
Topics in Representation Theory:
Homogeneous Vector Bundles and Induced

Representations

1 Homogeneous Vector Bundles

We will begin by going over some terminology for those students who haven’t
seen some of these concepts before. The geometrical structures that appear in
representation theory are very simple examples of basic geometrical structures
that are normally studied in geometry and topology courses. They are as good
a place as any to start learning some of this terminology if you haven’t seen it
before.

Given a Lie group G with a Lie subgroup H, one can form the space of right
cosets G/H. This is a manifold and it has a transitive G action, an element g
acts by left multiplication:

g0H → gg0H

and any two points on G/H are related by such a mapping. Spaces like this are
called “homogeneous spaces”. At each point in G/H there is a subgroup of G
such that left multiplication by elements in it leaves the point invariant, this is
called the “isotropy group” of the point. At the identity eH ∈ G/H this is just
the subgroup H, at other points it will be a translation of H.

The space G/H is best thought of not just as a manifold, but as the “base-
space” for a bundle. The total space of the bundle is G and the projection map
from the bundle to the base-space is just the standard projection

π : g ∈ G→ gH ∈ G/H

The inverse image π−1(gH) of a point in G/H is the “fiber” above that point,
it is a copy of H and one can think of G, the total space of the bundle, as a
family of copies of H, parametrized by point in G/H.

This bundle is a ”principal” H-bundle, meaning that there is a free H action
from the right on the total space, with quotient the base-space. On the total
space G there are two commuting actions, the right action of H which gives
the bundle structure and the left action of G. A general principal H bundle
does not have this transitive left G action, that is what makes the case we are
considering quite special.

A map
s : G/H → G

such that π ◦ s is the identity map on G/H is called a “section” of the bundle.
In general the principal bundles we are considering do not have sections, at
least not globally. One can define sections on local coordinate patches of G/H,
but globally there is a topological obstruction to their existence. If there were
a global section then as a topological space G would be the product space
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G/H × H. An important example to keep in mind is G = SU(2) = S3, H =
T = U(1) = S1, G/H = S2, the Hopf fibration. It is certainly not true that
S3 = S2 × S1 and this is a bundle with no sections.

Given our principal H bundle G and a representation ρ of H on a vector
space V we can construct a new “associated” bundle EV as follows. Consider
the product space G × V and quotient out by the following action of H (i.e.
identify all points related by an element of h ∈ H by the action).

(g, v) ∈ G× V → (gh, ρ(h−1)v)

We will call this quotient space

EV = G×H V

It is an example of a “vector bundle” with a projection map

π(g, v) = gH

to the base-space G/H. The inverse image of each point in the base space is
now not H (we’ve quotiented that out), but a copy of the vector space V . In
general a vector bundle can be thought of as a family of vector spaces of the
same dimension, parametrized by the base space. For the special case where the
vector spaces are of dimension one, a vector bundle is called a “line bundle”.

2 Induced Representations

Unlike principal bundles, vector bundles always have sections. In particular
they always have a zero-section that maps every point in G/H to the origin of
the vector space that is the fiber above that point. The space of sections Γ(EV )
of the vector bundle EV is given by the space

MapH(G,V ) = {f : G→ V, such that f(gh) = ρ(h−1)f(g) ∀ g ∈ G, h ∈ H}

this definition is equivalent to defining sections as maps

s : G/H → EV , such that π ◦ s = Id

The equivalence of the two descriptions of Γ(EV ) is given by associating to
f ∈MapH(G,V ) the map s : s(gH) = (g, f(g)).

The space Γ(EV ) can be thought of as a space of “twisted functions” on
the base space, generalizing the standard space of functions which is what one
gets for the special case of V = C and ρ the trivial representation. The vector
bundles EV are what is known as “homogeneous vector bundles”, meaning that
the transitive left action of G induces an action on EV by

(g0, v)→ (gg0, v)
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that identifies the vector space fibers over any two points on the base space.
This left action also induces a representation of G on the the space of sections
Γ(EV ), explicitly, for each g ∈ G we have a linear map U(g) that takes

f(x) ∈ Γ(EV )→ (U(g)f)(x) = f(g−1x) ∈ Γ(EV )

So we have started with a representation of H on V and have produced a
representation of G, this is called an induced representation. The same con-
struction works for finite groups and you may have first seen it in that context.

