
Topics in Representation Theory: The
Moment Map and the Orbit Method

The orbit method in representation theory uses the fact that G orbits in g∗

are naturally symplectic manifolds with a transitive G action that preserves the
symplectic structure. The quantization of the corresponding classical mechan-
ical system will be a quantum mechanical system whose Hilbert space carries
a representation of G. The orbit method (sometimes known as the Kirillov
correspondence), tries to identify co-adjoint orbits with irreducible unitary rep-
resentations. This can be done successfully for a wide range of groups, but a
complete understanding of why this method works (and of why it sometimes
fails) still does not seem to exist. For an expository article about the orbit
method, see [3]. More details about the moment map and co-adjoint orbits can
be found in [1] and [2].

1 Hamiltonian G-actions and the Moment Map

Last time we saw that for a (connected) symplectic manifold with symplectic G
action there is an exact sequence of Lie algebra homomorphisms

0 → R → C∞(M) → V ect(M,ω) → H1(M,R) → 0

where the middle map is given by

f ∈ C∞(M) → Xf ∈ V ect(M,ω)

where Xf satisfies
ω(Xf , ·) = −df

If H1(M,R) 6= 0, there exist vector fields in V ect(M,ω) that don’t correspond
to a function f . These are vector fields X such that ω(X, ·) is closed but not
exact. From now on, we’ll assume that H1(M,R) = 0, so there is an exact
sequence

0 → R → C∞(M) → V ect(M,ω) → 0

Given a symplectic action of G on M , its differential is a Lie algebra homomor-
phism

g → V ect(M,ω)

and one may or may not be able to lift this map. If so

Definition 1 (Poisson Action). A G action on M is said to be a Poisson
action if one can choose a Lie algebra homomorphism

g : g → C∞(M)

such that composing with the Lie algebra homomorphism

C∞(M) → V ect(M,ω)

one recovers the infinitesimal action of G.
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We won’t go into the Lie algebra cohomology necessary to establish this
result, but it turns out that the obstruction to finding a Poisson action lies in the
Lie algebra cohomology group H2(g). For many Lie algebras (e.g. finite semi-
simple ones), this is zero, but for others (e.g. the Lie algebras of loop groups that
we will consider later) it is non-trivial. H2(g) classifies central extensions, and
when it is non-zero, the method of quantization naturally produces projective
representations that are true representations only of the central extension.

When the G action is Poisson, the Lie algebra map

g : g → C∞(M)

satisfies
−dgζ = ω(Xζ , ·)

where gζ = g(ζ) is the function on M corresponding to an element ζ ∈ g and
Xζ is the corresponding vector field on M . If one doesn’t worry about the
Lie algebra homomorphism property, one can easily choose a g satisfying this
equation, but note that there is an R ambiguity in the solution to this equation.
The H2(g) constraint comes from requiring that this ambiguity can be fixed in
a way that satisfies the Lie algebra homomorphism property.

The information contained in the map g can be packaged differently, as
follows:

Definition 2 (The Moment Map). The moment map associated to a Poisson
action is the map

µ : M → g∗

that satisfies
< µ(m), ζ >= gζ(m)

where m ∈ M , < ·, · > is the pairing between g∗ and g, and gζ is the map defined
earlier.

A standard example from basic physics takes as symplectic manifold M =
R6, the phase space for a particle moving in R3. The coordinates on M consist of
three position coordinates q1, q2, q3 and three momentum coordinates p1, p2, p3,
and the symplectic form is

ω =
3∑

i=1

dpi ∧ dqi

G = R3 acts on M by translation with ζi a coordinate of an element of G acting
by

qi → qi + ζi

and the corresponding map

g : R3 → C∞(R6)
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is given by
gζ(p,q) = p1ζ1 + p2ζ2 + p3ζ3

and the moment map is just the linear momentum map

µ(p,q)(ζ) = p · ζ

The group G = SO(3) also acts symplectically by rotating q. Now taking ζ
to be an element of so(3) = R3, the corresponding moment map is the angular
momentum map

µ(p,q)(ζ) = (p× q) · ζ

As we have seen before, the symplectic group G = Sp(2n,R) acts symplec-
tically on R2n. Choosing the standard complex structure on R2n, there is a
distinguished subgroup U(1) ⊂ Sp(2n,R) or overall phase rotations. For this
action of G, the corresponding functions g are the quadratic polynomials in the
p and q coordinates. For the U(1) subgroup the function is

1
2
(||p||2 + ||q||2)

This is the Hamiltonian function for a harmonic oscillator in n coordinates.

