
Topics in Representation Theory: More
About the Exponential Map

1 More About the Exponential Map

We defined the exponential map rather abstractly, using the definition of vector
fields as derivations. For many purposes it is useful to think of the tangent
space Tm(M) of vectors at a point m ∈ M not in terms of derivations, but as
the set of possible velocity vectors γ′(0) for smooth curves γ(t) in M, such that
γ(0) = m. A vector field then corresponds to a set of integral curves. A smooth
map f : M → N takes these integral curves γ(t) to differentiable curves f(γ(t))
on N , the derivative map df = f∗ takes the original vector field to the vector
field of velocity vectors for the curves on N .

In this section we’ll derive two very useful related formulas about the ex-
ponential map. These formulas often appear in surprising places througout
mathematics. For instance, the first one we will consider appears crucially in
the Atiyah-Singer index theorem. In this section we will be assuming that our
groups are matrix groups and that we can use the power series formula for the
exponential. For a much more detailed exposition of this material including
careful attention to the analytical details, see [1].

In calculus the differential of the exponential function satisfies

deax = aeaxdx

with a a constant. Formulas from calculus like this often have simple general-
izations to the case where x is a vector and a a matrix, often it is just a matter
of paying careful attention to the order of the symbols. The generalization of
this formula turns out to be not so trivial.

Theorem 1. The differential of the exponential map

exp : X ∈ g → G

is a map
dexp = exp∗ : g → Texp(X)G

given by

exp∗(X)Y = (lexp(X))∗ ◦ (
∫ 1

0

e−sad(X)ds)Y

Here Y ∈ TeG = g.

This formula can be made more explicit by doing the integral∫ 1

0

e−sad(X)ds =
∞∑

k=0

(−ad(X))k

(k + 1)!
=

1− e−ad(X)

ad(X)
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where the second equality should be thought of as a definition sinc ad(X) often
doesn’t have an inverse. Our formula for the differential can be written as

exp∗(X)Y = exp(X)
1− e−ad(X)

ad(X)
Y

Proof: We can think of this formula in terms of curves in g, i.e. a matrix
function of one parameter X(t) such that X(0) = X as follows. Since

exp∗(X)Y =
d

dt
exp(X + tY )|t=0

we take Y = dX(t)
dt and what we have to show is

dexp(X)
dt

|t=0 = exp(X(0))
∫ 1

0

e−sad(X(0))ds
dX

dt
|t=0

We will do this by considering

B(s, t) = exp(−sX)
d

dt
exp(sX), B(0, t) = 0

then finding a differential equation in s for B(s, t), solving it and setting s = 1.
Differentiating with respect to s

∂B

∂s
= −X(exp(−sX)

d

dt
exp(sX)) + exp(sX)(

d

dt
exp(sX))X + exp(−sX)exp(sX)

dX

dt

= −[X, B] +
dX

dt

= −ad(X)B +
dX

dt

This is an inhomogeneous linear equation. In general the solution to such
an equation of the form

dx(s)
ds

= ax(s) + b

for a and b constants is

x(s) = esa(x(0) +
∫ s

0

e−uabdu)

and this solution still makes sense when x and b are vectors, a a matrix.
So the solution to our equation for B is

B(s, t) = exp(−sad(X))(B(0, t) +
∫ s

0

exp(uad(X))
dX

dt
du

and

B(1, t) = exp(−ad(X))
∫ 1

0

exp(uad(X))
dX

dt
du

=
∫ 1

0

exp((u− 1)ad(X))du
dX

dt

=
∫ 1

0

exp(−vad(X))dv
dX

dt
(v = 1− u)
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The next formula we will consider that is related to the exponential map is
variously known as the Baker-Campbell-Hausdorff, Campbell-Baker-Hausdorff
or Campbell-Hausdorff formula and is useful in a wide range of different appli-
cations, both computational and theoretical. This formula is simply the answer
the question of how to solve

exp(A)exp(B) = exp(C)

for C, given that A and B don’t commute.
In physics the formula appears for example in ad hoc derivations of the

Feynman path integral form of quantum mechanics based upon splitting the
Hamiltonian operator H into two parts, one (H1) depending only on momentum
variables Pi, another (H2) depending only on position variables Qi. The solution
to the Schrödinger is given by computing

exp(iHt)

in terms of
exp(iH1t) and exp(iH2t)

It also appears in other applications, especially where an operator can be broken
up into two simpler pieces, such that there are only a finite number of non-zero
commutators involving the two pieces.

Many of the basics theorems of Lie theory relating Lie groups and Lie alge-
bras have proofs that rely on the Baker-Campbell-Hausdorff formula. Here the
basic fact is that C depends not on an arbitary function of A and B, but on one
that depends solely on commutators. This means that the local behavior of the
Lie group will be determined purely by the adjoint action of the Lie algebra on
itself.

Theorem 2 (Baker-Campbell-Hausdorff). For A and B matrices suffi-
ciently close to the origin in M(n,C), we have

ln(exp(A)exp(B)) = B +
∫ 1

0

g(exp(tad(A))exp(ad(B))Adt

Here g is the function

g(x) =
ln(x)
x− 1

Proof: For a fully rigorous proof, see [1]. The proof is based on the following
calculation that uses the formula for the differential of the exponential map
derived earlier.

We will be using the function ln(A) for a matrix A, inverse to the exponential
function exp(A). One can define it in terms of power series using the series
expansion

ln(z) = ln(1 + (z − 1)) =
∞∑

n=1

(−1)n+1 (z − 1)n

n
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which converges for |z − 1| < 1. This series will converge for matrices close
enough to the identity.

We are trying to find a formula for

C = ln(exp(A)exp(B))

and we’ll do this by finding a differential equation for

C(t) = ln(exp(tA)exp(B))

where C(0) = B, solving it for C = C(1)
Now

exp(C(t)) = exp(tA)exp(B)

and

exp(C(t))
d

dt
exp(−C(t)) = exp(tA)exp(B)exp(−B)(−A)exp(−tA) = −A

Using our formula for the differential of the exponential map, applying it to
the left-hand side of this equation, replacing X(t) → −C(t), gives∫ 1

0

exp(−sad(−C(s))ds(−dC

dt
) = −A

so

A =
∫ 1

0

exp(sad(C))ds(
dC

dt
) =

exp(ad(C))− 1
ad(C)

(
dC

dt
)

But one can easily show

ad(C) = ln(exp(tad(A))exp(ad(B)))

so

A =
exp(tad(A))exp(ad(B))− 1
ln(exp(tad(A))exp(ad(B)))

(
dC

dt
)

so
dC

dt
=

ln(exp(tad(A))exp(ad(B)))
exp(tad(A))exp(ad(B))− 1

A

and finally

C(1) =
∫ 1

0

ln(exp(sad(A))exp(ad(B)))
exp(sad(A))exp(ad(B))− 1

ds + B

As an exercise, use this theorem to get the more explicit formula

ln(exp(X)exp(Y )) = X+Y +
1
2
[X, Y ]+

1
12

([X, [X, Y ]]−[Y, [X, Y ]])+higher order terms
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