Definition 1 (Induced Representation). The representation of G on Γ(EV ) =
MapH(G,V ) is called the representation induced from the representation V and
sometimes written IndGH(V ).

The induction map from representations of H to representations of G induces
a map of representation rings. Denoting the inclusion map

i : H → G

this map is often denoted
i∗ : R(H)→ R(G)

There is an obvious map in the other direction given by restriction, this is often
written

i∗ : R(G)→ R(H)

Recall that there is a natural inner product on representation rings for which
the irreducible representations form an orthonormal basis. One can define this
by integration of characters, but also more abstractly as

< χV1
, χV2

>G= dim HomG(V1, V2)

From this point of view, orthonormality of characters of irreducible represen-
tations is just Schur’s lemma, one form of which is that for V1, V2 irreducible
representations

dim HomG(V1, V2) =

{
0 V1 6= V2

1 V1 = V2

The induced representation is generally not irreducible, how it decomposes
into irreducibles is determined by the following theorem

Theorem 1 (Frobenius Reciprocity). For W a representation of G and V a
representation of a subgroup H we have

< W, i∗V >G=< i∗W,V >H

Idea of proof:
In one direction, given

F : W → i∗V
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map this to ev1 ◦ F , where ev1 is the evaluation map at the identity

ev1 : f ∈ i∗V → f(1) ∈ V

In the other direction, given
f : W → V

define
F : w ∈W → F (w)(g) = f(g−1w)

To complete the proof, one just needs to show that these maps are G and H
maps respectively, and are inverses.

Our study of the representation theory of G for G a compact Lie group has
shown the importance of the maximal torus subgroup T . Representations of T
are weights and are on one complex dimensional vector spaces. Associated to
each weight λ of T there is a homogeneous line bundle Lλ over the base space
G/T . The space of sections Γ(Lλ) is the induced G representation. Γ(Lλ) will
be an infinite dimensional vector space and Frobenius reciprocity tells us that

dim HomG(Vγ ,Γ(Lλ)) = dim HomT (i∗Vγ , λ)

In words, this says that the multiplicity in Γ(Lλ) of an irreducible representation
Vγ with highest weight γ is given by the multiplicity of the weight λ in Vγ . For
any given weight λ, the induced representation Γ(Lλ) will decompose into an
infinity of irreducibles, all those that contain the weight λ.

A simple example of this phenomenon is behind the theory of functions on
the 2-sphere called “spherical harmonics. These are often written using the
notation

Y lm(φ, θ)

where φ and θ are angles parametrizing the sphere, l is a non-negative integer
and m is an integer taking on the 2l+1 values −m,−m+1, · · · ,m−1,m. Recall
our standard example G = SU(2), T = U(1), G/T = S2. The representations
of T are labelled by an integer n and the representations Vk of SU(2) correspond
to non-negative values of k (dominant weights in this case) where k is the largest
integer that occurs when you restrict Vk to be a U(1) representation. Frobenius
reciprocity tells us that

dim HomSU(2)(Vk,Γ(Ln)) = dim HomU(1)(Vk, n)

where the right hand side is the multiplicity of the weight n in Vk. Since we
know what the weights of Vk are (−k,−k + 2, ·, k − 2, k, all with multiplicity
one), we can see that the decomposition of Γ(Ln) into irreducibles will include
all Vk where k is the same parity as n and k ≥ n.

Spherical harmonics correspond to the case n = 0, in this case L0 is the
trivial C bundle and Γ(L0) is just the space of complex-valued functions on S2.
All Vk with k even will occur in Γ(L0), each with multiplicity one. The Vk with
k odd do not occur since they do not include the weight 0. This gives spherical
functions that are SU(2) representations, these are also SO(3) representations.
Vk, k even corresponds to standard spherical harmonics Y lm(φ, θ) with l = k/2.
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