
Topics in Representation Theory: The Spinor
Representation

As we have seen, the groups Spin(n) have a representation on Rn given
by identifying v ∈ Rn as an element of the Clifford algebra C(n) and having
g̃ ∈ Spin(n) ⊂ C(n) act by

v → g̃vg̃−1

This is also a SO(n) representation, the fundamental representation on vectors.
Replacing v in this formula by an arbitrary element of C(n) we get a represen-
tation of Spin(n) (and also SO(n)) on C(n) which can be identified with its
representation on Λ∗(Rn). This representation is reducible, the decomposition
into irreducibles is just the decomposition of Λ∗(Rn) into the various Λk(Rn)
for k = 0, · · · , n. The k = 0 and k = n cases give the trivial representation, but
we get fundamental irreducible representations for k = 1, · · · , n− 1.

The fundamental irreducible representations that are missed by this con-
struction are called the spinor representations. They are true representations
of Spin(n), but only representations up to sign (projective representations) of
SO(n). For the even case of Spin(2n), we will see that there are two different
irreducible half-spinor representations of dimension 2n−1 each, for the odd di-
mensional case there is just one irreducible spinor representation, of dimension
2n.

In terms of the Dynkin diagrams of these groups, for SO(2n+1), the spinor
representation corresponds to the node at one end connected to the rest by a
double bond. For SO(2n) the two half-spin representations correspond to the
two nodes that branch off one end of the diagram.

For small values of n, special phenomena occur. Here are some facts about
the first few spin groups, the ones that behave in a non-generic way.

• Spin(2) is a circle, double-covering the circle SO(2).

• Spin(3) = SU(2), and the spin representation is the fundamental repre-
sentation of SU(2). The Dynkin diagram is a single isolated node.

• Spin(4) = SU(2)×SU(2), and the half-spin representations are the funda-
mental representations on the two copies of SU(2). The Dynkin diagram
is two disconnected nodes.

• Spin(5) = Sp(2), and the spin representation on C4 can be identified with
the fundamental Sp(2) representation on H2. The Dynkin diagram has
two nodes connected by a double bond.

• Spin(6) = SU(4), and each of the half-spin representations on C4 can be
identified with the fundamental SU(4) representation on C4. The Dynkin
diagram has three nodes connected by two single bonds.
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• The Dynkin diagram for Spin(8) has three nodes, each connected to a
fourth central node. The representations associated to the three notes
are all on C8 and correspond to the two half-spin representations and the
representation on vectors. There is a “triality” symmetry that permutes
these representations, this is a 3! element group of outer automorphisms
of Spin(8).

The geometric picture of spin representations is unfortunately not well ex-
plained in standard textbooks. Some of the best places to look for more details
from the point of view used here are [3] Chapters I.5 and IV.9, [1] Chapter 20,
and [2] Chapter 12.

1 Spinors

We will be constructing spinor representations on complex vector spaces using
the Clifford algebra and our first step is to consider what happens when one
complexifies the Clifford algebra. The complex Clifford algebras will turn out to
have a much simpler structure than the real ones, with a periodicity of degree
2 rather than degree 8 as in the real case.

Definition 1 (Complex Clifford Algebra). The complex Clifford algebra CC(V,Q)
is the Clifford algebra constructed by starting with the complexified vector space
V ⊗RC, extending Q to this by complex-linearity, then using the same definition
as in the real case. If we start with a real vector space V of dimension n, this
will be denoted CC(n).

One can easily see that CC(n) = C(n) ⊗ C. The construction of the spin
representation as invertible elements in C(n) can also be complexified, producing
a construction of Spin(n,C) (the complexification of Spin(n)) as invertible
elements in CC(n).

We will study the structure of the algebras CC(n) by an inductive argument.
To begin the induction, recall that

C(1) = C, C(2) = H

so
CC(1) = C(1)⊗R C = C⊕C

and
CC(2) = C(2)⊗R C = H⊗R C = M(2,C)

Theorem 1.

CC(n + 2) = CC(n)⊗C CC(2) = CC(n)⊗C M(2,C)

Using the cases n = 1, 2 to start the induction, one finds
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Corollary 1. If n = 2k

CC(2k) = M(2,C)⊗ · · · ⊗M(2,C) = M(2k,C)

where the product has k factors, and if n = 2k + 1,

CC(2k + 1) = CC(1)⊗M(2k,C) = M(2k,C)⊕M(2k,C)

Proof of Theorem: Choose generators h1, h2 of C(2), f1, · · · , fn of C(n) and
e1, · · · en+2 of C(n + 2). Then the isomorphism of the theorem is given by the
following map of generators

e1 → 1⊗ h1

e2 → 1⊗ h2

e3 → if1 ⊗ h1h2

· · ·
en+2 → ifn ⊗ h1h2

One can check that this map preserves the Clifford algebra relations and is
surjective, thus an isomorphism of algebras.

From now we’ll concentrate on the even case n = 2k. In this case we have
seen that the complexified Clifford algebra is the algebra of 2k by 2k complex
matrices. A spinor space S will be a vector space that these matrices act on:

Definition 2 (Spinors). A spinor module S for the Clifford algebra CC(2k) is
given by a choice of a 2k dimensional complex vector space S, together with and
identification CC(2k) = End(S) of the Clifford algebra with the algebra of linear
endomorphisms of S.

