2, f3}}+ {f3, {f1, f2}}+ {f2, {f3, f1}} = 0

where the second of these equations can be proved by calculating

dω(Xf1 , Xf2 , Xf3) = 0

These relations show that the Poisson bracket makes C∞(M) into a Lie algebra.
One can also show that

[Xf , Xg] = X{f,g}

which is the condition that ensures that the map

f ∈ C∞(M) → Xf ∈ V ect(M,ω)

is a Lie algebra homomorphism, with the Lie bracket of vector fields the product
in V ect(M,ω).

So, for a symplectic manifold (M,ω) with H1(M) = 0, we have an exact
sequence of Lie algebra homomorphisms

0 → R → C∞(M) → V ect(M,ω) → 0

Note that the Lie algebras involved are infinite dimensional.
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2 Examples

The standard example in mechanics is that of a particle moving in R3, subject
to a potential V (q). The Hamiltonian function is

H(p,q) =
||p||2

2m
+ V (q)

where m is the particle mass and we are using the standard metric on R3.
Hamilton’s equations become

dq
dt

=
p
m

and
dp
dt

= −∇V

The first equation just says that the momentum is the mass times the velocity,
combining this with the second equation is just the familiar

F = −∇V = ma

A special case of this occurs when V is quadratic q, this is the case of
the harmonic oscillator, which can be solved exactly. The harmonic oscillator
problem is of great importance in physics, since a standard way of approaching
physical problems involves building approximate solutions to problems starting
from the harmonic oscillator. If one takes the quadratic approximation to V
near one of its critical points, a first approximation to motion of a particle near
that critical point will be given by the harmonic oscillator solution, and one
can try and find better approximations as small perturbations of the harmonic
oscillator. This method is fundamental both in quantum mechanics and in
quantum field theory.

The simplest version of the harmonic oscillator is the Hamiltonian system
M = R2 with Hamiltonian

H(p, q) =
1
2
(
p2

m
+ kq2)

By rescaling variables, we just need to consider

H(p, q) =
1
2
(p2 + ω2q2)

for some real variable ω. Hamilton’s equations are

dq

dt
= p

and
dp

dt
= −ω2q
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so
d2q

dt2
= −ω2q

with solutions
q(t) = A sinωt + B cos ωt

One can choose a complex structure and identify R2 = C by

z = p + iωq

in which case
H =

1
2
|z|2

and solutions to the Hamiltonian system are given by

z(t) = Ceiωt

This has an obvious generalization to more variables, although in that case
there are a lot more ways to choose the complex structure on phase space. This
will be discussed in detail when we come to the quantum harmonic oscillator.

Another important example corresponds physically to the behavior of a par-
ticle with magnetic moment proportional to its “spin”, moving in a magnetic
field. If one considers the case of a very massive particle and ignores its motion
in R3, just considering the motion of its spin vector s, the appropriate phase
space is S2, with a point in phase space corresponding to a choice of direction of
the spin vector. Coordinates on S2 can be the polar angle φ and the azimuthal
angle θ or equivalently θ and sz, the z-component of s.

The symplectic form ω is just proportional to the area form dA

ω = dsz ∧ dθ

Ignoring the physical constants involved in the problem, and taking the magnetic
field B to be in the z direction with magnitude B = |B|, the Hamiltonian system
is (S2, ω) with Hamiltonian function

H(θ, sz) = szB

Hamilton’s equations are that the vector field XH satisfies

iXH
(dsz ∧ dθ) = −d(szB)

with solution
XH = B

∂

∂θ

so the motion of the spin is given by precession about the magnetic field vector,
with precession velocity proportional to the strength of the magnetic field. One
can see that this must be the trajectory just by noting H must be constant along
trajectories and thus the inner product of the spin vector and the magnetic field
vector will be constant, which is just true on the circle given by rotating the
spin about the magnetic field.
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