2 Co-adjoint Orbits

One can check that the moment map will be a G-equivariant map from M to g∗,
the dual of the Lie algebra of G. The action of G on g∗ is called the co-adjoint
action. Recall that G acts on g by the adjoint action

Ad(g) : g → g

The co-adjoint action of G on g∗

K(g) : g∗ → g∗

is defined on an element F ∈ g∗ by

< K(g)F,X >=< F, Ad(g−1)X >

The derivative of this is
K∗(X) : g∗ → g∗

given by
< K∗(X)F, Y >=< F,−ad(X)Y >=< F, [Y, X] >

Note that for the Lie algebras of simple compact Lie groups where we have
a non-degenerate Killing form, it can be used to relate g and its dual. In this
case there is no real difference between the adjoint and co-adjoint action, but
this is not true in general.
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Definition 3 (Co-adjoint Orbit). Given a F ∈ g∗, the co-adjoint orbit O(F )
is the image of the map

g ∈ G → K(g)F ∈ g∗

Such orbits O(F ) will have the form G/Stab(F ) where Stab(F ) is that sub-
group of G that stabilizes F .

For each F ∈ g∗, define

ΩF (X, Y ) =< F, [X, Y ] >

This has the following properties:

Claim 1.
ΩF (X, Y ) = −ΩF (Y, X)

Claim 2. The kernel of ΩF is stab(F ), the Lie algebra of Stab(F ).

This follows from the calculation

ker ΩF (X, Y ) = {X ∈ g : ΩF (X, Y ) = 0 ∀ Y ∈ g}
= {X ∈ g :< K∗(X)F, Y >= 0 ∀ Y ∈ g}
= {X ∈ g : K∗F = 0}
= stab(F )

Claim 3. ΩF is invariant under the action of Stab(F )

This means

ΩF (Ad(g)X, Ad(g)Y ) = < F, [Ad(g)X, Ad(g)Y ] >

= < F, Ad(g)[X, Y ] >

= < K(g)−1F, [X, Y ] >

= < F, [X, Y ] >= ΩF (X, Y )

for g ∈ Stab(F ).
The map

X ∈ g → K∗(X)F ∈ TF (O(F ))

identifies g/(stab(F )) with the tangent space to O(F ) at F . The claims above
imply that the following definition yields a non-degenerate, G-invariant symplec-
tic two-form on O(F ), making it into a symplectic manifold with symplectic G
action. The moment map in this case is just the inclusion map.

Definition 4 (Kirillov-Kostant-Souriau form). The Kirillov-Kostant-Souriau
two-form on the co-adjoint orbit O(F ) is

ωF (K∗(X),K∗(Y )) = ΩF (X, Y )
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3 Examples

The orbit method is based on the idea of associating co-adjoint orbits O(F )
to irreducible representations. The representation is supposed to come from
quantizing the classical mechanical system with G-symmetry determined by the
symplectic manifold (O(F ), ωF ). We’ll consider two basic examples of such
co-adjoint orbits.

The first is for the Heisenberg group. Let H1 be the group of matrices of
the form 1 a c

0 1 b
0 0 1


Its Lie algebra is h1, matrices of the form0 α γ

0 0 β
0 0 0


Using the inner product

< X,Y >= Tr(XY )

the dual space h∗1 can be identified with matrices of the form0 0 0
x 0 0
z y 0


and the co-adjoint action on this space acts by

(x, y, z) → (x− az, y + bz, z)

The co-adjoint orbits come in two kinds

1. For each value of z 6= 0, one gets a copy of R2, with symplectic form
proportional to the area form dx ∧ dy.

2. For z = 0, for each pair of coordinates (x, y), there is a point orbit.

These orbits correspond to the known unitary representations of H1 as fol-
lows. The first case gives the metaplectic representation, recall that the Stone-
von Neumann theorem says that this is the unique representation one gets once
one chooses the value of the action of the central element (z in this case).

The second case corresponds to the standard one-dimensional representa-
tions of the commutative group R2.

The second example we’ll consider will be that of G = SU(2). In this case
g = R3 and the Killing form identifies g and g∗. Co-adjoint orbits are spheres
S2 inside R3.

We know from the Borel-Weil theorem that unitary representations can be
constructed in a way that involves the geometry of S2, but more specifically
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that of line bundles over S2. To make the orbit method work in this case, one
needs to impose the extra condition that not all co-adjoint orbits be considered,
but just those for which the symplectic form ωF is the curvature two-form of a
line bundle L. One also has to use a complex structure on the co-adjoint orbit,
and then the representation is on

H = Γhol(L)

.
This same construction generalizes to the case of an arbitrary compact Lie

group G. The co-adjoint orbits are just the generalized flag manifolds we have
previously discussed. Quantizable orbits correspond to possible highest weights.
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