So a spinor space is a complex dimensional vector space S, together with a
choice of how the 2k generators ei of the Clifford algebra act as linear operators
on S.

To actually construct such an S, together with appropriate operators on
it, we will use exterior algebra techniques. We’ll begin by considering the real
exterior algebra Λ∗(Rn). Associated to any vector v there is an operator on
Λ∗(Rn) given by exterior multiplication by v

v∧ : α → v ∧ α

If one has chosen an inner product on Rn there is an induced inner product
on Λ∗(Rn) (the one where the wedge products of orthonormal basis vectors
are orthonormal). With respect to this inner product, the operation v∧ has an
adjoint operator, vb.

Physicists have a useful notation for these operations, in which

a†(v) = v∧, a(v) = vb

and
a†(ei) = a†i , a(ei) = ai

The algebra satisfied by these operators is called the algebra of Canonical An-
ticommutation Relations (CAR)
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Definition 3 (CAR). For each positive integer n, there is an algebra called
the algebra of Canonical Anticommutation Relations, with 2n generators ai, a

†
i ,

i = 1, · · · , n satisfying the relations

{ai, aj} = {a†i , a
†
j} = 0

{ai, a
†
j} = δij

As we have seen, this algebra can be represented as operators on Λ∗(Rn).
One can identify this algebra with the Clifford algebra C(n) as follows

v ∈ C(n) → a†(v)− a(v)

since one can check that

v2 = (a†(v)− a(v))2 = (a†(v))2 + (a(v))2 − {a†(v), a(v)} = −||v||21

For the case n = 2k, one can complexify Λ∗(Rn) and get a complex repre-
sentation of CC(2k) on this space. This representation is of dimension 22k, so it
is not the 2k dimensional irreducible representation on a spinor space S. Some
way must be found to pick out a single irreducible representation S from the
reducible representation on Λ∗(Rn)⊗C. This problem is a bit like the one faced
in the Borel-Weil approach to the representations of compact Lie groups, where
we used a complex structure to pick out a single irreducible representation. Here
we will have to use a similar trick.

If we pick a complex structure J on V = R2k, we have a decomposition

V ⊗C = WJ ⊕ W̄J

Where WJ is the +i eigenspace of J , W̄J is the −i eigenspace. We will pick an
orthogonal complex structure J , i.e. one satisfying

< Jv, Jw >=< v, w >

Definition 4 (Isotropic Subspace). A subspace W of a vector space V with
inner product < ·, · > is an isotropic subspace of V if

< w1, w2 >= 0 ∀ w1, w2 ∈ W

and one has

Claim 1. The subspaces WJ and W̄J are isotropic subspaces of V ⊗C.

This is true since, for w1, w2 ∈ WJ ,

< w1, w2 >=< Jw1, Jw2 >=< iw1, iw2 >= − < w1, w2 >

Since WJ is isotropic, the Clifford subalgebra C(WJ) ⊂ CC(2k) generated
by elements of WJ is actually the exterior algebra Λ∗(WJ) since on WJ the
quadratic form coming from the inner product is zero, and the Clifford algebra
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for zero quadratic form is just the exterior algebra. In a similar fashion C(W̄J)
can be identified with Λ∗(W̄J). There are various ways of setting this up, but
what we plan to do is to construct a spinor space S, as, say Λ∗(WJ). This has
the right dimension (2k) and we just need to show that CC(2k) can be identified
with the algebra of endomorphisms of this space.

Later on we’ll examine the dependence of this whole set-up on the choice
of complex structure J , but for now we will simply pick the standard choice of
complex structure, identifying wj = e2j−1 + ie2j for j = 1, · · · , k.

Claim 2.
CC(2k) = End(Λ∗(Ck))

Using the creation and annihilation operator notation for operators on Λ∗(Ck),
we can identify Clifford algebra generators with generators of the CAR algebra
as follows (for j = 1, k)

e2j−1 = a†j − aj

e2j = −i(a†j + aj)

One can check that the CAR algebra relations imply the Clifford algebra rela-
tions

{ei, ej} = −2δij

With this explicit model S = Λ∗(Ck) and the explicit Clifford algebra action
on it, one can see how elements of spin(2k) act on S, and thus compute the char-
acter of S as a Spin(2k) representation. The k commuting elements of spin(2k)
that generate the maximal torus are the 1

2e2j−1e2j . In the representation on
Λ∗(Ck) they are given by

1
2
e2j−1e2j = −i

1
2
(a†j − aj)(a

†
j + aj) = i

1
2
[aj , a

†
j ]

The eigenvalues of [aj , a
†
j ] on Λ∗(Ck) are ±1, depending on whether or not

the basis vector ej is in the string of wedge products that makes up the eigen-
vector. The weights of the the representation S are sets of k choices of ± 1

2

(±1
2
, · · · ,±1

2
)

In this normalization, representations of Spin(2k) that are actually representa-
tions of SO(2k) have integral weights, the ones that are just representations of
Spin(2k) have half-integral weights.

The decomposition into half-spin representations S+ and S− corresponds
to the decomposition into weights with an even or odd number of minus signs.
With a standard choice of positive roots, the highest weight of one half-spin
representation is

(+
1
2
,+

1
2
, · · · ,+

1
2
,+

1
2
)
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and for the other it is
(+

1
2
,+

1
2
, · · · ,+

1
2
,−1

2
)

Note that these weights are not the weights of the representation of U(k) ⊂
SO(2k) on Λ∗(Ck). If one looks a how the Lie algebra of the maximal torus
there acts on Λ∗(Ck), one finds that the weights are all 0 or 1. So the weights
of Λ∗(Ck) are the same as the weights of S, but shifted by an overall factor

(−1
2
,−1

2
, · · · ,−1

2
)

In other words, as a representation it is best to think of S as not Λ∗(Ck), but

S = Λ∗(Ck)⊗ (Λk(Ck))−
1
2

This overall factor disappears if you just consider the projective represen-
taion on P (S) (complex lines in S), since then

P (S) = P (Λ∗(Ck))

This is a reflection of the general point that by trying to construct S only
knowing End(S) = CC(2k), we can only canonically construct P (S), not S
itself. Multiplying S by a scalar doesn’t affect End(S).

2 Complex Structures and Borel-Weil for Spinors

The construction of S given above used a specific choice of complex structure
J . In general, a choice of J allows us to write

R2k ⊗C = WJ ⊕ W̄J

and construct S as Λ∗(WJ). Recall that to understand its transformation prop-
erties under the maximal torus of Spin(n), it is better to think of

S = Λ∗(WJ)⊗ (Λk(WJ))−
1
2

In the language of the CAR algebra, one can think of S as being generated
by the operators a†j and aj acting on a “vacuum vector” ΩJ . ΩJ depends on
the choice of complex structure, and transforms under the maximal torus of
Spin(2k), transforming as (Λk(W̄J))

1
2 .

Given the spinor representation S, one can think of ΩJ as a vector in S
satisfying

w̄ · ΩJ = 0 ∀w̄ ∈ W̄J

This relation defines ΩJ up to a scalar factor and sets up an identification be-
tween orthogonal complex structures J and lines in S. Not all elements of P (S)
correspond to possible J ’s. The ones that do are said to be the lines generated
by “pure spinors”. This correspondance between pure spinors and orthogonal
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complex structures J could equivalently be thought of as a correspondance be-
twen pure spinors and isotropic subspaces of R2k ⊗ C of maximal dimension
(the W̄J).

Once one has made a specific choice of J , say J0, this defines a model for
the spinor space Λ∗(WJ0) and in this model ΩJ0 = 1. If one changes complex
structure from J0 to a J such that

WJ = graph(S : WJ0 → W̄J0)

then one has identified J with a map S ∈ WJ0 × W̄ ∗
J0

. Using the inner product
and the fact that WJ is isotropic one can show that S ∈ Λ2(WJ0). One can
then show that taking

ΩJ = e
1
2 S

solves the equation
w̄ · ΩJ = 0 ∀w̄ ∈ W̄J

for this model of S. For more details about this construction, see [2] Chapter
12.

The space of all orthogonal complex structures on R2k can be identified
with the homogeneous space O(2k)/U(k). An orthogonal complex structure J
is explicitly represented by an orthogonal map J ∈ O(2k). This space has two
components, corresponding to a choice of orientation. We’ll mainly consider
the component J ∈ SO(2k). For any such J , the subgroup that preserves the
decompostion of R2k⊗C into eigenspaces of J (and thus preserves that complex
structure) is a subgroup isomorphic to U(k).

The space of orientation-preserving orthogonal complex structures can be
thought of as

SO(2k)/U(k) = Spin(2k)/Ũ(k)

There is a complex line bundle L over this space whose fiber above J is the com-
plex line in P (S) generated by ΩJ . The fact that ΩJ transforms as (Λk(WJ))−

1
2

corresponds to the global fact that as line bundles

L⊗ L = det−1

where det is the line bundle whose fiber over J is Λk(WJ).
The space Spin(2k)/Ũ(k) is one of the generalized flag manifolds that occurs

if one develops the Borel-Weil picture for the compact group Spin(2k). It is a
complex manifold, with a description as a quotient of complex Lie groups

SO(2k)/U(k) = Spin(2k)/Ũ(k) = Spin(2k,C)/P

where P is a parabolic subgroup of Spin(2k,C). The line bundle L is a holo-
morphic line bundle, and corresponds to the Borel-Weil construction of a line
bundle with highest weight

(+
1
2
,+

1
2
, · · · ,+

1
2
,+

1
2
)
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This is the holomorphic line bundle corresponding to one of the half-spinor
representations S+ and the Borel-Weil theorem gives a construction of S+ as

S+ = Γhol(L)

Unlike the construction in terms of the complex exterior algebra, this construc-
tion doesn’t depend upon a fixed choice of complex structure, but uses the global
geometry of the space of all complex structures.
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